Aging, Labor Markets, and Pension Reform in Austria

Christian Keuschnigg and Mirela Keuschnigg

Received 10 August 2003; in revised form 5 March 2004; accepted 29 March 2004

This paper investigates the dynamic consequences of demographic change and various pension reform scenarios for Austria. The analysis is based on a computable overlapping-generations model with life-cycle labor supply, savings, and search unemployment. The public sector is decomposed into general government and an unfunded pension system with a tax–benefit linkage. Our quantitative analysis considers several pension reform scenarios on top of the demographic transition in an aging society. We find that lowering the pension replacement rate and increasing the retirement age can have strong labor-market effects. They strengthen the labor supply both with respect to job search intensity, leading to lower unemployment rates, and with respect to hours worked.

Keywords: pension reform, CGE, aging, labor markets

JEL classification: C 68, D 58, E 62, J 64, H 55

1. Introduction

Pension reform has important economy-wide repercussions. In particular, it is expected to affect labor-market performance. Depending on the extent of the tax–benefit link, contributions to a pay-as-you-go (PAYG) system have a partial tax character. The return to contributions depends on population and productivity growth and therefore is lower than the real interest rate in a dynamically efficient economy. Thus, contributions tend to be actuarially unfair from an individual perspective, and are partly perceived as taxes. Distorting labor taxes, in turn, restrict labor demand and are a source of unemployment.

As in most industrial countries, aging of the population puts formidable pressure on the pension system. Given current pension rules, contribution...

* This paper is part of a larger research project at the University of Linz on “Public Finance, Unemployment and Growth”. Financial support by the FWF, project no. P14702, is gratefully acknowledged. The paper was presented at the CEBR/EPRU workshop on “Social Security, Labor Supply and Demographic Change” in Copenhagen, June 2003, at the University of St. Gallen and the European Commission, DG Economic and Financial Affairs. We appreciate stimulating comments by our discussant Morten I. Lau and other seminar participants. We are indebted to two anonymous referees, and to the editor Peter Birch Sørensen, for very constructive comments and suggestions for revising the paper.
rates would have to rise quite impressively to fund the system. Since these contributions have partial tax character, this secular rise adds to the overall labor-tax burden, with potentially detrimental effects on labor-market performance. Cutting pensions may help to stabilize statutory contribution rates. Lower statutory rates translate into lower effective tax rates and thereby help to reduce the labor-market distortion. On the other hand, pension cuts imply a lower rate of return and thereby a higher implicit tax component of given contribution levels. A similar argument applies to an increase in the average retirement age, which is often seen as a solution to the aging problem.

Given the empirical evidence on the detrimental effects of taxes on labor supply and unemployment (see, e.g., Daveri and Tabellini 2000), it seems very important to carefully investigate the labor-market effects of pension reform in a sufficiently detailed model of the labor market. This is then the main novel contribution of the paper, which applies a detailed model of labor supply, including demographic effects, job search intensity, and hours worked, to investigate potential quantitative effects of pension reform. Equilibrium unemployment results from endogenously determined labor-market tightness, which reflects both the job search intensity of unemployed workers and job creation by firms. With this framework at hand, we investigate the consequences of some often discussed and important measures to protect the financial viability of the pension system: raising contribution rates, raising average retirement age, and cutting pension levels.

Pension reform is the subject of a considerable literature by now (see, e.g., the recent reviews by Bovenberg 2003 and Lindbeck and Persson 2003), but most of it has reduced labor-market distortions to a classical labor-supply decision with full employment (e.g., Homburg 1990; Breyer and Straub 1993; Fenge 1995; Brunner 1996; Lindbeck and Persson 2003) or has considered other issues in a market-clearing framework, such as retirement decisions, fertility, mobility of labor, and political economy (e.g., Sinn 2000; Casamatta, Cremer, and Pestiau 2001; Feldstein 2001; Diamond 2003). Corneo and Marquardt (2000) and Demmel and Keuschnigg (2000) studied the effects of pension reform on unemployment with union wage setting. These papers are less detailed about individual labor-market incentives. Further, they do not provide any quantitative effects of pension reform during a demographic transition. The existing simulation studies also do not allow one to consider the effects of pension reform on unemployment (see, e.g., Kotlikoff, Smetsers, and Walliser 2001; Börsch-Supan, Ludwig, and Winter 2002; Morrow and Roeger 2004; Jensen, Lau, and Poutvaara 2004; and Fehr, Jokisch, and Kotlikoff 2004). Jensen et al. consider the implications of pension reform for human-capital formation. Given the level of unemployment – high in Austria, and even higher in other European countries – it seems rather
important to investigate how pension reform affects structural unemployment.

Our tool of analysis is a numerically solved general-equilibrium model with overlapping generations (OLG) of workers and retirees. It is an extension of Gertler’s (1999) life-cycle model where agents move stochastically into retirement and, once in retirement, face a constant risk of extinction. This extension of the basic OLG model with lifetime uncertainty (pioneered by Blanchard 1985) is not only more realistic in its demographic structure and life-cycle features; it also opens up new applications to aging, labor markets, and fiscal policy. Morrow and Roeger (2004) apply this framework to investigate the effects of demographic transition and pension reform in Europe. Our own contribution is to model the pension system in more detail than these authors, and to incorporate endogenous labor supply combined with search unemployment. This extension is important for capturing the potential labor-market distortions of pension reform. Labor supply is specific to the employment state. Instead of enjoying leisure, workers may opt for more income and consumption by either working more if employed or searching for a job if unemployed. At any given time, increased search effort raises one’s probability of finding a job and thereby allows one to earn income faster than otherwise. The other aspects of the model, such as private-sector investment and the nature of the fiscal systems, are more straightforward. The model is calibrated to Austrian data.

The paper is organized as follows. The next section briefly describes the main features of the Austrian pension system and its problems with long-run sustainability in the light of projected population aging. Section 3 presents our tool of analysis. Section 4 discusses simulation results relating to our policy scenarios: aging, lower pension entitlements, and higher retirement age. A final section concludes.

2. Aging and Pension Reform in Austria

2.1. An Overview of the Pension System

Austria has a generous and expensive PAYG pension system with a weak tax–benefit linkage. Public pension expenditures represented about 14.5%

1 Our model integrates search unemployment as in Pissarides (2000) with well-specified intertemporal savings and investment decisions, much as in the literature on unemployment and growth (see, e.g., Aghion and Howitt 1994; Andolfatto 1996; Merz 1999; or Shi and Wen 1997, 1999).

2 Keuschnigg and Keuschnigg (2003) provide a detailed model documentation including the calibration procedure. This separate technical appendix is available upon request.
of GDP in 2000, compared to 9.9% in 1970. They are much higher than the EU average of 10.4% of GDP (European Commission 2001). Contributions to the pension system are not sufficient to cover total pension expenditure. The government must pay considerable transfers out of general tax revenues to finance the deficit of the pension system. The current deficit is 2.5% of GDP for the PAYG pension scheme. This translates into the fact that individual pension claims are only partly financed by own contributions and thus include a considerable lump-sum component. Reflecting this imbalance, Koman, Keuschnigg, and Lüth (2002) have calculated that the unfunded future pension obligations amount to an implicit debt of approximately 200% of GDP.

The funding gap is mostly due to the fact that pension expenditures have grown quite substantially over the last decades. Over the period 1970–2000, the ratio of retirees (i.e., the number of retirees per 1000 contributors) increased by 27% while the absolute number of pensioners grew by more than 50%. Moreover, the average actual retirement age declined considerably as people opted for early retirement in much greater numbers. The statutory minimum age requirement is 60 for women and 65 for men, and 65 for civil servants (Beamte). However, only about 10% of the population between the ages of 60 and 65 is in the labor force. The average retirement age in the PAYG sector scheme was 58.5 for men and 56.8 for women in 2000, down from 61.9 and 61.4 in 1970. This is a consequence of early retirement and disability pensions becoming very popular over the last decades: in 1999, only 15% of new pensions were regular old-age pensions, about half the share in 1970 (IMF 2002).

In a recent study of the Austrian pension system, Hofer and Koman (2001) argue that the sharp drop in labor-force participation among the elderly is the result of strong disincentives of the Austrian pension system. The authors quantify the incentives to retire early by computing measures of social security wealth and of the implicit tax rates on continued work generated by the current system. They find the tax on continued work to become significant after the early retirement age. With these trends, labor-force participation rates at older ages are now among the lowest in EU countries: between the ages of 60 and 65, only about 10% of the population is in the labor force.

The recent fiscal consolidation and pension reforms contained measures addressing the pension system, mainly by discouraging early retirement, which was made financially less attractive (see Keuschnigg et al. 2000). The required contribution period was extended, and full pensions were made available only to retirees of age 60 or older. To compute benefits, a maximum gross replacement rate of 80% is applied for the PAYG pension scheme. The benefits depend on the retirement age, the number of contribution periods, and the average income over the best 18 contribution years.
2.2. Aging and Long-Run Sustainability

Like other developed countries, Austria will experience a significant aging of her population over the next 50 years. Increasing life expectancy, combined with very low fertility rates, is responsible for this trend. Eurostat (1999) forecasts an increase in life expectancy at birth from 75 (males) and 81.2 (females) in 2000 to 81 and 86, respectively, in 2050. Fertility rates are expected to increase from 1.34 to 1.5 over the same period (see table 1). As a result, the ratio of elderly (older than 65) to people of working age (age 15–64) will more than double, viz., it will increase from 0.23 to 0.5 in 2050, while the share of very old people (older than 79) will rise even more (IMF 2002; and Statistik Austria).

