The Liability Regime of Insurance Pools and Its Impact on Pricing

Lukas Reichel and Hato Schmeiser,
University of St.Gallen

DVfVW, Annual Meeting 2015
Berlin, March 19, 2015
Insurance Pools in Practice

According to Farny (2011) insurance pools are mutual organizations of several insurance companies having been founded for the purpose of insuring a special type of risk and appear either as co-insurance pools or reinsurance pools.

European Commission (2013) gives an overview about the pool landscape in Europe:
- The study figured out 51 pools in the EU; most of them (11) cover energy risk
- Among interviewed pools (44): 30% reinsurance pools, rest co-insurance or both
Subject of Our Study

Previous Literature Explicitly Dealing with Pools

<table>
<thead>
<tr>
<th>Optimal/Fair Risk Sharing</th>
<th>Diversification Benefits</th>
<th>Legal/Organizational</th>
<th>State Pools/Public-Private Partnership</th>
</tr>
</thead>
</table>

Motivation

Our study is motivated from a legal point of view:
What happens if one or more pool insurers default on the policyholders’ claims?

Market Observation

Regime of Several Liability
A default of one insurer is not compensated by other insurers

Regime of Joint Liability
Policyholders have access to the insurers’ aggregated funds

Research Subject

Quantify the regimes’ effects on pricing as well as equity requirements and discuss risk-shifting problems in both regimes
A contingent claims model based on *Doherty and Garven (1986)*

Model assumptions

- Pool is composed of insurers $i = 1, \ldots, n$
- ICs organized as stock companies and equity holders seek profit maximization
- Pool holds no own balance sheet or funds, business is disclosed in the ICs’ balance sheets; separated investments
- ICs underwrite only pool business
- Complete market and no arbitrage opportunity \rightarrow pricing under an unique risk-neutral measure
- Pricing is net of administrative costs, deductibles and any reinsurance
- Two-period-consideration: Premium and equity payments at time $t = 0$; claims payment and investment return at time $t = 1$
- Insurer defaults if liabilities at $t = 1$ exceed available assets
- α_i denotes the risk share of insurer i, β_i the premium share
Our Model – Positions at Time $t = 0$

A contingent claims model based on *Doherty and Garven (1986)*

At time $t = 0$ insurance company i has assets available amounting to

$$A_i^0 = E_i^0 + \beta_i P_0$$

Fair positions of policyholders and equity holders

In the context of risk-neutral pricing we presume fairness for policyholders and equity holders if their positions at time $t = 0$ equals the present values of the payoffs at time $t = 1$, i.e.

$$\left(P_0, E_0^1, \ldots, E_0^n \right) = \left(PV(P_1), PV(E_1^1), \ldots, PV(E_1^n) \right)$$

→ Net present value of zero for all stakeholders
→ Equilibrium: no wealth transfer between stakeholders
Our Model – Payoffs at Time $t = 1$

A contingent claims model based on *Doherty and Garven (1986)*

![Diagram](image)

At time $t = 1$ the policyholders receive an indemnification amounting to

$$P_i = C_i - D_i$$

D_i is the pool’s shortfall. Its size depends on the liability regime at hand:

- **Several Liability**
 $$D_i = \sum_{i=1}^{n} \left[\alpha_i C_{i} - A_{i}^i \right]^+$$

- **Joint Liability**
 $$D_i = \left[C_i - \sum_{i=1}^{n} A_i^i \right]^+$$

The payoff of IC i to its equity holders at time $t = 1$ is

$$E_{i} = \left[A_i^i - \alpha_i C_{i} \right]^+$$

$$E_{i} = \left[A_i^i - \alpha_i C_{i} - G_i^i \right]^+$$

We have formally defined G_i^i to be in line with joint liability’s default mechanism in practice.
Numerical Example – Setting (1/2)

- Pool claims are modelled as jump-diffusion process (GBM & Poisson Process, Merton (1976))
- Assets returns are modelled as ordinary GBM
- The claims’ face value at time $t = 0$ is fixed at $PV(C_1) = 100(A1)$
- We assume identical risk and premium share, i.e. $\alpha_i = \beta_i$
- To reduce numerical and illustrative complexity we set $n = 2$
- $\alpha_1 \in \{0, 0.1, \ldots, 1\}$; for ensuring comparability of different shares and liability regimes we focus on a reference case for which the contract safety level is throughout $PV(D_1) = 0.5$ (A2)
- $(A1)$ & $(A2) \Rightarrow$ Fair pool premium in reference case $P_0 = PV(P_1) = PV(C_1) - PV(D_1) = 99.5$

Find – as function of α_1 and the liability regime – values for E_0^1 and E_0^2 s.t.

$$(P_0, E_0^1, E_0^2) = \left(PV(P_1), PV(E_1^1), PV(E_1^2)\right)$$
Numerical Example – Setting (2/2)

