

Announcements of Interest Rate Forecasts: Do Policymakers Stick to Them? Nikola Mirkov Universität St.Gallen Norges Bank

17th ICMAIF Rethymno, Greece

31 May 2013

Motivation

Summary

- Data Interest Rate Forecasts
- Model Loss Function Policy Rules Estimation
- Results RBNZ Norges Bank Long-Term Foreca Preferred Rate

Conclusion

Past announcements might constrain future policy if:

- markets interpret forecasts as commitments to future action
 Mishkin (2004), Kohn (2008)
- central banks value the predictability of policy
 - Svensson (2009), Geraats (2009), Goodhart (2009), Gersbach and Hahn (2011)

The big question:

Do policymakers actually adhere to their forecasts?

Our Approach

Summary

- Data Interest Rate Forecasts
- Model
- Policy Rules
- Estimation Results
- RBNZ Norges Bank
- Preferred Rate
- Robustness Check
- Conclusion

- Derive the policy rule for a "forecast adhering" central bank
 Deviations from previous forecasts are costly
- The rule can nest a broad range of interest rate rules
 "Preferred" policy stance
- Fit the actual policy rates of:
 - The Reserve Bank of New Zealand
 - The Central Bank of Norway

Main Findings

Summary

Data Interest Rate Forecasts

Model Loss Funct

Policy Rules Estimation

Results RBNZ Norges Bank Long-Term Fore Preferred Rate Robustness Che

Conclusion

Policymakers appear constrained by their most recent forecasts (1-quarter-ahead forecasts).

We model the preferred policy rate using the estimated rules:

- Institution-specific policy rules
- Clarida, Galí and Gertler (1998)
- "Calvo rule" of Levine, McAdam and Pearlman (2007)

But also using the front-end of the interest rate path:

Announced interest rate "nowcasts"

How do Forecasts get Published?

Summary

Data

Interest Rate Forecasts

Model

Loss Function Policy Rules Estimation

Results RBNZ Norges Bank Long-Term Forec Preferred Rate

Conclusion

Example from June 2012 Figure 2.5 90-day interest rate

Source: RBNZ estimates.

How do Forecasts get Published?

Summary

Data

Interest Rate Forecasts

- Model
- Loss Function Policy Rules Estimation
- Results RBNZ Norges Bank Long-Term Fore Preferred Rate Bobustness Che
- Conclusion

Example from June 2012

Chart 1.16a Projected key policy rate in the baseline scenario with probability distribution. Percent. 2008 Q1- 2015 Q4

The central bank sets
$$i_t$$
, $i_{t,t+s}^p$ and $i_{t,t+l}^p$ to minimize:

Summary

Data Interest Rate

Model

Loss Function Policy Rules Estimation

Results RBNZ Norges Bank Long-Term Fored Preferred Rate Robustness Cher

$$\mathcal{L}_{t} = \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \delta^{k} \left[\left(i_{t+k} - i_{t+k}^{*} \right)^{2} \right]$$

The central bank sets i_t , $i_{t,t+s}^p$ and $i_{t,t+t}^p$ to minimize:

Summary

Data Interest Rate

Model

Loss Function Policy Rules Estimation

Results RBNZ Norges Bank Long-Term Fored Preferred Rate Robustness Che

$$\mathcal{L}_{t} = \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \delta^{k} \begin{bmatrix} \left(i_{t+k} - i_{t+k}^{*} \right)^{2} + \varphi \left(i_{t+k} - i_{t+k-1} \right)^{2} \end{bmatrix}$$

The central bank sets i_t , $i_{t,t+s}^p$ and $i_{t,t+l}^p$ to minimize:

Summary

Data Interest Rate

Model

Loss Function Policy Rules Estimation

Results RBNZ Norges Bank Long-Term Forec Preferred Rate Robustness Chee

$$\mathcal{L}_{t} = \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \delta^{k} \left[\begin{array}{c} \left(i_{t+k} - i_{t+k}^{*} \right)^{2} + \varphi \left(i_{t+k} - i_{t+k-1} \right)^{2} \\ + \kappa_{s} \left(i_{t+k} - i_{t+k-s,t+k}^{p} \right)^{2} + \kappa_{l} \left(i_{t+k} - i_{t+k-l,t+k}^{p} \right)^{2} \end{array} \right]$$

The central bank sets i_t , $i_{t,t+s}^p$ and $i_{t,t+l}^p$ to minimize:

Summary

Data Interest Rate Forecasts

Model Loss Function Policy Rules

Estimation Results

RBNZ Norges Bank Long-Term Fore

Preferred Rate

Robustness Check

Conclusion

$$\mathcal{L}_{t} = \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \delta^{k} \left[\begin{array}{c} \left(i_{t+k} - i_{t+k}^{*} \right)^{2} + \varphi \left(i_{t+k} - i_{t+k-1} \right)^{2} \\ + \kappa_{s} \left(i_{t+k} - i_{t+k-s,t+k}^{p} \right)^{2} + \kappa_{I} \left(i_{t+k} - i_{t+k-l,t+k}^{p} \right)^{2} \end{array} \right]$$

FOC for the optimal interest rate i_t :

$$\begin{aligned} \dot{i}_{t} - \dot{i}_{t}^{*} - \mathcal{E}_{t} \sum_{k=0}^{\infty} \delta^{k} \left[\left(\dot{i}_{t+k} - \dot{i}_{t+k}^{*} \right) \frac{\partial \dot{i}_{t+k}^{*}}{\partial \dot{i}_{t}} \right] \\ + \varphi \left(\dot{i}_{t} - \dot{i}_{t-1} \right) - \delta \varphi \left(\mathcal{E}_{t} \dot{i}_{t+1} - \dot{i}_{t} \right) \\ + \kappa_{s} \left(\dot{i}_{t} - \dot{i}_{t-s,t}^{p} \right) + \kappa_{I} \left(\dot{i}_{t} - \dot{i}_{t-I,t}^{p} \right) = 0 \end{aligned}$$

The central bank sets i_t , $i_{t,t+s}^p$ and $i_{t,t+l}^p$ to minimize:

Summary

Data Interest Rate Forecasts

Model Loss Function Policy Rules Estimation

Results RBNZ Norges Bank Long-Term Forecas Preferred Rate Bobustness Checks

Conclusion

$$\mathcal{L}_{t} = \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \delta^{k} \left[\frac{(i_{t+k} - i_{t+k}^{*})^{2} + \varphi (i_{t+k} - i_{t+k-1})^{2}}{+\kappa_{s} (i_{t+k} - i_{t+k-s,t+k}^{p})^{2} + \kappa_{l} (i_{t+k} - i_{t+k-l,t+k}^{p})^{2}} \right]$$

FOC for the optimal interest rate i_t :

$$\begin{split} i_t - i_t^* &- E_t \sum_{k=0}^{\infty} \delta^k \left[\left(i_{t+k} - i_{t+k}^* \right) \frac{\partial i_{t+k}^*}{\partial i_t} \right] \\ &+ \varphi \left(i_t - i_{t-1} \right) - \delta \varphi \left(E_t i_{t+1} - i_t \right) \\ &+ \kappa_s \left(i_t - i_{t-s,t}^p \right) + \kappa_I \left(i_t - i_{t-I,t}^p \right) = 0 \end{split}$$

FOC for the optimal interest rate $i_{t,t+j}^{p}$ for j = s, l:

$$\kappa_j \delta^j \left(\boldsymbol{E}_t \boldsymbol{i}_{t+j} - \boldsymbol{i}_{t,t+j}^{\boldsymbol{p}} \right) = \mathbf{0}$$

The Policy Rule General Specification

Testable Reaction Function:

