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Abstract. Maximum drawdown, the largest cumulative loss from peak to trough, is one of

the most widely used indicators of risk in the fund management industry, but one of the least

developed in the context of measures of risk. We formalize drawdown risk as Conditional

Expected Drawdown (CED), which is the tail mean of maximum drawdown distributions. We

show that CED is a degree one positive homogenous risk measure, so that it can be linearly

attributed to factors; and convex, so that it can be used in quantitative optimization. We

empirically explore the differences in risk attributions based on CED, Expected Shortfall (ES)

and volatility. An important feature of CED is its sensitivity to serial correlation. In an

empirical study that fits AR(1) models to US Equity and US Bonds, we find substantially higher

correlation between the autoregressive parameter and CED than with ES or with volatility.

Key terms: drawdown; Conditional Expected Drawdown; deviation measure; risk attribution;

serial correlation

Disclosure of potential conflicts of interest: the authors declare that they have no conflict of

interest.

1Department of Statistics and Economics and Center for Risk Management Research, Univer-
sity of California, Berkeley, CA 94720-3880, USA
2Faculty of Mathematics and Statistics, University of St. Gallen, Bodanstrasse 6, CH-9000,
Switzerland and Center for Risk Management Research, University of California, Berkeley,
Evans Hall, CA 94720-3880, USA
E-mail addresses: 1lrg@berkeley.edu, 2olamahmoud@berkeley.edu.
Date: August 29, 2016.
We are grateful to Robert Anderson for insightful comments on the material discussed in this article; to Alexei
Chekhlov, Stan Uryasev, and Michael Zabarankin for their feedback on a previous draft of this work; to Vladislav
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Figure 1.1. Simulation of a portfolio’s net asset value over a finite path. A

large drawdown may force liquidiation at the bottom of the market, and the

proceeding market recovery is never experienced.

1. Introduction

A levered investor is liable to get caught in a liquidity trap: unable to secure funding after

an abrupt market decline, he may be forced to sell valuable positions under unfavorable market

conditions. This experience was commonplace during the 2007-2009 financial crisis and it has

refocused the attention of both levered and unlevered investors on an important liquidity trap

trigger, a drawdown, which is the maximum decline in portfolio value over a fixed horizon (see

Figure 1.1).

In the event of a large drawdown, common risk diagnostics, such as volatility, Value-at-Risk,

and Expected Shortfall, at the end of the intended investment horizon are less significant.

Indeed, within the universe of hedge funds and commodity trading advisors (CTAs), one of the

most widely quoted measures of risk is maximum drawdown. The notion of drawdown has been

extensively studied in the literature of applied probability theory, which we review in Section 1.1.

However, a generally accepted mathematical methodology for forming expectations about future

potential maximum drawdowns does not seem to exist in the investment management industry.

Drawdown in the context of risk and deviation measures has failed to attract the same kind of

applied research devoted to other more conventional risk measures.

Our purpose is to formulate a (i) mathematically sound and (ii) practically useful measure of

drawdown risk. Our formalization of drawdown risk is achieved by modeling continuous-time

cumulative returns within a time horizon T ∈ (0,∞) as a stochastic process X representing

return paths, to which a certain real-valued functional, the Conditional Expected Drawdown,

is applied. Mathematically, the process X is transformed to the random variable µ(X), rep-

resenting the maximum drawdown within a finite path. At confidence level α ∈ [0, 1], the

Conditional Expected Drawdown CEDα is then defined to be the expected maximum drawdown
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given that some maximum drawdown threshold DTα, the α-quantile of the maximum drawdown

distribution, is breached:

CEDα(X) = E (µ(X) | µ(X) > DTα) .

In the context of quantitative risk measures, CED is a deviation measure in the sense of

Rockafellar et al. (2002, 2006). In particular, this implies that CED is convex with respect to

portfolio weights, which means that it promotes diversification and can be used in an optimizer.