- Pool claims are modelled as jump-diffusion process (GBM & Poisson Process, *Merton (1976)*)
- Assets returns are modelled as ordinary GBM
- The claims’ face value at time $t = 0$ is fixed at $PV(C_1) = 100 (A1)$
- We assume identical risk and premium share, i.e. $\alpha_i = \beta_i$
- To reduce numerical and illustrative complexity we set $n = 2$
- $\alpha_1 \in \{0, 0, 0, 1, \ldots, 1\}$; for ensuring comparability of different shares and liability regimes we focus on a reference case for which the contract safety level is throughout $PV(D_1) = 0.5 (A2)$
- $(A1)$ & $(A2) \rightarrow$ Fair pool premium in reference case $P_0 = PV(P_1) = PV(C_1) - PV(D_1) = 99.5$

<table>
<thead>
<tr>
<th>Risk-free Rate</th>
<th>Asset Process</th>
<th>Claims Process</th>
<th>Case IV</th>
<th>Case V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uniformity</td>
<td>Pos. Correlation</td>
<td>Neg. Correlation</td>
<td>Incr. Asset Risk (w/o taxation)</td>
</tr>
<tr>
<td>Uniformity</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Pos. Correlation</td>
<td>3%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Neg. Correlation</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.5</td>
<td>- 0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

We revoke the assumption of a frictionless market and introduce corporate income taxation. Policyholders are burdened with present value of tax payment at time $t = 0$. Some degree of risk-aversion and inability to replicate payoffs is assumed for policyholders. Applied tax rate $\tau = 35\%$
Observations

- Fair equity required for pre-given safety level increases for both regimes in risk/premium share.
- For all allocations: \(E_0^i (Several\ Liability) \geq E_0^j (Joint\ Liability) \)
- For the marginal cases: \(E_0^i (Several\ Liability) = E_0^j (Joint\ Liability) \)
- The aggregated equity reaches for joint liability a minimum at \((\alpha_1, \alpha_2) = (0.5, 0.5)\)
- For several liability, the aggregated equity is constant
- \(\rightarrow\) For several liability no effects from increasingly diversified risk-sharing; also no effect from increasing \(n\)
Numerical Example – Results Case I, II and III

<table>
<thead>
<tr>
<th></th>
<th>Case I Uniformity</th>
<th>Case II Pos. Correlation</th>
<th>Case III Neg. Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk-free Rate</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Asset Process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatility IC1</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Volatility IC2</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Correlation</td>
<td>0.0</td>
<td>0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>Claims Process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatility Diffusion</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Jump Freq.</td>
<td>10 yr.</td>
<td>10 yr.</td>
<td>10 yr.</td>
</tr>
<tr>
<td>Jump Factor</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Corr. Asset-Claims</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Observations

- Plot shows fair premium-equity-combinations (aggregated) for the allocation \((\alpha_1, \alpha_2) = (0.5, 0.5)\)
- In a regime of several liability, the fair combinations do not depend on the ICs’ asset correlation
- In a regime of joint liability, negative correlation reduces the required equity for keeping the safety level
- In contrast, positive correlation in a regime of joint liability increases the equity requirement
- Several liability appears as limit case of joint liability as correlation goes towards 1
Numerical Example – Results Case IV

Observations

- In general, tax loading in a regime of joint liability is less than in a regime of several liability
- Tax benefit amplifies when asset correlation is negative
- Tax benefit shrinks as correlation goes towards 1

Applied tax rate $\tau = 35\%$
Observations

- Risk-shift of IC 2 solely affects policyholder in a regime of several liability: severe wealth transfer from PH to EH of IC 2

- In a regime of joint liability risk-shift affects policyholder as well as equity holders of IC 1: wealth transfer from PH and EH of IC 1 to EH of IC 2
Summarized Conclusions

Regime of Several Liability
- No diversification effects from risk sharing, just an allocation between several parties
- No impact of asset correlation on fair premium and equity values
- Risk-shifting problems only matter for policyholders

Regime of Joint Liability
- Increased diversification (i.e. $\alpha_i \to 1/n$) leads to reduced required equity to achieve the pre-given safety level
- Regime of joint liability will pass into several liability if risk allocation goes towards marginal allocation (i.e. only one insurer bears the business)
- Analogously, the regime will pass into several liability if asset correlation goes towards 1
- For increased negative correlation, the distinction between both regimes becomes more material
- Both equity holders as well as policyholders must be concerned about risk-shifting problems

→ From perspective of policyholder the regime of joint liability is preferable due to lower frictional costs and the utility to share the risk-shifting problem with other parties jointly
Thank You

Lukas Reichel
University of St.Gallen,
Institute of Insurance Economics
lukas.reichel@unisg.ch

Hato Schmeiser
University of St.Gallen,
Institute of Insurance Economics
hato.schmeiser@unisg.ch