Summary

- Data Interest Ra Forecasts
- Model Loss Function Policy Rules Estimation
- Results RBNZ Norges Bank Long-Term Forecas Preferred Rate Robustness Checks
- Conclusion

$$i_{t} = \Omega^{*} \begin{bmatrix} 1 & \varphi & \delta \varphi & \kappa_{s} & \kappa_{l} \end{bmatrix} \begin{bmatrix} i_{t}^{*} \\ i_{t-1} \\ E_{t}i_{t+1} \\ i_{t-s,t}^{p} \\ i_{t-l,t}^{p} \end{bmatrix}$$

where:

$$\Omega^* = \frac{1}{1 + \varphi(1 + \delta) + \kappa_{\mathsf{s}} + \kappa_{\mathsf{l}}}$$

Setting $\delta = \kappa_s = \kappa_l = 0$ in (1) yields the Clarida et al. (1998) rule: $i_t = \Omega^{\varphi} i_t^* + (1 - \Omega^{\varphi}) i_{t-1}$

where:

$$\Omega^{\varphi} = \frac{1}{1+\varphi}$$

Specifications of the Policy Rules

Summary

- Data Interest Ra Forecasts
- Model Loss Funct
- Policy Rules Estimation
- Results RBNZ Norges Bank Long-Term Foreca Preferred Rate Robustness Chec
- Conclusion

- Institution-specific interest rate rules
- Clarida, Galí, Gertler (1998) CGG
- Levine, McAdam and Pearlman (2007) "Calvo" rule

Testing for the "Forecast Adherence"

Summary

Data Interest Rat Forecasts

Model

Policy Rules

Estimation

Results RBNZ Norges Bank Long-Term Forecas Preferred Rate Robustness Checks

Conclusion

WLOG we estimate:

 $i_{t} = \Omega^{*} \begin{bmatrix} 1 & \varphi & \delta\varphi & \kappa_{s} & \kappa_{l} \end{bmatrix} \begin{bmatrix} \gamma^{\pi} E_{t} \pi_{t+1} + \gamma^{y} E_{t} y_{t+1} \\ i_{t-1} \\ E_{t} i_{t+1} \\ i_{t-s,t} \\ i_{t-l,t}^{p} \end{bmatrix} + \varepsilon_{t}^{i}$

where ε_t^i is an AR(1) process in line with Rudebusch (2002):

$$\varepsilon_t^i = \frac{\lambda}{\varepsilon_{t-1}^i} + \zeta_t$$

and $\zeta_t \sim N(0, \sigma^{\zeta})$

Universität St.Gallen

Estimated Policy Rules (1Q-ahead Forecasts) RBNZ from 1999 - 2011

Summary

	\sim	

Loss Function Policy Rules

Results

RBNZ

Norges Bank Long-Term Forecas

Robustness Chec

	KI	TT	CC	GG	Ca	lvo
	-	<i>s</i> = 1	-	<i>s</i> = 1	-	<i>s</i> = 1
γ^{π}	3.356	4.450	3.754	6.294	2.330	0.861
	(2.442)	(1.803)	(3.740)	(0.158)	(2.333)	(1.092)
γ^{y}			1.619	1.455	1.001	0.342
			(1.209)	(0.543)	(1.559)	(0.709)
φ	2.237	1.848	5.084	4.454	3.071	3.026
	(8.641)	(2.026)	(1.611)	(8.502)	(1.751)	(1.952)
δ					0.109	0.266
					(0.204)	(1.941)
κ_s		1.157		2.612		3.637
		(3.388)		(6.274)		(2.062)
λ	0.896	0.378	0.607	0.446	0.608	0.168
	(3.020)	(1.033)	(1.101)	(0.302)	(2.325)	(0.806)

Residuals from the Clarida et al. (1998) rule

Summary

- Data Interest Ra Forecasts
- Model Loss Functi Policy Rules
- Estimation
- RBNZ
- Norges Bank Long-Term Forecast Preferred Rate Robustness Checks
- Conclusion