Table 1
Demographic Projections for Austria

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old-age dependency ratio*</td>
<td>229</td>
<td>265</td>
<td>310</td>
<td>407</td>
<td>478</td>
<td>489</td>
</tr>
<tr>
<td>Overall dependency ratio**</td>
<td>474</td>
<td>478</td>
<td>527</td>
<td>634</td>
<td>703</td>
<td>716</td>
</tr>
<tr>
<td>Share of very elderly***</td>
<td>234</td>
<td>274</td>
<td>277</td>
<td>278</td>
<td>307</td>
<td>389</td>
</tr>
<tr>
<td>Life expectancy at birth (years)</td>
<td>78.3</td>
<td>79.7</td>
<td>81.1</td>
<td>82.8</td>
<td>83.6</td>
<td>84.5</td>
</tr>
<tr>
<td>Life expectancy at age 65 (years)</td>
<td>17.9</td>
<td>18.8</td>
<td>19.7</td>
<td>20.8</td>
<td>21.4</td>
<td>22.1</td>
</tr>
<tr>
<td>Migration balance (thousands)</td>
<td>17.272</td>
<td>16.358</td>
<td>18.808</td>
<td>21.296</td>
<td>22.694</td>
<td>24.005</td>
</tr>
<tr>
<td>Total fertility rate****</td>
<td>1.34</td>
<td>1.44</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Notes: * 65+/15 to 64), per thousand; ** [(0 to 14) + 65+)/15 to 64] per thousand; *** 80+/65+ per thousand, share of very elderly in total elderly population; **** number of live births per female. Source: Statistik Austria

As a result of population aging, all old-age-related expenditures will increase, putting pressure on the finances of the welfare system and threatening the long-run fiscal sustainability. Public pension spending is expected to increase quite remarkably over the next decades, reaching 17% of GDP in 2050. Apart from demographic developments, three other factors are likely to influence the expected increase in pension spending: the share of working people in employment, the share of elderly receiving pensions, and the generosity of pension benefits. Given the expected decline in employment, government is likely to collect less revenues from taxes and social secu-
Sixty contributions. A higher employment rate of older workers would yield a double fiscal dividend: it would increase the number of contributors and decrease the number of people claiming pension benefits. Any reform that targets an improvement in women’s and the elderly’s labor-force participation as well as lowering benefits is likely to alleviate some of the spending pressure.

To sum up, future developments of pension expenditure will be determined by four driving forces: aging, employment, eligibility, and benefit rules. Decomposing overall pension expenditure and projecting each of these four parts separately, IMF (2002) arrives at an estimate of future pension spending in Austria as a share of GDP (see, in particular, Eskesen 2002)\(^4\). The pension reform scenarios as discussed in Austria can also be related to these four components. The various reform proposals essentially boil down to (1) making pensions less generous, resulting in a lower average replacement rate, (2) raising the effective retirement age, and (3) strengthening incentives for increased labor-force participation and employment to further reduce the retiree/worker ratio. In our framework, aging (based on fertility and mortality assumptions) and employment are an endogenous outcome rather than exogenously projected. Furthermore, the labor-market incentives of pension reform are not independently chosen, but are endogenously determined by labor taxes and contribution rates as required to sustain the solvency of the pension system and of general government.

3. A Life-Cycle Economy with Pensions

We model Austria as a small open economy with an internationally fixed real interest rate and exogenous trend growth of labor productivity. Asset and physical-capital accumulation reflect the intertemporal consumption and investment decisions of forward-looking agents. Households save to ensure smooth consumption in the face of uneven life-cycle income patterns and, in particular, to top up public pensions and sustain their consumption level during retirement. The life cycle is divided into a working and a retirement period. During the working period, agents endogenously supply labor in the form of hours worked when employed, and time spent on job search when unemployed. Retirement terminates the flow of wage income and, instead, entitles agents to pension benefits. Although pensions are earnings-

\(^4\) The Austrian authorities recently set up a Committee on Long-Term Pension Sustainability (Kommission zur langfristigen Pensionsicherung). The first report of the committee, published in May 2000, includes similar long-run projections and emphasizes, in particular, the need to increase employment rates to stabilize the system.
related, the contributions to the PAYG system are partly perceived as taxes, since they earn a rate of return less than the market interest rate. Since this implicit tax rate is part of the overall labor-tax burden, it is particularly important for meaningfully capturing labor-market effects of pension reforms5.

The pattern of birth and mortality rates mimics the projections for demographic change. The model replicates the continued increase in the retiree/worker ratio, which is the source of the pension problem and dictates the much-discussed changes to the system. Aging itself may have profound consequences for labor-market performance, since it affects the inflows and outflows of workers from the aggregate labor force. Finally, we include in much detail the separate budgets of the public sector and the pension system. The modeling of the pension system also includes the individually perceived tax–benefit link, allowing us to calculate the implicit tax component of mandatory contributions.

3.1. Overlapping Generations

3.1.1. Demographics

The population consists of \(N^W_t \) workers and \(N^R_t \) retirees; hence the total population is \(N_t = N^W_t + N^R_t \). These groups are themselves composed of different age cohorts that are indexed by their date of birth, e.g., \(N^W_{v,t} \) is the mass at date \(t \) of workers born at dates \(v \leq t \). The size of a cohort shrinks over time by \(N^W_{v,t} = \omega N^W_{v,t-1} \), since only a fraction \(\omega < 1 \) of them remains active until next period while the other part is retired at a constant rate \(1 - \omega \). From an individual’s perspective, \(1 - \omega \) is the probability of a worker becoming retired next period. Starting with retirement, agents are subject to a constant mortality rate \(1 - \gamma \) and will thus survive to the next period only with probability \(\gamma \). Hence, the mass of any given retired cohort shrinks by \(N^R_{v,t} = \gamma N^R_{v,t-1} \). To keep the population groups constant, an inflow of new workers \(N^W_t \) must replace the outflow into retirement, and similarly, new retirees \(N^R_t \) must replace the outflow on account of death. By definition, the outflow of workers must be equal to the inflow of new retirees as in (1c) below. Demographic change is therefore governed by the following

5 Gertler (1999) introduced the life-cycle structure into the basic Blanchard (1985) model. The methodological contribution of this paper relative to the Blanchard–Gertler model is to allow for endogenous labor supply and search unemployment and to effectively compute the implicit tax rate of the pension system as part of household optimization. See the separate technical appendix by Keuschnigg and Keuschnigg (2003). See Heijdra, Keuschnigg, and Kohler (2003) for some analytical results on the equilibrium unemployment rate in the reduced model without retirement.
Christian Keuschnigg and Mirela Keuschnigg

366

system:
(a) \(N_{t}^W = \omega N_{t-1}^W + N_{t-1}^W \),
(b) \(N_{t}^R = \gamma N_{t-1}^R + N_{t-1}^R \),
(c) \(N_{t}^R = (1 - \omega) N_{t-1}^W \),
(d) \(N_{t} = N_{t-1} + N_{t-1}^W - (1 - \gamma) N_{t-1}^R \).

In specifying the retirement and mortality rates and choosing an appropriate birth rate, the model can approximate various demographic scenarios.

3.1.2. Life-Cycle Optimization

Preferences are expressed by a CES expected utility function as proposed by Farmer (1990) and Weil (1990). A retired person chooses consumption \(C_{r,t} \) to maximize expected utility subject to an intertemporal budget constraint over the rest of her lifetime,
\[
V_{r,t}^R = \left[\left(C_{r,t}^R \right)^{\rho} + \beta \gamma (V_{r,t+1}^R)^{\rho} \right]^{1/\rho},
\]
where \(\beta \) is a subjective discount factor, \(\gamma \) is the instantaneous probability of survival, and \(\sigma_C \) is the constant intertemporal elasticity of substitution. Her optimal policy is to spend at each date a fraction of lifetime resources on current consumption. Wealth consists of her previously accumulated financial assets plus the present value of future pension and transfer entitlements. Reflecting mortality risk, retirees have a higher marginal propensity to consume out of lifetime wealth than workers.\(^6\)

In choosing consumption, savings, and labor supply today, workers anticipate how these decisions affect their welfare during retirement. At any given date, a worker retires with probability \(1 - \omega \) and remains active only with probability \(\omega \). Once an agent retires, her worker’s salary is replaced by a lower pension payment, so that her expected utility jumps from \(V_{W}^W \) to \(V_{R}^R \). The expected utility of a worker is thus
\[
V_{w,t}^W = \left[\left(Q_{w,t}^W \right)^{\rho} + \beta \left(\bar{V}_{w,t+1} \right)^{\rho} \right]^{1/\rho},
\]
\[
\bar{V}_{w,t+1} \equiv \omega V_{w,t+1}^W + (1 - \omega) V_{w,t+1}^R,
\]
\[
Q_{w,t}^W \equiv C_{w,t}^W - \varphi(e_t) n_{w,t}^s - \psi(\xi_t) n_{w,t}^L.
\]
During their active period, agents enjoy utility from consumption \(C_{w,t}^W \) but incur disutility from work effort \(e_t \) when employed with probability \(n_{w,t}^s \), and from effort \(\xi_t \) expended on job search when unemployed with probability \(n_{w,t}^L \). Work and search efforts will turn out to be the same for all dynas-

\(^6\) This corresponds quite well with the finding of Harrison, Lau, and Williams (2002) that retired people have higher discount rates than active ones.
ties, i.e., \(e_{i,t} = e_t \). An agent’s \textit{ex ante} employment probability corresponds to the household’s share of employed and unemployed members, respectively: \(n_{e,t} + n_{u,t} = 1 \).