It is also homogenous of degree one, so that it supports linear risk attribution under Euler’s

homogenous function theorem.

By focusing on the maximum of all drawdowns within a path of fixed length T , we address

a highly relevant risk management concern affecting fund managers on a daily basis, who ask

themselves: what is the expected maximum possible cumulative drop in net asset value within

the investment horizon T? If this loss exceeds a certain threshold, the investor may be forced

to liquidate. For a given investment horizon T , Conditional Expected Drawdown indicates this

expected cumulative loss in excess of a threshold, and it can be measured for various confidence

levels.

Because Conditional Expected Drawdown is defined as the tail mean of a distribution of

maximum drawdowns, it is a downside risk metric perfectly analogous to Expected Shortfall,

which is the tail mean of a return distribution. Hence, much of the theory and practice of

Expected Shortfall carries over to Conditional Expected Drawdown.

We will show, however, that drawdown is inherently path dependent and accounts for serial

correlation, whereas Expected Shortfall does not account for consecutive losses.

1.1. Literature Review. The notion of drawdown has been extensively studied in the liter-

ature of applied probability theory and in research addressing active portfolio management,

which we review next. However, a generally accepted mathematical methodology for forming

expectations about future potential maximum drawdowns does not seem to exist in either the

investment management industry or the academic literature. Drawdown in the context of risk

and deviation measures has hence failed to attract the same kind of applied research devoted

to other more conventional risk measures. Our work hence complements the existing literature

as it develops a mathematically sound and practically useful measure of drawdown risk.

The analytical assessment of drawdown magnitudes has been broadly studied in the liter-

ature of applied probability theory. To our knowledge, the earliest mathematical analysis of

the maximum drawdown of a Brownian motion appeared in Taylor (1975), and it was shortly

afterwards generalized to time-homogenous diffusion processes by Lehoczky (1977). Douady

et al. (2000) and Magdon-Ismail et al. (2004) derive an infinite series expansion for a standard

Brownian motion and a Brownian motion with a drift, respectively. The discussion of draw-

down magnitude was extended to studying the frequency rate of drawdown for a Brownian
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motion in Landriault et al. (2015). Drawdowns of spectrally negative Lévy processes were ana-

lyzed in Mijatovic and Pistorius (2012). The notion of drawup, which measures the maximum

cumulative gain relative to a running minimum, has also been investigated probabilistically,

particularly in terms of its relationship to drawdown; see for example Hadjiliadis and Vecer

(2006), Pospisil et al. (2009), and Zhang and Hadjiliadis (2010).

Reduction of drawdown in active portfolio management has received considerable attention

in mathematical finance research. Grossman and Zhou (1993) considered an asset allocation

problem subject to drawdown constraints; Cvitanic and Karatzas (1995) extended the same

optimization problem to the multi-variate framework; Chekhlov et al. (2003, 2005) developed

a linear programming algorithm for a sample optimization of portfolio expected return subject

to constraints on drawdown, which, in Krokhmal et al. (2003), was numerically compared to

shortfall optimzation with applications to hedge funds in mind; Carr et al. (2011) introduced

a new European style drawdown insurance contract and derivative-based drawdown hedging

strategies; and most recently Cherney and Obloj (2013), Sekine (2013), Zhang et al. (2013)

and Zhang (2015) studied drawdown optimization and drawdown insurance under various sto-

chastic modeling assumptions. Zabarankin et al. (2014) reformulated the necessary optimality

conditions for a portfolio optimization problem with drawdown in the form of the Capital Asset

Pricing Model (CAPM), which is used to derive a notion of drawdown beta. More measures of

sensitivity to drawdown risk were introduced in terms of a class of drawdown Greeks in Pospisil

and Vecer (2010).