Example: 2Q-2002

Estimated Policy Rules (1Q-ahead Forecasts) Norges Bank from 2005 - 2011

		E	3	CC	GG	Ca	lvo
Summary		-	<i>s</i> = 1	-	<i>s</i> = 1	-	<i>s</i> = 1
Data	\sim^{π}	0.453	3 054	1 369	5 887	0.645	0.586
Interest Rate Forecasts	7	(0.803)	(1.180)	(1.386)	(4.556)	(0.825)	(1.120)
Model	γ^{int}	0.822	0.327				
Loss Function	,	(2.924)	(0.232)				
Policy Rules Estimation	γ^{W}	0.345	3.647 [´]				
Besults	,	(0.594)	(1.983)				
RBNZ	γ^{y}	0.584	`3.831 [´]	0.961	6.110	0.695	0.526
Norges Bank	,	(2.570)	(2.532)	(2.943)	(5.819)	(3.026)	(3.021)
Long-Term Forecasts	10	0.270	5 061	0.627	7 966	0.560	1 071
Preferred Rate	φ	0.370	5.901	0.027	7.000	0.500	1.071
Robustness Checks		(3.395)	(1./34)	(1.887)	(2.854)	(2.243)	(6.831)
Conclusion	δ					0.495	1.056
						(1.597)	(5.825)
	κ_s		5.527		5.973		0.746
			(3.311)		(8.322)		(7.407)
	λ	0.898	0.253	0.367	0.280	0.389	0.440
		(2.865)	(0.376)	(0.437)	(0.949)	(0.658)	(0.803)

Residuals from the Clarida et al. (1998) rule Norges Bank

Summary

- Data Interest Ra Forecasts
- Model Loss Function Policy Rules Estimation
- Results RBNZ Norges Bank Long-Term Forec Preferred Rate
- Conclusion

Longer-Term Forecasts RBNZ from 1999 - 2011 (1Q & 2Q Forecasts)

	KITT	CGG	Calvo
	<i>s</i> = 1, <i>l</i> = 2	<i>s</i> = 1, <i>l</i> = 2	<i>s</i> = 1, <i>l</i> = 2
γ^{π}	1.975	5.341	0.934
	(1.007)	(0.752)	(2.070)
γ^{y}		1.350	0.350
		(0.516)	(0.827)
φ	1.807	4.230	3.002
	(3.066)	(2.668)	(3.028)
δ			0.274
			(2.233)
κ_s	2.400	3.474	3.781
	(2.885)	(2.436)	(2.272)
κ_l	-0.240	-1.504	-0.272
	(-1.049)	(-0.484)	(-0.670)
λ	-0.162	0.233	-0.111
	(-0.334)	(0.240)	(-0.223)

Summary

Data Interest F

Model

Loss Function Policy Rules Estimation

Results RBNZ

Norges Ba

Long-Term Forecasts

.....

Lon

Longer-Term Forecasts Norges Bank from 2005 - 2011 (1Q & 2Q Forecasts)

		В	CGG	Calvo
		<i>s</i> = 1, <i>l</i> = 2	<i>s</i> = 1, <i>l</i> = 2	<i>s</i> = 1, <i>l</i> = 2
	γ^{π}	0.721	3.883	0.597
		(1.181)	(4.489)	(1.591)
	γ^{int}	0.057		
		(0.207)		
	γ^{w}	0.796		
		(1.774)		
	γ^{y}	0.813	3.790	0.512
	,	(2.816)	(4.073)	(3.024)
is Bank Term Forecasts	φ	1.313	<u></u> 5.016	1.056
		(2.165)	(2.989)	(6.201)
	δ	· · ·	· · ·	1.035
				(6.391)
	κ_s	0.550	1.574	0.525
		(2.028)	(5.231)	(2.835)
	κ_l	-0.107	1.847	0.178
	,	(-0.365)	(1.443)	(0.993)
	λ	0.263	0.285	0.434
		(0.295)	(0.647)	(0.537)
		. /	. /	. /

Preferred Policy Rate

Using the Announced Interest Rate "Nowcasts"

Issue 1: Interest rate rules as a simple description of the actual policy conduct:

- Omitted variable problem
- Judgment

Summary

Data Interest Ra

Model

Loss Functio Policy Rules

Results RBNZ Norges Bank Long-Term Fore Preferred Bate

Robustness Check

Preferred Policy Rate

Using the Announced Interest Rate "Nowcasts"

Issue 1: Interest rate rules as a simple description of the actual policy conduct:

- Omitted variable problem
- Judgment

Issue 2: What if the 1-quarter-ahead forecasts are simply "good" forecasts of the policy rate?