The utility costs of both types of effort, \(\varphi(e) \) and \(\psi(\xi) \), are convex and increasing functions of the respective effort levels. In assuming separable preferences, we eliminate income effects on labor supply. Therefore, an agent’s instantaneous welfare is \(Q^w_t \) as in (3). It is again chosen as a fraction of lifetime resources, which consist of previously accumulated financial assets, the present value of future transfer entitlements, the value of pension entitlements accumulated up to the present period (pension wealth), and human wealth. A worker’s human wealth is the present value of expected wage-related income, consisting of an average of wages net of (implicit) taxes and unemployment benefits. Human wealth can also be expressed as the average of the asset values \(V^E \) and \(V^U \) attached to the states of (un)employment, \(H^w_t = V^E n_{e,t} + V^U n_{u,t} \).

3.1.3. Aggregate Household Behavior

We state here only the macroeconomic magnitudes obtained by summing over all age groups. Aggregate consumption, for example, is defined by

\[
C^w_t = \sum_{v=t}^{\infty} C^w_{v,t} n^w_{v,t}, \quad C^R_t = \sum_{v=t}^{\infty} N^R_{v,t} C^R_{v,t}.
\] (4)

Workers are either employed or unemployed, giving \(N^w_t = N^E_t + N^U_t \) in the aggregate. Due to job separation at an exogenous rate \(s \), the number of employed declines by \(s N^E_t \), leaving only a fraction \(1 - s \) in employment. On the other hand, successful job search by the unemployed raises employment. Given that a unit of search effort locates a job with probability \(f_t \), an agent raises her employment prospects (probability \(\xi f_t \)) by supplying search effort \(\xi_t \). Therefore, \(\xi f_t N^U_t \) and \(s N^E_t \) reflect the inflow and outflow from employment. Labor market flows are as in Pissarides (2000) but include demographic components as well. Employment and unemployment shrink by a factor \(\omega \) on account of retirement. On the other hand, the workforce is expanded by new labor-market entrants \(N^w_{t+1,t+1} \). They start life being unemployed, since they must first search for a job before obtaining employment. Aggregate labor-market flows are thus

\[
N^E_{t+1} = \omega \left[\xi f_t N^U_t + (1 - s) N^E_t \right],
\]

\[
N^U_{t+1} = \omega \left[s N^E_t + (1 - \xi f_t) N^U_t \right] + N^w_{t+1,t+1}.
\] (5)

A worker household receives an average \(\bar{y} \) over net wages of employed members, \((1 - t^W - t^S) w N^E_t \), and unemployment benefits of the unemployed, \(z N^U_t \). Wages \(w \) are subject to a tax at rate \(t^W \) and to social security
contributions t^{SS}. Subtracting the utility cost of effort yields an effort-adjusted income \bar{w}_i^D:

$$\bar{y}_i = (1 - t^W - \tilde{t}^{SS})w_t e_t N^E_t + z_i N^U_t, \quad \bar{w}_i^D = \bar{y}_i - \varphi(e_t)N^E_t - \psi(\bar{z}_i)N^U_t. \quad (6)$$

If employed, a worker can raise her income by supplying increased work effort e_t, although at a higher effort cost. An unemployed agent may search more intensively for a job, again at the expense of leisure, and thereby raise her prospects of finding employment. Therefore, the values attached to employment and unemployment states are

$$RV_t^E = (1 - t^W - \tilde{t}^{SS})w_t e_t - \varphi(e_t) + [(1 - s)V^E_t + s V_t^U] \omega / \Omega, \quad (7)$$

$$RV_t^U = w_t^R + V_t^U, \quad w_t^R = z_i - \psi(\bar{z}_i) + \bar{z}_i f_t (V_t^E - V_t^U) \omega / \Omega,$$

where \tilde{t}^{SS} is the effective as opposed to the statutory rate t^{SS}, and $R = 1 + r$ is the interest factor. The factor $\Omega > 1$ reflects the individual valuation of the retirement risk and leads to an increased discount rate for workers. The shadow price of employment, V^E, reflects current wages less disutility of effort plus the expected value of the next period, when the worker, if not retired, is still employed with probability $1 - s$ but is separated from the job with probability s, giving a lower value V^U. The value of unemployment corresponds to future reservation wages w_t^R, which consist of unemployment benefits minus search effort cost plus the expected gains from finding (with probability $\bar{z}_i f_t$) employment.

The presence of a tax–benefit link implies $\tilde{t}^{SS} < t^{SS}$. Intuitively, an agent anticipates that earning higher wage income today adds to her stock of pension claims and raises the pension in retirement. This extra benefit corresponds to the part $t^{SS} - \tilde{t}^{SS}$ of her contribution payment. Only the part \tilde{t}^{SS} is considered a tax without any corresponding benefit. This implicit tax reflects the fact that contributions are forced retirement savings that earn a lower rate of return than savings invested at the market rate of interest. Naturally, the worker’s optimality conditions for work and search effort depend on the implicit rather than the statutory tax rate:

$$\varphi'(e_t) = (1 - t^W - \tilde{t}^{SS})w_t, \quad \psi'(\bar{z}_i) = f_t \cdot (V^E_t - V^U_t) \frac{\omega}{\Omega}. \quad (8)$$

The marginal cost of work effort, as measured in units of consumption, equals the marginal return as expressed by the extra wage income net of taxes. Income effects are absent because preferences are separable into consumption and effort. In supplying \bar{z}_i units of labor-market search, the agent expects to obtain a job offer with probability $\bar{z}_i f_t$. The expected marginal return is the increase f_t of the probability of finding a job times the expected present value of the differential future wage income. Hence, the search cost ψ' is balanced with the expected gains from finding a job.
Finally, given consumption and labor supply of workers and retirees, aggregate assets accumulate according to

\[
A^W_{t+1} = \omega \left(R_t A^W_t + \bar{w}_t^D + z^T_t N^W_t - Q^W_t \right),
\]

\[
A^R_{t+1} = R_t A^R_t + (1 - t^D)E_t + z^T_t N^R_t - C^R_t
\]

\[+ (1 - \omega) \left(R_t A^W_t + \bar{w}_t^D + z^T_t N^W_t - Q^W_t \right),
\]

\[
A_{t+1} = R_t A_t + \bar{y}_t + z^T_t N_t + (1 - t^D)E_t - C_t,
\]

where \(z^T\) represents a lump-sum transfer and \(E\) are social security benefits, taxed at a rate \(t^D\). Assets of retirees include net savings of the old plus the assets of new retirees who have been workers in the preperiod. The last equation uses \(C_t \equiv C^W_t + C^R_t\) and \(A_t \equiv A^W_t + A^R_t\) and sums across workers and retirees.

3.2. Production Sector

Firms invest, accumulate capital, and hire labor on a search labor market\(^7\).

Some workers retire and leave for other reasons; this occurs at an exogenous rate \(s\). The firm must thus continuously replace part of its workforce by hiring new workers. When posting vacancies, it is able to fill only part of them, due to matching frictions. The firm’s capital \(K\) and employment \(N^E\) thus follow

\[
K_{t+1} = I_t + (1 - \delta)K_t,
\]

\[
N^E_{t+1} = \omega \left[q_v_t + (1 - s)N^E_t \right],
\]

where \(I\) is gross investment, \(\delta\) the rate of depreciation, \(v\) the number of job vacancies, and \(q\) the hiring probability, or the fraction of vacancies that are successfully filled. The firm produces with a linearly homogeneous technology

\[
Y_t = F \left(K_t, L^D_t \right), \quad L^D_t = L_t - \kappa v_t, \quad L_t = e_t N^E_t.
\]

Each worker supplies \(e\) hours of labor such that effective employment is \(L\). The firm allocates a part \(L^D\) of its manpower to production activities and must divert the rest, \(\kappa v\), to recruitment of new workers. It thereby incurs search costs in forgone output.

