Energy Finance Conference 2014 Erice

The impact of renewable energies on EEX day-ahead electricity prices

Florentina Paraschiv

with David Erni and Ralf Pietsch

24–27 September 2014
Promotion of renewable energies in Germany

- **Renewable Energy Act (EEG, 2000):**
 - Producers of renewable energies (wind, PV etc.) receive a guaranteed compensation (technology dependent feed-in tariffs)
 - The additional costs of renewable energy sources are apportioned to energy suppliers, which pass it ultimately to end consumers through the EEG surcharge

- **First phase of the implementation (2000-2009):** significant increase in electricity production from renewable energy sources
 - The high volume of PV installations made feed-in tariffs unbearable
 - The EEG surcharge increased due to the increasing production from renewable energy sources

- **In a second phase (2009-2011):** the transmission grid is not capable to handle the growing supply of fluctuating renewable energies
 - Most wind capacities are installed in the north of Germany, while energy consumption is concentrated in the south
 - In regions with *high supply* of renewables, modern and efficient power plants are shut down to avoid a potential grid breakdown
 - In regions where *the grid is not fully developed*, more expensive (oil-fired) plants must run to stabilize the grid
Renewables - shift in the merit order curve

- There was a significant increase in the use of renewable energies during the investigated period
- This caused large changes in the supply mix

<table>
<thead>
<tr>
<th>Source</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>42.6</td>
<td>41.5</td>
<td>42.8</td>
<td>44</td>
<td>45.2</td>
</tr>
<tr>
<td>Nuclear</td>
<td>22.6</td>
<td>22.2</td>
<td>17.6</td>
<td>15.8</td>
<td>15.4</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>13.6</td>
<td>14.1</td>
<td>14</td>
<td>12.1</td>
<td>10.5</td>
</tr>
<tr>
<td>Oil</td>
<td>1.7</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>Renewable energies from which</td>
<td>15.9</td>
<td>16.6</td>
<td>20.2</td>
<td>22.8</td>
<td>23.9</td>
</tr>
<tr>
<td>Wind</td>
<td>6.5</td>
<td>6</td>
<td>8</td>
<td>8.1</td>
<td>8.4</td>
</tr>
<tr>
<td>Hydro power</td>
<td>3.2</td>
<td>3.3</td>
<td>2.9</td>
<td>3.5</td>
<td>3.2</td>
</tr>
<tr>
<td>Biomas</td>
<td>4.4</td>
<td>4.7</td>
<td>5.3</td>
<td>6.3</td>
<td>6.7</td>
</tr>
<tr>
<td>Photovoltaic</td>
<td>1.1</td>
<td>1.8</td>
<td>3.2</td>
<td>4.2</td>
<td>4.7</td>
</tr>
<tr>
<td>Waste-to-energy</td>
<td>0.7</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Other</td>
<td>3.6</td>
<td>4.2</td>
<td>4.2</td>
<td>4.1</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1: Electricity production in Germany by source (%). Source: AG Energiebilanzen e.V. [2014]
Renewables - shift in the merit order curve

The impact of renewable energies on EEX day-ahead electricity prices – p.4
Renewables and extreme events

- In case of excess supply of electricity, prices can fall down to zero or even below:
 - Renewable energies are fed in with priority
 - A large conventional (nuclear or coal-fired) plant is less flexible and cannot be shut down or ramped up immediately, only at high costs; therefore operators are willing to accept a negative prices
Market fundamentals driving electricity prices

- **PHELIX prices (01/01/2010–28/02/2013)** for each hour \((i = 1, \ldots, T)\) modeled separately by the following fundamentals:

 - **Demand:** demand forecast not available for all TSO zones!

 \[
 Demand_{i,t} = \alpha_i + \varrho_i Demand_{i,t-1} + \beta_i' x_{i,t} + \varphi_i \varepsilon_{i,t-1} + \varepsilon_{i,t} \tag{1}
 \]

 for hour \(i\) at day \(t = 1, \ldots, T\); \(\varepsilon_{i,t} = \sqrt{\sigma_{i,t}^2} u_{i,t}\), \(u_{i,t} \sim N(0, 1)\) with:

 \[
 \sigma_{i,t}^2 = \omega_i + \phi_i \varepsilon_{i,t-1}^2 + \psi_i \sigma_{i,t-1}^2 \tag{2}
 \]

 - \(x_{i,t}\) represents exogenous variables;

 - **Seasonal effects** modeled by dummy variables
 - **Climatic data:** sunshine duration, mean degree of cloud cover, maximum air temperature, mean relative humidity and cooling degree days (Hamburg, Berlin, Dusseldorf, Munich)