- Summary
- Data Interest Rat Forecasts
- Model Loss Fun
- Policy Rules Estimation
- Results RBNZ Norges Bank Long-Term Fore Preferred Rate Robustness Ch
- Conclusion

Preferred Policy Rate

Using the Announced Interest Rate "Nowcasts"

Summary

- Data Interest Rat Forecasts
- Model Loss Functio Policy Rules
- Results RBNZ Norges Bank Long-Term Foreca Preferred Rate Robustness Checl

Conclusion

Issue 1: Interest rate rules as a simple description of the actual policy conduct:

- Omitted variable problem
- Judgment

Issue 2: What if the 1-quarter-ahead forecasts are simply "good" forecasts of the policy rate?

Use the "nowcasts" as the preferred policy rate.

We estimate:

$$\dot{i}_t = \widetilde{\Omega}\tilde{i}_t + \widetilde{\varkappa_1}\tilde{i}_{t-1,t}^p + \varepsilon_t$$

or

$$i_t = \widetilde{\Omega}\widetilde{i_t} + \widetilde{\varkappa_1}\varepsilon_t^{p,1} + \varepsilon_t$$

Preferred Policy Rate Using the Announced Interest Rate "Nowcasts" (cont'd)

- Preferred Rate

	RBNZ		Norges	Bank
	$i_{t,t+1}^p$	$\varepsilon_t^{p,1}$	$i_{t,t+1}^{p}$	$\varepsilon_t^{p,1}$
$\widetilde{\Omega}$	1.065	1.001	0.875	1.010
	(2.545)	(0.404)	-(1.667)	(2.301)
$\widetilde{\varkappa_1}$	-0.063	0.108	0.133	0.018
	-(2.594)	(2.264)	(1.681)	(1.601)
DW Statistic	1.548	1.715	1.723	2.207
Adjusted R ²	0.998	0.998	0.994	0.993
N.Obs.	55	55	24	24

Robustness Checks

Summary

- Data Interest Ra
- Model Loss Fund
- Policy Rules
- Results RBNZ Norges Bank Long-Term Forecast Preferred Rate Robustness Checks

- Does our empirical strategy "cry wolf"? Type I Error
- Avoiding policy surprises Policy Surprises
- Sub-sample analysis for the RBNZ Sub-Samples

Conclusion

Summary

- Data Interest F
- Interest Rate Forecasts
- Model Loss Function Policy Rules Estimation
- Results RBNZ Norges Bank Long-Term Foreca Preferred Rate Robustness Check

Conclusion

Key finding:

 Policymakers appear constrained by their forecasts (1Q-ahead forecasts)

Future research:

- What are the normative aspects of the constraint?
 - Monetary policy less responsive
 - Announced forecasts as a commitment tool (Gersbach and Hahn, 2011; Woodford, 2012)
- Measure adherence by using interest rate forecasts only

Summary

Data Interest Ra Forecasts

Model Loss Functio Policy Rules Estimation

Results RBNZ Norges Bank Long-Term Foreca Preferred Rate Robustness Check

Conclusion

Thank you for attention.

What Happened in 2Q of 2002?

Single Episodes Type I Error Policy Surprises Sub-samples

Recommendations from the policy rules:

- CGG suggests 4.91
- CGG augmented with the 1Q-ahead forecast suggests 5.25

	Change	Policy rate	1Q-ahead Forecast
20th March 2002		5.00	5.41
17th April 2002	+0.25	5.25	
15th May 2002	+0.25	5.50	

back

New Keynesian Model Does Our Empirical Strategy "Cry Wolf"?