Investors value the firm because of its stream of dividends. After financing investment with retained earnings, the firm is able to pay dividends \(\chi\) net of

\(^7\) To avoid complicated notation, we describe only the most important transmission channels. The actual simulation model as documented in Keuschnigg and Keuschnigg (2003) also includes other details, such as the exogenous trend growth of labor productivity as well as adjustment costs \(J(I, K)\). The total investment cost consists of market spending and internal adjustment costs, \(I + J\).
profit taxes at rate t^K:

$$
\chi_t = (1 - t^K)(Y_t - w_t L_t) - (1 - t^K z^I)I_t. \tag{12}
$$

A share z^I of investment spending is tax-deductible. The investment and hiring policy generates dividends and capital gains, yielding a total return equal to $rV_t = \chi_t + V_{t+1} - V_t$. Taking as given the labor supply e per worker, firms accumulate employment and equipment to maximize shareholder value. We derive the optimality conditions

(a) $I : \lambda^K_{t+i} = 1 - t^K z^I,$

(b) $v : \lambda^N_{t+i} \omega q_t = (1 - t^K) \kappa F_L. \tag{13}$

The shadow prices $\lambda^K = \partial V / \partial K$ and $\lambda^N = \partial V / \partial N$ stand for the contribution of an extra unit of capital or another job to the present value of future dividends. We find

(a) $R \lambda^K_t = (1 - t^K) F_K + (1 - \delta) \lambda^K_{t+i},$

(b) $R \lambda^N_t = (1 - t^K) (F_L - w_t) e_t + (1 - s) \omega \lambda^N_{t+i}. \tag{14}$

According to (13), investment is optimal if the marginal investment cost, i.e., the net acquisition price $1 - t^K z^I$ of capital goods, just matches the marginal benefit equal to the shadow price λ^K_{t+i}. Similarly, recruitment is optimal if the marginal cost in forgone net revenues, $(1 - t^K) \kappa F_L$, is equal to the expected gain from search, which is the probability ωq_t of successful hiring times the shadow price of employment. We obtain from (13) and (14) a particularly simple condition for optimal capital accumulation in the long run, $F_K = (r + \delta) (1 - t^K z^I)/(1 - t^K)$. In a small open economy, the capital/labor ratio is entirely determined by the world interest rate and the system of capital income taxation.

3.3. Wages, Matching, and Unemployment

When an unemployed person and a firm with a vacancy meet, a job surplus is to be divided between them. Filled jobs have higher value than vacancies from the firm’s perspective, and an employed worker is valued higher than an unemployed worker from the household’s view, i.e., $V^E_t - V^U_t > 0$. The mutual gains from employment at a given wage are reflected in the asset price equations (7) and (14b). Taking ϕ as the worker’s bargaining power, the division of the surplus of a particular worker–firm pair is determined by Nash wage bargaining: $w^*_t = \arg \max (V^E_t - V^U_t) \phi (\lambda^K_{t+i})^{1-\phi}$. Bargaining yields a wage rate, per unit of effort supplied, that is a weighted average of the worker’s contribution to the firm’s profits, i.e., the marginal product of labor (F_L) and the worker’s reservation wage w^R. The reservation wage in (7)
importantly depends on the unemployment benefit, corrected for search effort costs and augmented by the expected capital gain of finding employment elsewhere. The influence of taxes on wage formation largely depends on whether unemployment benefits are indexed to net wages or not. With full indexation, wages are proportional to the marginal product of labor and are rather flexible. Indexation thus tends to eliminate the effects of taxes on equilibrium unemployment. If indexation is absent and unemployment benefits are kept constant in real terms, the worker’s outside option is no longer reduced when the wage tax is increased. Consequently, the tax is shifted to employers and raises the gross wage. This tax shifting reduces the returns to job creation and results in a higher equilibrium unemployment rate. In our simulations below, we assume partial indexation leading to an intermediate tax shifting.

By definition, employment of households must be equal to employment in firms; see (5) and (10). With large numbers, the individual probability ξf_t of locating a job is equal to the fraction of all job seekers that find employment. For the same reason, the probability q_t is the fraction of job vacancies that are successfully filled in equilibrium. Employment in the household and production sectors evolves identically only if inflows into employment are the same for households and firms: $\xi f_t \cdot N_t^U = m_t = q_t \cdot v_t$. Given a standard linear homogeneous matching technology $m(\xi N_t^U, v)$, the ratio $\theta \equiv v/(\xi N_t^U)$ of vacancies to effective job seekers determines the transition rates $q(\theta)$ and $f(\theta) = \theta_0(q(\theta))$, where $f'(\theta) > 0 > q'(\theta)$. A higher ratio θ indicates a tighter labor market and thus reduces the prospects for firms to hire workers but raises the chances of the unemployed to find a job.

Finally, we derive the Beveridge curve. If we assume demographic stationarity, the entry of new workers just replaces the outflow due to retirement: $N_t^W + 1 = (1 - \omega)N_t^W$. Using this and dividing (5) by N_t^W yields $n_{t+1}^U = 1 - \omega + s\omega + \omega[1 - s - \xi f(\theta_t)]n_t^U$. In stationary labor-market equilibrium, the unemployment rate is thus

$$n^U = \frac{1 - \omega + s\omega}{1 - [1 - s - \xi f(\theta)]\omega}.$$

(15)

Unemployment falls with increased incentives for job search (higher ξ) or with increased labor-market tightness on account of higher returns to job creation (higher θ).

8 If there were no demographic exit rate ($\omega = 1$) and search intensity were constant ($\xi = 1$), equation (15) would reduce to the standard case of $n^U = s/(s+f)$ as in Pissarides (2000, p. 18).
3.4. Public Sector and Current Account

The budget constraint of the PAYG pension system is

\[t^{SS} \cdot w_t e_t N_t^E + T_t^p = E_t. \] \hspace{1cm} (16)

The left-hand side represents revenues from contributions plus government subsidies \(T^p \) to the pension system. These transfers are financed out of general tax revenue to cover potential deficits of the system. The right-hand side represents aggregate pension benefits of all retirees of different age cohorts. On an individual level, pensions are linked to past wages via an individually known replacement rate \(r^p \). Supplying more work today raises wages and thereby boosts pension income during retirement. For this reason, pension contributions are only partly perceived as a tax, \(\hat{t}^{SS} < t^{SS} \).

The government collects taxes \(T \) on wage income, pension income, and profit, and spends on public consumption \(C^G \), unemployment benefits \(z N^U \), interest \(r D^G \) on public debt, transfers to households (other than pensions) \(z^T N \), and transfers \(T^p \) to the pension system. As part of the policy scenario, public debt is kept constant in per capita terms. The government finances must satisfy the budget constraint

\[D_{t+1}^G = R_t D_t^G + (C_t^G + z^T_t N_t + z_t N^U_t + T^p_t - T_t), \]

\[T_t = t^W w_t e_t N_t^E + t^K Y_t - w_t L_t - z^I_t I_t. \] \hspace{1cm} (17)

The current account reflects domestic savings and investment. Agents may invest savings in three perfectly substitutable assets that must yield identical rates of return in equilibrium if arbitrage is to be excluded. Private financial wealth is thus \(A = V + D^G + D^F \), where \(V \) and \(D^F \) stand for the value of equity and net foreign assets, and \(D^G \) is government debt. The current account is \(D_{t+1}^F = R_t D_t^F + (Y_t - I_t - C_t - C_t^G) \).

4. Quantitative Effects of Pension Reform

4.1. The Status Quo

Tables 2 and 3 characterize the current state of the Austrian economy prior to aging and pension reform. The first table shows key structural parameters; the second one describes the parameters of the pension system in the model. Note that the model is implemented quarterly to capture the fast labor-market dynamics. While the quarterly interest rate is 1.2%, the annual rate is \((1 + r)^4 - 1 \approx 4.9\% \), i.e., roughly four times as high. The behavioral parameters are largely standard in the CGE and RBC literature and within the range of empirical estimates. Average unemployment duration is only 1.3 quarters, vacancies are filled already after 1.4 quarters, and average tenure on
Table 2

Structural Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real interest rate</td>
<td>0.012</td>
</tr>
<tr>
<td>Depreciation rate</td>
<td>0.026</td>
</tr>
<tr>
<td>Intertemporal elasticity of substitution</td>
<td>0.400</td>
</tr>
<tr>
<td>Relative marginal propensity to consume</td>
<td>1.800</td>
</tr>
<tr>
<td>Labor-supply elasticity</td>
<td>0.400</td>
</tr>
<tr>
<td>Search elasticity</td>
<td>0.400</td>
</tr>
<tr>
<td>Job duration</td>
<td>1/s</td>
</tr>
<tr>
<td>Unemployment duration</td>
<td>1/\tilde{f}</td>
</tr>
<tr>
<td>Vacancy duration</td>
<td>1/q</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>0.058</td>
</tr>
<tr>
<td>Replacement rate of unemployment benefits</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes: * Per quarter or in quarters. ** M.p.c. for retirees in relation to m.p.c. for workers.

\[\sigma_L = \phi'/\left(\epsilon\phi''\right), \quad \sigma_S = \psi'/\left(\xi\psi''\right) \].

the job is 24.2 quarters, or about six years. We use a Cobb–Douglas production technology. GDP shares of demand components and factor cost shares reflect Austrian data.

The demographic parameters determine a steady state prior to simulating the aging scenario. Starting with age 20, agents are assumed to work on average until age 59.2, the average retirement age in Austria prior to reform. The remaining life expectancy covers another 17.8 years, or 71.2 quarters, so that life expectancy is 77 years prior to the aging scenario. The stationary retiree/worker ratio therefore amounts to 45.4%. The other parameters of

Table 3

Parameters of Pension System

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected working period</td>
<td>(1 - \omega)^{-1}</td>
</tr>
<tr>
<td>Expected retirement period</td>
<td>(1 - \gamma)^{-1}</td>
</tr>
<tr>
<td>Retiree–worker ratio</td>
<td>NW/NW^W</td>
</tr>
<tr>
<td>Replacement rate</td>
<td>\gamma^P</td>
</tr>
<tr>
<td>Pension tax rate</td>
<td>\tau^P</td>
</tr>
<tr>
<td>Social security tax rate</td>
<td>\tau^{SS}</td>
</tr>
<tr>
<td>Implicit social security tax rate</td>
<td>\hat{\tau}^{SS}</td>
</tr>
<tr>
<td>Transfer (percent of GDP)</td>
<td>\tau^T</td>
</tr>
</tbody>
</table>

Notes: * Per quarter or in quarters.
the pension system are discussed in section 2, except that the implicit tax rate is endogenously computed in the calibrated initial steady state. In the model simulations below, the wage tax rate t_W is endogenously adjusted to satisfy the government budget constraint while all other policy parameters are exogenously specified. Further, the required contribution rate t_{SS}, implying an implicit tax rate \hat{t}_{SS}, is computed so that the pension system breaks even for a given size of government transfers T^p.