- **Supply:**

 - Prices for **coal, gas, oil, CO2** emission allowances
 - Expected infeed from renewable energies (**wind, PV**)
 - Expected power plant availability (**PPA**)

- **Learning effects:** lagged average spot price; lagged volatility
Dynamic fundamental model for electricity prices

- We assess the inter-temporal changes in the relation of hourly day-ahead electricity prices and market fundamentals in the context of a **time-varying regression model**
- Preliminary stability tests (following Brown et al. (1975), Karakatsani et al. (2010)) show strong evidence for time-varying parameters
- We formulate a **state space model** that allows for changing regression coefficients over time and estimate it with the **Kalman Filter** and **maximum likelihood**:

 \[
 y_{i,t} = z'_{i,t} \beta_{i,t} + v_{i,t} \quad \text{Measurement Equation}
 \]

 \[
 \beta_{i,t} = c_i + d_i * \beta_{i,t-1} + w_{i,t} \quad \text{Transition Equation}
 \]

where \(i \in \{1, ..., 24\} \) is the index for the hour and \(k \in \{1, ..., 11\} \) variable index.

\[
\begin{align*}
 v_{i,t} &\sim \mathcal{N}(0, R_i) \\
 \beta_{i,t} &= (\beta_{i,1,t}, \beta_{i,2,t}, ..., \beta_{i,k,t})' \\
 w_{i,t} &= (w_{i,1,t}, w_{i,2,t}, ..., w_{i,k,t})' \\
 w_{i,t} &\sim \mathcal{N}(0, Q_i) \\
 E(v_{i,t}w_{i,t}) &= 0 \\
 Q_i &= \text{diag}\{\sigma_{w_{i,1}}^2, \ldots, \sigma_{w_{i,k}}^2\} \\
 d_i &= \text{diag}\{d_{i,1}, d_{i,2}, ..., d_{i,k}\} \\
 c_i &= (c_{i,1}, c_{i,2}, ..., c_{i,k})'
\end{align*}
\]
Results: Learning

- Consistent with discussion in literature (Bunn et al., 2014): one would expect a positive elasticity of spot prices to lagged prices (signal from last day)
 - Market agents tend to reinforce previously successful offers in the market which preserves price level
 - Signaling between agents keeps prices moving in the same direction
Results: Volatility

- Coefficient changed from negative to positive after 2011
 - Increase may be associated with higher infeed of volatile renewable energies
 - Impact of volatility on prices can be interpreted as compensation for risk
 - Hedging of price risk via spot market became more expensive
Results: Coal

- More distinct marginal effects for hours with high demand, in particular hour 18 (production mainly coal based)
- Coal is still most relevant fuel for electricity production in Germany, therefore we observe less price adaption w.r.t. coal than for gas
Results: Gas

- Gas and oil fired plants run in hours of high demand: we observe higher marginal effects for hour 12 (gas: see right axis)
- Continuous price adaption process, coefficients quite variable
- Since 2011 decrease in coefficients for gas particularly for hour 12 due to growth in PV infeed (highest around noon)
Results: Wind

- Negative coefficients imply that wind infeed decreases prices
- Variable price adaptation process, particularly at night hours
- During the night, an excess of produced electricity meets a low demand: negative prices may occur which are caused to a large extent by wind infeed
Results: PV

- Again, the negative sign implies that PV infeed decreases prices.
- Little price adaption.
- The impact on the price reduction is higher at noon.
Dynamics relative day-ahead prices

Electricity market Ger/Au

The impact of renewable energies on EEX day-ahead electricity prices – p.14
Results: Statistics

- **Model residuals show no/very low autocorrelation:** The adaptive nature of the price structure is a possible source for the observed autoregressive structure in the volatility of electricity prices.
- The inclusion of renewable energies improves considerably the explanatory power of the model:
Conclusion

- There is a continuous adaptation process of electricity prices to some market fundamentals: agents’ learning, regulatory announcements, or stressed events in electricity markets.
- Dependent on the time of the day, fundamentals can have different marginal effects on the price formation at EEX.
- The adaptive nature of the price structure is a possible source for the observed autoregressive structure in the volatility of electricity prices: purely stochastic models can be a too simplistic assumption in this case!!
- Renewable energies substitute the use in production of traditional fuels situated at the right of the merit order curve.
Outlook