Single Episodes Type I Error Policy Surprises Sub-samples Simulate data from the standard New Keynesian model of Gersbach and Hahn (2011)

Phillips curve

$$\pi_t = \delta \boldsymbol{E}_t[\pi_{t+1}] + \lambda \boldsymbol{y}_t + \chi_t$$

Cost-push shock as an AR(1)

$$\chi_t = \rho_\chi \chi_{t-1} + \varepsilon_t^\chi$$

Dynamic IS curve

$$\mathbf{y}_t = \mathbf{E}_t[\mathbf{y}_{t+1}] + \sigma \left(\mathbf{i}_t - \mathbf{E}_t[\pi_{t+1}] \right) + \omega_t,$$

Demand shock as an AR(1)

$$\omega_t = \rho_\omega \omega_{t-1} + \varepsilon_t^\omega$$

New Keynesian Model (cont'd) Does Our Empirical Strategy "Cry Wolf"?

Central Bank's loss function

$$\mathcal{L}_{t} = \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \delta^{j} \left[\begin{array}{c} \pi_{t+k}^{2} + ay_{t+k}^{2} \\ +b(\pi_{t+k} - \pi_{t-1+k,t+k}^{P})^{2} \\ +c(i_{t+k} - i_{t-1+k,t+k}^{P})^{2} \end{array} \right]$$

Calibratior	า
NK Phillips Curve:	$\delta = 0.99$
	$\lambda = 0.3$
IS curve:	$\sigma = 1$
Cost-Push Shock:	$ \rho_{\chi} = 0.9 $
	$\sigma_{\chi} = 1$
Domand Shock:	~ - 0.0
Demanu Shock.	$\rho_{\omega} = 0.9$ σ_{-1}
	$\sigma_{\omega} = 1$
Loss-Function:	<i>a</i> = 0.3
	b = 0.2

Single Episodes Type I Error Policy Surprises Sub-samples

Estimated Policy Rules for Different "*c*" Does Our Empirical Strategy "Cry Wolf"?

Single Episodes Type I Error Policy Surprises Sub-samples

Simulate: 3,000 samples of 60 data points

Estimate: $i_t^{sim} = \gamma^{\pi} \pi_t^{sim} + \rho_1 i_{t-1,t}^{P,sim} + \vartheta_t$ (misspecified)

	<i>c</i> = 10 ⁻ 7		<i>c</i> = 0.1		<i>c</i> = 0.2	
	without	with	without	with	without	with
γ^{π}	0.715	0.716	0.639	0.637	0.578	0.570
	(5.844)	(5.792)	(5.741)	(5.656)	(5.135)	(5.064)
ρ_1		-0.017		0.061		0.125
		-(0.115)		(0.711)		(2.071)
λ	0.888	0.889	0.918	0.925	0.919	0.935
	(13.18)	(12.78)	(17.15)	(19.07)	(17.17)	(21.39)

Robustness Checks

Do Policymakers Avoid Surprising the Markets? Alternative Explanation of the Main Result

Single Episodes Type I Error Policy Surprises Sub-samples The preference for minimizing surprises in the policy rate: (see Svensson, 2003 and Rudebusch, 2008)

$$\mathcal{L}_{t} = \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \delta^{k} \left[\begin{array}{c} \left(i_{t+k} - i_{t+k}^{*} \right)^{2} + \varphi_{E} \left(i_{t+k} - i_{t+k-1} \right)^{2} \\ \kappa_{1}^{E} \left(i_{t+k} - E_{t+k-1} i_{t+k} \right)^{2} \end{array} \right]$$

Do Policymakers Avoid Surprising the Markets? Alternative Explanation of the Main Result

Single Episodes Type I Error Policy Surprises Sub-samples The preference for minimizing surprises in the policy rate: (see Svensson, 2003 and Rudebusch, 2008)

$$\mathcal{L}_{t} = \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \delta^{k} \left[\begin{array}{c} \left(i_{t+k} - i_{t+k}^{*} \right)^{2} + \varphi_{E} \left(i_{t+k} - i_{t+k-1} \right)^{2} \\ \kappa_{1}^{E} \left(i_{t+k} - E_{t+k-1} i_{t+k} \right)^{2} \end{array} \right]$$

Our results capture such preferences if:

Assumption 1: Announced forecasts and market expectations are *perfectly* aligned.