4.2. Policy Scenarios

We now apply our model to simulate the economic consequences of aging and to assess the long-run effects of some measures to reform the Austrian pension system. Our analysis is in two steps and first addresses aging of the population. Then we sequentially consider several policy initiatives for pension reform. The columns of table 4 follow this sequence.

- **Aging:** Column LIFE in table 4 raises life expectancy by 4.2 years, so that the expected life span is 81.2 instead of 77 years. At the same time, the inflow of new generations is adjusted so that overall population size remains constant. Given that the average retirement age is not changed, lifetime extension raises the retiree/worker ratio substantially, from 0.45 to 0.55. Column AGE additionally allows for an increase of the overall population by 6%, which results from a positive immigration balance and increased fertility.

- **Lower replacement rate:** The replacement rate enters into the calculation of pensions as a fraction of acquired pension points that reflect average past wage earnings. The scenario of column REPL cuts down the replacement rate from 0.78 to 0.7, and thereby makes pensions much less generous.

- **Raised retirement age:** Aging results in an increased number of retirees per active worker and thereby makes the pension system unsustainable in its current form. Increasing the retirement age reverses the increase in the dependency ratio and is an obvious strategy to restore the viability of the system. Column RET of table 4 reports the effects of raising the average retirement age by 3 years (12 quarters), which is complemented by a reduction of the length of the retirement period by 3 years as well.

Table 4 computes these scenarios in sequential and cumulative form. Columns LIFE and AGE show comparisons of the initial steady-state with the results after demographic changes: LIFE means a longer life span, and AGE includes both shocks simultaneously, i.e., a larger population and a longer life span. The last two columns start from the AGE scenario and compare the effects of various shocks relative to this (nonstationary) base-
4.3. Long-Run Effects

4.3.1. Aging

We first investigate the effects of increasing life expectancy. Column LIFE in table 4 reports the long-run results. As the average retirement age is held constant, the retiree/worker ratio increases substantially, from 0.45 to 0.55. With overall population size fixed, aging reduces the workforce and raises the number of pensioners. These demographic changes have profound effects on the public sector. Apart from pensions, which are earnings-related, other government expenditure is kept constant per capita of the overall population. With a rather dramatically shrinking workforce (note the reduction in employment), the wage tax base contracts and thereby necessitates a substantial increase in the tax rate, by 15 percentage points, to fund government spending. The social security contribution must increase as well, raising the implicit tax by 3 percentage points, which further adds to the labor-tax distortion. Obviously, a tax increase of this size constitutes a strong disincentive to work; see (8). When employed, agents work fewer hours, so that the labor supply e per worker shrinks by more than 10%. The increase in the market wage is not very pronounced, however, so that labor-supply decisions are dominated by the change in the wage tax. Given the large labor-supply reduction and the almost constant market wage, wage income declines. Workers thus accumulate fewer pension points. Given a fixed replacement rate under existing benefit rules, the decline in wage income also translates into lower pensions. Per capita pensions decline by 11.8% and thereby limit the increase in the statutory contribution rate to 4.5 percentage points. The implicit social security tax rate increases along with it, from 3.7% to 7.1%.

Why is the wage increase so small? In a small open economy, real interest is internationally fixed, which prevents any long-run effect on the capital/labor ratio and on labor productivity, as is explained at the end of section 3.2. This tends to keep the wage rate constant. With wage bargaining, wages also depend on the worker’s reservation wage, which is largely determined by unemployment benefits. Since benefits are, by assumption, only partially indexed, they fall by less than the net-of-tax wage. In weakening the worker’s outside option, the reduction in unemployment benefits translates into lower wages. On the other hand, bargaining tends to shift taxes to employers as

9 We compute real unemployment benefits by $z = 0.5 \times b \times (1 - t^W - t^{SS}) + 0.5 \times z^0$, where z^0 is the initial benefit level prior to the shock.
Table 4

Long-run Macroeconomic Effects

<table>
<thead>
<tr>
<th>Variable</th>
<th>ISS</th>
<th>LIFE*</th>
<th>AGE*</th>
<th>REPL*</th>
<th>RET*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retiree/worker ratio</td>
<td>0.454</td>
<td>0.552</td>
<td>0.552</td>
<td>0.552</td>
<td>0.446</td>
</tr>
<tr>
<td>Contribution rate</td>
<td>0.205</td>
<td>0.251</td>
<td>0.251</td>
<td>0.268</td>
<td>0.219</td>
</tr>
<tr>
<td>Implicit s.s. tax</td>
<td>0.037</td>
<td>0.071</td>
<td>0.071</td>
<td>0.107</td>
<td>0.069</td>
</tr>
<tr>
<td>Wage-tax rate</td>
<td>0.205</td>
<td>0.353</td>
<td>0.353</td>
<td>0.258</td>
<td>0.135</td>
</tr>
<tr>
<td>Replacement rate</td>
<td>0.781</td>
<td>0.781</td>
<td>0.781</td>
<td>0.703</td>
<td>0.703</td>
</tr>
<tr>
<td>Vacancy ratio</td>
<td>1.085</td>
<td>0.842</td>
<td>0.842</td>
<td>0.924</td>
<td>1.111</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>5.800</td>
<td>7.908</td>
<td>7.908</td>
<td>7.058</td>
<td>5.510</td>
</tr>
<tr>
<td>Capital stock</td>
<td>−17.879</td>
<td>−12.952</td>
<td>4.944</td>
<td>25.381</td>
<td></td>
</tr>
<tr>
<td>Labor demand</td>
<td>−17.879</td>
<td>−12.952</td>
<td>4.944</td>
<td>25.381</td>
<td></td>
</tr>
<tr>
<td>Gross wage</td>
<td>0.075</td>
<td>0.075</td>
<td>−0.025</td>
<td>−0.004</td>
<td></td>
</tr>
<tr>
<td>Labor supply</td>
<td>−10.375</td>
<td>−10.375</td>
<td>4.007</td>
<td>13.788</td>
<td></td>
</tr>
<tr>
<td>Search intensity</td>
<td>−18.980</td>
<td>−18.980</td>
<td>7.946</td>
<td>27.067</td>
<td></td>
</tr>
<tr>
<td>Average income</td>
<td>−43.299</td>
<td>−39.897</td>
<td>23.848</td>
<td>98.045</td>
<td></td>
</tr>
<tr>
<td>Pension p.c.</td>
<td>−11.790</td>
<td>−11.790</td>
<td>−5.554</td>
<td>6.312</td>
<td></td>
</tr>
<tr>
<td>Worker cons. p.c.</td>
<td>−37.297</td>
<td>−37.297</td>
<td>22.591</td>
<td>79.908</td>
<td></td>
</tr>
<tr>
<td>Retiree cons. p.c.</td>
<td>−29.641</td>
<td>−29.641</td>
<td>18.295</td>
<td>66.354</td>
<td></td>
</tr>
</tbody>
</table>

Notes: ISS: Initial steady state, absolute values. LIFE: Life expectancy higher by 4.2 years, constant population. AGE: Increased population due to immigration. REPL: Reduction of pension replacement rate plus elimination of PAYG deficit \(\tau^P \). RET: Increased retirement age. Upper half: absolute values; lower half: percentage changes. * Percentage change relative to ISS. # Percentage change relative to AGE.

long as benefits are only partially indexed (see the discussion in section 3.3) and thereby tends to raise wages. The net effect is a small increase in the equilibrium wage.

At first sight, it seems rather surprising that aging impairs search effort so much more than it decreases hours worked. Search intensity declines by more than 18%! To understand the incentives for job search, one compares in (8) the marginal cost of an extra search unit with the marginal benefit. The return to search is equal to the probability that one unit of search locates a job, times the capital gain derived from trading in one’s unemployed status for a job. That capital gain, \(V^E - V^U \), equals the present value of the differential future wage income divided by the value of the unemployment benefits, corrected for work and search effort respectively\(^{10}\). Both fewer working hours and

\(^{10}\) The reader may verify this by taking the difference in (7).
much higher taxes accumulate to substantially reduce the net-of-tax wage income derived from accepting a job. The opportunity cost of accepting employment also declines, but considerably less so, since unemployment benefits are, by assumption, only partially indexed to net wages and are partly tied to the initial benefit level prior to the shock. Therefore, taxes together with the unemployment benefit rule clearly impair the returns to search.