- The increase in the infeed from renewable energies, wind and PV, led to a decrease in electricity day-ahead prices in Germany: **winners vs losers?**
 - **Traditional produces** suffer from the generally lower price level that decreases their margins
 - **Private consumers** must carry higher electricity prices, since ultimately they finance the EEG surcharge (financial burden is by far not compensated by the lower day-ahead market prices)
 - Only the **energy-intensive industry**, which is excluded from the EEG surcharge, benefits from the decrease in the day-ahead prices
- The current market design does not compensate the provision of reserve capacity adequately
- Additionally, the excess supply from renewables in Northern Germany must be efficiently distributed to regions with excess demand, which requires enhancements of the electricity grid
- Future incentive schemes for the promotion of renewable energies should take these aspects into account, since the matters of production, storage, and transportation cannot be treated separately
Are market fundamentals impacting electricity prices in a different way across price quantiles? Apply quantile regressions, as done in Bunn et al. 2014, Westgaard et al. 2014:

The general dynamic quantile model may be written as:

\[y_t = f_t(\beta, x_{t-1}) + u_t \] \hspace{1cm} (3)

The conditional \(\alpha \) level quantile is:

\[q_\alpha(y_t | \beta, x_{t-1}) = f_t(\beta_\alpha, x_{t-1}) \] \hspace{1cm} (4)

where \(\beta_\alpha \) is the solution to

\[\min_{\beta} \sum_t \rho_\alpha(y_t - f_t(\beta, x_{t-1})) \] \hspace{1cm} (5)

The function \(\rho(\cdot) \) is a loss function, specified as \(\rho_\alpha(u) = u(\alpha - I(u < 0)) \).

Problem: semi-parametric approach, no assumption on the distribution of residuals is made!
The Skewed-Laplace (SL) connection

- Yu & Moyeed (2001) and Tsionas (2003) illustrate the link between the solution to the quantile estimation problem and the likelihood for the SL distribution.

- The SL location-scale family, denoted $SL(\mu, \tau, \alpha)$ has density function:

$$p_\alpha(u) = \frac{\alpha(1-\alpha)}{\tau} \exp \left[-\rho_\alpha \left(\frac{u - \mu}{\tau} \right) \right]$$

where μ is the mode and $\tau > 0$ is a scale parameter.

- If it is assumed in (3) that $u_t \sim SL(0, \tau, \alpha)$ and is iid, then the likelihood function becomes:

$$L_\alpha(\beta, \tau; y, X) \propto \tau^{-n} \exp \left\{ -\tau^{-1} \sum_{t=1}^{n} (y_t - f_t(\beta)) \times [\alpha - I_{(-\infty,0)}(y_t - f_t(\beta))] \right\}$$

- Since (5) is contained in the exponent of the likelihood, the maximum likelihood estimate for β is equivalent to the quantile estimator in (5).
Initialisation of $\psi = (c, D, \Omega, \beta_0)$

Initialisation of Σ_t at time $t = 0$

Prior estimates β_{t-1} and Σ_{t-1}

Calculating the prediction error u_t and its cov. mat. R_{t-1}

Calculating the Kalman gain K_t

Filtered estimates β_t and Σ_t

New observation y_t at time $t = t + 1$

Choose other parameter values ψ

Evaluating the likelihood function

$\mathcal{L}_n(\psi, y, X) \propto \tau^{-n} \exp \left\{ -\tau \sum_{t=1}^{n} (y_t - f_t(\beta_t, x_t)) \times \left[\alpha - I_{\psi,0} (y_t - f_t(\beta_t, x_t)) \right] \right\}$

Maximization criterion met?

$\beta_{t|t-1} = c + D \beta_{t-1}$, $\Sigma_{t|t-1} = D \Sigma_{t-1} D^\top + \Omega$

$u_t = y_t - (\beta_{t|t-1})' x_t$

$R_{t|t-1} = x_t \Sigma_{t|t-1} (x_t)' + \Xi_t$

The recursion algorithm is performed until we reach the last observation.

The conditional likelihood function is evaluated at the current parameter values using the results of the Kalman recursion.

The Kalman algorithm is executed until we reach the predefined stopping criterion.

The maximum likelihood estimation is initialised with starting values for the parameter vector.

The system is initialised with starting values for the state variables and their covariance matrix.

These four calculations constitute the Kalman filter algorithm.

The system is initialised with starting values for the state variables and their covariance matrix.

These four calculations constitute the Kalman filter algorithm.

The maximum likelihood estimation is initialised with starting values for the parameter vector.

The system is initialised with starting values for the state variables and their covariance matrix.

These four calculations constitute the Kalman filter algorithm.

The maximum likelihood estimation is initialised with starting values for the parameter vector.

The system is initialised with starting values for the state variables and their covariance matrix.

These four calculations constitute the Kalman filter algorithm.

The maximum likelihood estimation is initialised with starting values for the parameter vector.

The system is initialised with starting values for the state variables and their covariance matrix.

These four calculations constitute the Kalman filter algorithm.