Assumption 2: Policymakers *adopt* market expectations as their own.

Do Policymakers Avoid Surprising the Markets? Alternative Explanation of the Main Result

Single Episodes Type I Error Policy Surprises Sub-samples The preference for minimizing surprises in the policy rate: (see Svensson, 2003 and Rudebusch, 2008)

$$\mathcal{L}_{t} = \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \delta^{k} \left[\begin{array}{c} \left(\dot{i}_{t+k} - \dot{i}_{t+k}^{*} \right)^{2} + \varphi_{E} \left(\dot{i}_{t+k} - \dot{i}_{t+k-1} \right)^{2} \\ \kappa_{1}^{E} \left(\dot{i}_{t+k} - E_{t+k-1} \dot{i}_{t+k} \right)^{2} \end{array} \right]$$

Our results capture such preferences if:

Assumption 1: Announced forecasts and market expectations are *perfectly* aligned.

Assumption 2: Policymakers *adopt* market expectations as their own.

If only "Assumption 1" holds, adherence vs. surprises:

- complementary explanations in-sample
- possible to separate before the announcements started

Placebo Test For the Norges Bank 1999 - 2004

Single Episodes Type I Error Policy Surprises Sub-samples Do policymakers "adhere" to market expectations?

- 3-month forward rate as a proxy for market expectations
- Bank of England as a central bank that might be reluctant to surprise markets

Estimate:

$$i_{t} = \Omega_{E}^{*} \begin{bmatrix} 1 & \varphi_{E} & \kappa_{1}^{E} \end{bmatrix} \begin{bmatrix} \gamma^{\pi} E_{t} \pi_{t+1} + \gamma^{y} E_{t} y_{t+1} \\ i_{t-1} \\ E_{t-1} i_{t} \end{bmatrix} + \varepsilon_{t}^{E}$$

where:

$$\Omega_E^* = \frac{1}{1 + \varphi_E + \kappa_1^E}$$

Placebo Test For the Norges Bank 1999 - 2004 (cont'd)

Single Episodes Type I Error Policy Surprises Sub-samples

	Bank of	England	Norges	s Bank
	without	with	without	with
γ^{π}	0.090	0.038	3.845	3.554
	(0.899)	(0.220)	(5.035)	(3.227)
γ^{y}	0.216	0.702	0.771	0.447
	(2.724)	(1.077)	(0.752)	(0.627)
arphi	0.991	1.012	2.922	2.107
	(16.124)	(6.266)	(2.782)	(5.330)
κ_1^E		0.487		0.132
		(2.808)		(1.355)
λ	-0.006	-0.386	0.151	0.098
	(-0.055)	(-0.425)	(0.125)	(0.122)
N.Obs.	34	34	23	23

Robustness Checks

Sub-Sample Analysis

Single Episodes Type I Error Policy Surprises Sub-samples

	1999	- 2005	2005 -	- 2011
	without	with	without	with
γ^{π}	3.835	5.622	1.296	4.493
	(2.662)	(4.910)	(2.408)	(0.184)
γ^{y}	0.702	1.007	2.113	1.436
	(0.719)	(0.962)	(4.630)	(1.788)
φ	1.618	2.165	5.250	3.593
	(2.224)	(3.086)	(5.179)	(7.667)
κ_1		0.979		1.963
		(3.368)		(2.099)
λ	0.787	0.727	0.562	0.960
	(1.444)	(2.019)	(2.128)	(3.692)

Robustness Checks