Further, because higher taxes reduce hours worked, they also cut into the firm’s job rent as given in (14b). The value λ^N of a filled job and thus the return to job creation in (13b) decline, while the opportunity cost of recruitment – the lost output when part of the workforce must be diverted from production to job search – remains constant. Obviously then, firms cut back on hiring and open fewer vacancies. Labor-market tightness θ relaxes (from 1.08 to 0.84 in table 4), which raises the probability q for firms to successfully fill a vacancy until the returns and costs of recruitment are equal again. Unemployed workers, however, will find it much more difficult to locate a job opportunity. The negative capital gains and the lower matching probability reinforce each other to seriously impair the returns to job search in (8). Consequently, aging leads to a much larger reduction in search effort than in hours worked when employed. Lower labor-market tightness and weaker search effort both reduce the outflow from unemployment by eroding the transition rate $\xi f(\theta)$. By (15), the unemployment rate picks up, and according to table 4, it increases quite substantially, by 2 percentage points, from 5.8% to 7.9%.

Equilibrium employment in production, L^D, declines by 17.8%. This large decline mostly reflects the demographic reduction in the workforce and the decline in individual labor supply. When the real interest rate is fixed to world markets, the capital/labor ratio must remain constant in the long run as well. Therefore, capital and output both decline in proportion with labor demand. Average disposable wage income \bar{y} as defined in (6) falls by more than 40%. This large effect results mainly from the increase in taxes, the reduction in unemployment benefits due to partial indexation to net wages, and a smaller workforce. There is a further compositional effect resulting from the higher unemployment rate: a larger share of the workforce collects low unemployment benefits while a smaller part earns high net wages. Finally, the reduction in worker consumption per capita mostly reflects the large decline in disposable wage income. With earnings-related pensions and fewer assets inherited from the active working period, consumption per pensioner declines by an amount not much lower than consumption per worker.

Column AGE in table 4 completes the aging scenario by also allowing for a long-run increase of the population by 6%. Demographic projections assume a higher fertility rate and a positive migration balance for Austria.
Since the lengths of work and retirement periods are kept the same as in column LIFE, the worker/retiree ratio does not change. The population is simply scaled up in the long run without any effect on the age structure. One finds that all tax rates, ratios, and variables in per capita terms are exactly the same as in column LIFE. Only aggregate variables change. The increase in population partly offsets the decline of the workforce due to aging. Labor demand thus declines only by 13%, as compared to 18% in column LIFE. With a constant capital/labor ratio, the capital stock changes by exactly the same amount. The smaller decline in average wage income similarly reflects the smaller reduction of the workforce.

4.3.2. Cutting the Replacement Rate

The pension reform experiments take the aging scenario as the new baseline. We compute percentage changes relative to the equilibrium in column AGE. The first scenario includes both (i) an elimination of the budget subsidy T^p to the pension system and (ii) a reduction in the replacement rate. As to the first part, the PAYG system in Austria receives considerable transfers from the general budget and is thus not self-sustained. When these subsidies are entirely eliminated, one can obviously cut the wage tax to balance the general government budget, while contributions must increase to sustain the PAYG system. Given that the implicit tax rate is much lower than the statutory contribution rate, one might have expected that replacing the wage tax by less distorting contribution rates would alleviate the negative incentive effects on work and search effort. This is not so, however. The government budget position improves and allows for a 4.7 percentage-point cut in the wage tax. The pension system, in contrast, requires an increase in the statutory contribution rate of exactly the same amount. Further, the effective social security tax rate also increases by exactly the same number of percentage points. Since the incentive effects hinge on the net wage, $(1 - t^w - \hat{t}^{ss})w$, the offsetting changes in (effective) tax rates exactly cancel and remain without effect on the economy. Except for the adjustments in tax rates, the results are fully identical with those in column AGE and are thus not separately shown.

The replacement rate ties pensions of retirees to their previous working salaries, taken as an average over past net wage earnings. Column REPL reports the long-run effects when (i) the budget subsidy is eliminated and (ii) the replacement rate is cut from 0.78 to 0.7. With no further demographic adjustment, the retiree/worker ratio is the same in both cases. The most obvious effect of cutting the replacement rate is the reduction of pension payments per capita, which are down by approximately 5.5%. This is a considerable step towards financial viability of the pension system and allows for a 3 percentage-point reduction of contribution rates. This re-
lieft does not suffice to compensate for the rate increase necessitated by the elimination of the budget subsidy. Compared to the post-aging state, the contribution rate increases on net by more than 1 percentage point to $0.251 + 0.047 - 0.03 = 26.8\%$. The *effective* social security tax rate, in contrast, picks up by a full 3.6 percentage points, since both the higher statutory rate and the lower replacement rate effectively reduce the rate of return and therefore inflate the tax component of any unit of contributions paid.

Labor-supply incentives hinge on the effective rather than the statutory social security tax rate. Since the total tax wedge $t_W + \hat{t}_{SS}$ falls by 5.9 percentage points relative to the aging scenario, workers supply more hours. Compared to column AGE, labor supply increases by 4%. Search incentives again respond more sensitively, for the same reasons as discussed in the aging scenario. The lower labor-tax burden made feasible by the cut in pension benefits directly boosts search incentives. In addition, when each employee works more hours, the job rent to the firm increases and induces her to hire more actively. By raising the matching probability of unemployed, a tighter labor market strengthens incentives for job search on top of the direct tax effects. The unemployment rate starts to fall. The fiscal budget is quite favorably affected when unemployment is lower and when other taxes generate more revenues (employment, capital, and output increase by almost 5 percentage points). When the extra tax revenue is used to further cut the wage tax, the stimulus to labor supply and investment gets reinforced. In equilibrium this allows the government to cut the wage tax from 35% to 26%. The tax cut contributes to a lower unemployment rate, which falls by almost 1 percentage point, from 7.9% to 7.06%.

4.3.3. Raising the Retirement Age

A prominent reform proposal is to raise the retirement age. This measure does not change the overall size of the population, but importantly affects its composition. The workforce expands, and the number of retirees declines. Since the effective retirement age is rather low in Austria, we consider in column RET a rather large increase, by 3 years. A larger part of the overall lifetime is spent working, and a smaller part is reserved for retirement. Consequently, the retiree/worker ratio falls considerably, and is even slightly smaller than prior to aging. Essentially, the demographic effect of this scenario is aging in reverse, with very beneficial effects on the government budget and pension system.

Table 4 reports in column RET the combined, cumulative effects that obtain upon implementing all three measures. All wage-related tax rates fall – the wage tax as well as statutory and effective social security taxes. The wage-tax rate falls by an additional 12 percentage points relative to REPL,
and is less than half the rate in the baseline AGE scenario. Consequently, work and search incentives markedly improve. The unemployment rate falls by 1.55 percentage points, to a value as low as 5.5%, which is 2.4 percentage points less than the post-aging baseline. Driven by aggregate labor supply, this scenario strongly expands the economy. Employment, capital, and output increase by almost a quarter, in the long run, over the post-aging equilibrium. Three factors drive the aggregate labor-supply expansion. First, later retirement expands the workforce for purely demographic reasons. Second, the strong fiscal savings allow the government to cut the combined wage-tax burden $t_W + \hat{t}_{SS}$ by more than 20 percentage points, down to 20.4% from 42.4% for the post-aging baseline. Obviously, this huge policy shock strongly expands the individual labor supply by 13.8%. Finally, with wage taxes effectively cut in half, the unemployed vigorously expand their job search, which tightens up labor markets and boosts the outflow from unemployment. Consequently, the unemployment rate falls markedly and thereby again raises employment. The three factors together add up to a formidable job expansion, which is frictionlessly accompanied by capital accumulation in a small open economy. The long-run increases in average disposable wage income and consumption per capita of workers and retirees are correspondingly large.

4.3.4. Sensitivity Analysis

Sensitivity analysis should trace out the range of potential results and should identify those parameters and behavioral margins that can importantly change the magnitude of the quantitative effects. Although the chosen parameters are well within the range of econometric estimates, they do vary quite substantially in the empirical literature. We have thus recomputed the long-run effects of our most comprehensive scenario to check its sensitivity when we change a few key parameters. Table 5 first repeats the stationary initial equilibrium prior to the aging shock (column ISS) and reports in column RET the cumulative effects of aging and pension reform. While the tax rates in the upper half of column RET in table 5 are the same as in column RET of table 4, the percentage changes are now expressed relative to the ISS rather than the post-aging equilibrium as in table 4, and are therefore much smaller, since aging and pension reform offset each other to a considerable extent.

Given the emphasis on labor-market effects, we first turn to the case of a more sensitive labor-supply response. Comparing column σ_L with RET shows that the labor-supply response very importantly affects the magnitude of the quantitative effects. When the elasticity is increased from 0.4 to 0.6, the effect on the labor supply per capita more than doubles in equilibrium.
We also find an important interaction with search effort, which responds now much more vigorously, increasing by 6.6% rather than 2.9%, even though the search elasticity is kept the same. The effect is rather intuitive. With more hours worked, the value of a job must rise relative to the value of being unemployed. Unemployed agents must thus expect a bigger gain in locating a job, which strongly boosts the incentives for job search. With higher search intensity, the unemployment rate falls more pronouncedly (to 5.2% instead of 5.5%), and aggregate employment expands more vigorously. It may be surprising at first sight that a higher search elasticity σ_S (increased from 0.4 to 0.6) influences the quantitative response to a much smaller extent. For any given return to job search, a higher elasticity will surely strengthen the search activity, which indeed expands by 4.1% instead of 2.9%. For this reason, the unemployment rate falls by more than in RET, due to more intense job search. In contrast to the case of a higher labor-supply elasticity, the gains from accepting a job are not much affected. Therefore, this scenario holds only limited potential to magnify the overall macroeconomic response, which is only slightly stronger.

