Item Type |
Journal paper
|
Abstract |
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature. |
Authors |
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent & Ortega, Juan-Pablo |
Journal or Publication Title |
Scientific Reports |
Language |
English |
Subjects |
other research area |
HSG Classification |
contribution to scientific community |
HSG Profile Area |
SEPS - Quantitative Economic Methods |
Refereed |
Yes |
Date |
11 September 2015 |
Publisher |
Macmillan Publishers Limited |
Place of Publication |
[London] |
Volume |
5 |
Page Range |
1-11 |
ISSN-Digital |
2045-2322 |
Publisher DOI |
https://doi.org/10.1038/srep12858 |
Depositing User |
Prof. Ph.D Juan-Pablo Ortega Lahuerta
|
Date Deposited |
21 Nov 2016 18:24 |
Last Modified |
20 Jul 2022 17:29 |
URI: |
https://www.alexandria.unisg.ch/publications/249736 |