The rule for unemployment benefits is $z = 0.5 \times b \times (1 - t^W - t^{SS})w + 0.5 \times z^0$ in the base case, where z^0 is the initial benefit level prior to the shock and b is the replacement rate for unemployment compensation. Column UB1 considers an alternative scenario where real unemployment benefits...
remain constant at $z = z^0$. The worker’s outside option largely remains fixed in this case, so that wage taxes get fully shifted to employers and boost gross wages. Since the full pension reform allows a considerable reduction in the wage tax rate, roughly from 20% to 13%, the market wage increases less than in column RET. This strengthens job creation and aggregate employment, allowing for a smaller tax rate, which suffices to stimulate labor supply and job search to some extent. The unemployment rate correspondingly falls somewhat more, from 5.8% to 5.3%, instead of 5.5% in column RET. The other extreme allows for full indexation of benefits to net wages as in column UB2, $z = b \times (1 - t_w - t_{SS})w$. In this case, tax shifting is largely excluded. Consequently, employers benefit less from the wage tax reduction that is made possible by the reform. Full indexation thus retards job creation and employment but rather strengthens wage growth. The expansion is more moderate, and the unemployment rate falls only to a minor extent.

We finally investigate the quantitative effects of pension reform when a higher replacement rate for unemployment compensation is in place (see column UB3). To allow for a higher replacement rate, our calibration procedure also requires us to reduce the bargaining power of firms, ϕ, in order to replicate the benchmark data. Compared to the base-case value of 0.5, the bargaining power of firms is reduced to $\phi = 0.3$ in the scenario of column UB3. Consequently, wage taxes get shifted to a larger extent, an effect that also works in the reverse direction, i.e., lower taxes lead to lower wages. For this reason, the wage increase is now much less pronounced than in column RET, labor demand expands accordingly, and the unemployment rate falls by more than in column RET.

To sum up, the quantitative response to pension reform seems to be quite robust to changes of some important behavioral parameters. We find significant differences in labor supply and even more in the search intensity. However, while the sizes of the long-run effects are sensitive to some key parameters of the model, such parameter variations are rather unlikely to change the qualitative nature of our results.

4.4. Transitional Effects

Figures 1–3 summarize the transitional dynamics for a few key labor-market indicators: the tax distortion $t_w + \hat{t}_{SS}$, the unemployment rate u, and the aggregate labor supply $L = eNE$. The transitional solution reflects several dynamic forces. First, all variables must eventually move in the direction of the long-run changes as indicated in table 4. Second, stock variables will usually start out from initial conditions and move monotonically towards long-run

11 Note that table 4, instead, reports $LD = L - \kappa v$; see (11).
values. Third, however, stock variables may potentially evolve nonmonotonically if some subsystems are governed by rather different adjustment speeds. In our model, for example, labor-market dynamics is very fast, with a half-life of only a few quarters. Investment takes much longer to adjust, with a half-life around seven years, and demographic change is a truly slow process that takes several decades. Fourth, control variables such as hours worked or investment tend to jump instantaneously in a big step towards the new steady state and subsequently change monotonically, though overshooting is possible in certain scenarios.

The aging scenarios are dominated by slow demographic change that keeps the economy in a transitional state for several decades. The scenario LIFE, for example, involves a once-and-for-all decrease in the mortality rate such that the expected retirement period is prolonged. Given increased life expectancy, the retiree population starts growing slowly. Since LIFE assumes hypothetically that the population remains constant, the workforce must shrink as a consequence of an assumed decline in fertility, which erodes the flow of newborns. This pattern is reflected in the trajectory LIFE of figure 1. With a declining number of wage-tax payers and social security contributors combined with a growing number of pensioners, the fiscal situation deteriorates slowly, so that the labor-tax distortion displays an upward trend over a prolonged period of more than 60 quarters, or 15 years. Subsequently, the tax burden stabilizes. Figure 2 shows that the labor-supply distortion in the early adjustment period remains rather near the initial values prior to aging (line ISS) and grows only when the demographic change is felt more
strongly. Accordingly, the detrimental labor-supply effects of the higher tax burden are rather weak in the early adjustment period and get larger only later on when tax disincentives are more severe (see table 4). Therefore, the aggregate labor supply (line LIFE in figure 2) remains very close to the initial state in the first adjustment periods and starts to decline only after a while, with the individual labor-supply response magnifying the demographic supply effect. On top of increased life expectancy, the scenario AGE additionally allows for an increase in population by 6% in the long run, which is phased in by assuming an accordingly larger inflow of newborns, reflecting somewhat higher fertility than in LIFE and a positive inflow of migrants. For this reason, the aggregate labor supply in figure 2 declines by less than in LIFE. Table 4 shows that the retiree/worker ratio and therefore labor-tax rates converge to the same long-run values. Accordingly, the labor-tax distortion increases much more slowly in figure 1, but eventually converges after a long adjustment period (not fully shown).

To understand the dynamic adjustments of the next scenarios REPL and RET, one must consider that they are implemented cumulatively so that RET includes REPL; see the discussion of table 4. Therefore, we discuss first the short-run consequences of the scenario REPL, featuring an instantaneous and permanent reduction of the PAYG replacement rate. This being a relief to the pension system, why then does the labor-tax distortion jump
instantaneously in figure 1? In our model, the reduction in the replacement rate affects only new pensioners, which makes the average per capita pension basically a predetermined stock variable. This implies that the lower replacement rate succeeds in reducing pension expenditures only very slowly, since it takes a prolonged period for the inflow of new pensioners to change the average pension expenditure per capita of retirees. This limits the potential for cutting statutory tax rates in the early adjustment phase. On the other hand, the implicit social security tax \(\hat{\tau}_{SS} \) jumps immediately, since today's workers must anticipate the less generous pension they will be offered in the future. This key anticipation effect results in an instantaneous upward jump in the labor-tax distortion as shown in figure 1.

Given that the lower replacement rate succeeds in squeezing pension expenditure only very slowly, the tax distortion remains larger than in the AGE scenario for quite some time, and falls below it only after more than a decade (about 50 quarters). Taking account of the disincentive effects of these higher effective tax rates, aggregate labor supply under this scenario is actually lower than in the post-aging scenario for about the same time span (compare lines AGE and REPL in figure 2). Since the next scenario, RET, raises the retirement age on top of the reduction in the replacement rate, it similarly features an upward jump in the tax wedge. Subsequently, however, this scenario is much more effective and faster in reducing the tax distortion and therefore succeeds in expanding aggregate labor supply much faster.

We finally turn to the unemployment dynamics, which results both from demographic effects and tax incentives. In figure 3, our demographic scenarios first lead to a decline in the unemployment rate, but in the long run it is considerably higher than in the initial equilibrium. We have already argued that the slow but eventually large increases in tax rates ultimately lead to higher unemployment. In the short run, however, the drop in fertility that is part of the LIFE scenario reduces quite substantially the arrival of new workers and thus the inflow into unemployment. This demographic effect reduces the unemployment rate for a while, but eventually the tax disincentives for work and search start to dominate, leading to a prolonged period of increasing unemployment rates. This initial demographic effect is less pronounced in the AGE scenario, where the mass of labor-market entrants is necessarily higher and the inflow into unemployment larger than in LIFE. In the subsequent phase, unemployment rates increase less dramatically because the tax distortion grows much more slowly, as is evident from figure 1.

When implementing a lower replacement rate in the post-aging equilibrium (line REPL in figure 3), we have argued that the effective labor-tax wedge will jump almost immediately, as workers must anticipate less generous pensions and find that a larger share of their contributions amounts to a tax. Since higher effective labor taxes discourage search effort on the part of
the unemployed, this scenario leads to an immediate increase in unemployment rates. Since the scenario RET includes a lower pension replacement rate, it leads to a short-run increase in unemployment rates for the same reasons. RET, however, additionally includes a postponed retirement age and therefore succeeds in reducing the structural unemployment rate in the long run. This scenario therefore holds the potential for opposite short- and long-run effects on unemployment.

4.5. Generational Welfare

The preceding analysis has shown a rather impressive impact of demographic change and pension reform. It takes several decades, however, before the full effects are seen. Welfare effects should thus be large in the long run but much more moderate in the short run. Like public debt, pension reform importantly redistributes intergenerationally if there are no offsetting policy measures. Table 6 presents an intergenerational and aggregate welfare analysis. As in the scenarios REPL and RET in table 4, we consider the reduction of the pension replacement rate and the mandated increase in retirement age. Table 6 presents the wealth-equivalent changes in lifetime utility per generation and in the aggregate, expressed in percent of lifetime wealth. The appendix explains the welfare measure. All changes are compared with the AGE scenario.

According to table 4, reducing the pension replacement rate implies a higher implicit social security tax but allows for a much lower wage
Table 6
Welfare Effects of Pension Reform

<table>
<thead>
<tr>
<th>Scenario*</th>
<th>Old Generations</th>
<th>New Generations</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Retired</td>
<td>Workers</td>
<td>All Old</td>
</tr>
<tr>
<td>REPL</td>
<td>0.164</td>
<td>-4.468</td>
<td>-3.169</td>
</tr>
<tr>
<td>RET</td>
<td>0.427</td>
<td>5.316</td>
<td>3.840</td>
</tr>
<tr>
<td>RETALL</td>
<td>0.238</td>
<td>1.043</td>
<td>0.800</td>
</tr>
</tbody>
</table>

Notes: * Welfare change in percent of lifetime resources. RET considers the increase in retirement age in isolation, while RETALL gives the cumulative effect of both scenarios and compares to column RET in table 4.

tax. The net effect is a rather pronounced reduction of the labor-tax distortion in the long run, leading to a significant expansion as well as a remarkable increase in disposable income and consumption. The preceding section showed, however, that the short- and medium-run effects are rather unfavorable. It takes time until the budget relief allows for a reduction in the wage tax, whereas the increase in the implicit social security tax is immediate. As a consequence, the labor-tax distortion and unemployment first increase, while labor supply is discouraged. The pattern of welfare changes in table 6 is in line with these developments. The impact on current old generations is insignificant, since the policy change relates only to new generations. Present working generations are the losers. Since a lower replacement rate cuts the private return on PAYG contributions, a larger part of the contributions represents effectively a tax. The pension rule simply becomes less favorable. On the other hand, current workers are unable to share in the benefits of improved labor-market conditions and growth, since it takes too long for the wage-tax cuts and the improvements in the labor market to take effect. The current newborn working generation thus suffers a welfare loss equivalent to 4.4% of its lifetime wealth.

The winners are future generations. Only after several decades do new generations find better conditions than they would have if the economy had evolved along the initial AGE equilibrium in the absence of the policy shock. In the very long run, future generations eventually gain quite impressively, by an amount equivalent to 9% of lifetime wealth. The reduction in the replacement rate clearly redistributes from present to future working generations. What is the net effect? The last column of table 6 reveals a significant aggregate welfare loss of about 2.9% averaged over all present and
future generations (see the appendix for the definition of this measure). This
negative effect reflects the fact that the welfare gains are confined to new
generations in the distant future, and all present as well as new generations
over the next three decades lose significantly.

The next line in table 6 reports the welfare effects of an increase in the
average retirement age by three years, without changing the pension re-
placement rate. Already table 4 has revealed that the effects are several
magnitudes larger. Despite a constant overall population, the scenario re-
duces the retiree/worker ratio from 0.55 to 0.45 in the long run, which re-
results in a strong increase of aggregate labor supply. The vigorous output
expansion and the reduction in unemployment allow for sustainable gov-
ernment finances with much lower wage taxes. The overall labor-tax dis-
tortion falls by a full 15%. These adjustments result in almost a doubling
of disposable average wage income in the very long run. Consumption ex-
pands accordingly. Since the demographic labor-supply effect occurs only
very slowly, table 6 reports large welfare gains for new generations born
in the distant future, whereas the gains to current generations are much
more moderate. Again, retired generations are largely unaffected, while
existing workers gain by about 5.3% of lifetime wealth, on average. The
welfare gain of the present newborn generation amounts to 7.3% of lifetime
resources, and increases continuously for all new generations entering at
a later date until the full benefits are obtained for future generations born
into the new steady state. Interestingly, all age groups on average would
gain from this scenario, although the gains are concentrated among future
generations.

The last line in table 6 runs both scenarios cumulatively, as in the last
column of table 4. The results can be understood by examining the first two
lines. With such large shocks, however, some nonlinearity is expected, so that
the two lines do not add up precisely to give the third line.

5. Conclusions

Aging of the population has rendered the unfunded pension system un-
sustainable in its current form and requires some larger policy initiatives
for reform. The demographic labor-supply effects of aging and the upward
pressure on labor taxes should importantly affect labor-market perform-
ance. This paper has presented a computable equilibrium model of the
Austrian economy. The model captures the essential aspects of the Aus-
trian pension system, including a tax–benefit linkage and a calculation of
the implicit tax component of social security contributions. It also con-
tains a particularly detailed structure of the labor market that explains the
equilibrium structural unemployment rate as a balance between the incentives of firms to create jobs and hire new workers and the incentives of unemployed workers to search for jobs. Hours worked are also endogenously determined and affect job rents and firms’ incentives to create new jobs.

Applying this framework to aging and pension reform scenarios, we record several important results. First, aging can profoundly influence long-run structural unemployment, because it puts pressure on the fiscal system and thereby contributes to a secular increase in the labor-tax burden. Second, labor-market effects of pension reform can be quite pronounced as well, not only via the classical mechanism of endogenous labor supply, but also via its effect on the incentives for job creation by firms and for job search by unemployed workers. This can easily involve 2 to 3 percentage points of the long-run unemployment rate. Third, the intertemporal effects of pension reform may result in opposite short- and long-run adjustments of the unemployment rate. Fourth, an increase in the retirement age by about 3 years is a potent strategy to restore sustainability of the pension system and can reverse a large part of the aging effects. Fifth, in the absence of an explicit debt policy to control for intergenerational redistribution, the gains from pension reform are mostly to the benefit of future generations. Being limited to new generations only, the increase in retirement age has the potential to benefit all generations, present and future.

Further work should address a number of issues. The modeling of the pension system should be extended to allow for alternative institutional arrangements as well. Interesting and also urgent policy scenarios include the introduction of individual accounts within the current PAYG system that might help to strengthen the tax–benefit linkage and to reduce the individual tax component of contributions. After introducing individual accounts, one should investigate the economic consequences of a partial move to a funded system. All these issues are being more or less actively discussed in Austria and elsewhere (see, e.g., the contributions in Holzmann and Stiglitz 2001). It should be possible to extend the current framework to capture these issues. Given the large model responses to demographic change, future work should also consider the sensitivity of existing population projections, which seem to allow for a range of developments and are sensitive to the assumed mortality, fertility, and migration rates. Finally, pension reform in other large economies with similar demographic developments may have significant effects on worldwide savings and international capital markets. It would thus be important to allow for an interest-rate response from international capital markets in our small-open-economy model.
6. Appendix: Welfare Calculus

Table 6 reports generational welfare changes. It can be shown that the indirect utility in (2) and (3) is proportional to lifetime wealth W:

$$
V_{v,t}^W = W_{v,t} \cdot P_t^W, \quad P_t^W = \pi_t + \pi^c_t / (1 + r^c),
$$

$$
V_{v,t}^R = W_{v,t}^R \cdot P_t^R, \quad P_t^R = (1 + \pi_t) / (1 + r^c),
$$

where π is the workers’ marginal propensity to consume out of lifetime wealth and r^c is the consumption-tax rate. Inverting the indirect utility function yields the lifetime expenditure function $\pi(V_{v,t}^W, P_t^W) = V_{v,t}^W / P_t^W$. We now index values referring to initial and new equilibria by a new superscript, e.g., P_t^{W0} and P_t^{W1}. Taking initial prices as a reference, the equivalent variation EV gives the welfare-equivalent change in welfare. It is defined (separately for each generation) as

$$
EV_{v,t}^W = \pi(V_{v,t}^{W1}, P_t^{W0}) - W_{v,t}^W = V_{v,t}^{W1} / P_t^{W0} - W_{v,t}^W.
$$

This per capita measure is easily aggregated. Table 6 reports the aggregate equivalent variations per capita, and in percent of lifetime wealth, for various generations in the following order: $100 \times EV_{v,t}^R / W_{v,t}^R$, $100 \times EV_{v,t}^W / W_{v,t}^W$, $100 \times EV_{v,t}^O / W_{v,t}^O$, where $EV_{v,t}^O = EV_{v,t}^W + EV_{v,t}^R$ and $W_{v,t}^O = W_{v,t}^W + W_{v,t}^R$, and where the policy shocks occur in period $t = 1$. Next, the welfare changes of present and future new generations are shown, $100 \times EV_{1,t}^W / W_{1,t}^W$ and $100 \times EV_{t,T}^W / W_{t,T}^W$. The last entry of Table 6 reports an aggregate welfare measure, $100 \times (EV_1^O + EV_T^O) / (W_1^O + W_T^O)$, where

$$
EV_1^N = \sum_{t=2}^T \sum_{\nu=2}^{T_t} W_{\nu,t}^W \prod_{\nu=2}^{T_t} \frac{1}{1+\pi_{\nu}} + N_{T,t}^W EV_{T,t}^W \prod_{\nu=2}^{T_t} \frac{1}{1+\pi_{\nu}},
$$

$$
W_1^N = \sum_{t=2}^T \sum_{\nu=2}^{T_t} W_{\nu,t}^W \prod_{\nu=2}^{T_t} \frac{1}{1+\pi_{\nu}} + N_{T,t}^W W_{T,t}^W \prod_{\nu=2}^{T_t} \frac{1}{1+\pi_{\nu}}.
$$

Since $EV_{v,t}^W$ is per capita, it must be multiplied by the size of the new cohort (while EV_1^W is already an aggregate of all present worker generations) and is discounted back to period 1 to compare with present old generations. In our computations, a new steady state is attained in some finite period T. The second term is the welfare change from period $T + 1$ to infinity, derived from comparing the new with the initial steady-state equilibrium.

References

Christian Keuschnigg
University of St.Gallen (IFF-HSG)
Varnbuelstrasse 19
9000 St.Gallen
Switzerland
Christian.Keuschnigg@unisg.ch

Mirela Keuschnigg
Johannes Kepler University Linz
and University of St.Gallen
keuschnigg@swissonline.ch