In the context of quantitative risk measurement, Chekhlov et al. (2003, 2005) develop a

quantitative measure of drawdown risk called Conditional Drawdown at Risk (CDaR). Like

CED, CDaR is a deviation measure (Rockafellar et al. (2002, 2006)). Unlike CED, however,

CDaR focuses on all drawdowns rather than maximum drawdowns.

2. Measuring Drawdown Risk

We use the general setup of Cheridito et al. (2004) for the mathematical formalism of

continuous-time path dependent risk. Continuous-time cumulative returns, or equivalently

net asset value processes, are represented by essentially bounded càdlàg processes (in the given

probability measure) that are adapted to the filtration of a filtered probability space. More

formally, for a time horizon T ∈ (0,∞), let (Ω,F , {Ft}t∈[0,T ],P) be a filtered probability space

satisfying the usual assumptions, that is the probability space (Ω,F ,P) is complete, (Ft) is

right-continuous, and F0 contains all null-sets of F . For p ∈ [1,∞], (Ft)-adapted càdlàg pro-

cesses lie in the Banach space

Rp = {X : [0, T ]× Ω→ R | X (Ft)-adapted càdlàg process , ‖X‖Rp} ,

which comes equipped with the norm

‖X‖Rp := ‖X∗‖p
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where X∗ = supt∈[0,T ] |Xt|.
All equalities and inequalities between processes are understood throughout in the almost

sure sense with respect to the probability measure P. For example, for processes X and Y ,

X ≤ Y means that for P-almost all ω ∈ Ω, Xt(ω) ≤ Yt(ω) for all t.

Definition 2.1 (Continuous-time path-dependent risk measure). A continuous-time path-

dependent risk measure is a real-valued function ρ : R∞ → R.

In practice, where one works in a discrete universe, this continuous-time setup is discretized

by choosing the frequency of observations over the return horizon T . This adds a crucial

parameter to the analysis, as higher frequency observations tend to yield larger drawdowns.

Consider the May 2011 flash crash. When working at a daily frequency, one never sees the flash

crash drawdown, no matter how long the investment horizon.1

2.1. Maximum Drawdown.

Definition 2.2 (Drawdown process). For a horizon T ∈ (0,∞), the drawdown process D(X) :=

{D(X)
t }t∈[0,T ] corresponding to a stochastic process X ∈ R∞ is defined by

D
(X)
t = M

(X)
t −Xt ,

where

M
(X)
t = sup

u∈[0,t]
Xu

is the running maximum of X up to time t.

In practice, the use of the maximum drawdown as an indicator of risk is particularly popular

in the universe of hedge funds and commodity trading advisors, where maximum drawdown

adjusted performance measures, such as the Calmar ratio, the Sterling ratio and the Burke

ratio, are frequently used.

Definition 2.3 (Maximum drawdown). Within a fixed time horizon T ∈ (0,∞), the maximum

drawdown of the stochastic process X ∈ R∞ is the maximum drop from peak to trough of X in

[0, T ], and hence the largest amongst all drawdowns D
(X)
t :

µ(X) = sup
t∈[0,T ]

{D(X)
t }.

Equivalently, maximum drawdown can be defined as the random variable obtained through the

following transformation of the underlying stochastic process X:

µ(X) = sup
t∈[0,T ]

sup
s∈[t,T ]

{Xs −Xt} .

1See Madhavan (2012) for an analysis of the flash crash.
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(a) (b)

Figure 2.1. (A) Empirical distribution of the realized 6-month maximum draw-

downs for the daily S&P 500 over the period 1 January 1950 to 31 December

2013, together with the 90% quantile (the drawdown threshold DT) and tail-mean

(CED) of the distribution. (B) Distribution of 6-month maximum drawdowns for

an idealized standard normally distributed random variable, together with the

90% quantile and tail-mean of the distribution.

Even though, in a given horizon, only a single maximum drawdown is realized along any given

path, it is beneficial to consider the distribution from which the maximum drawdown is taken.

By looking at the maximum drawdown distribution, one can form reasonable expectations about

the size and frequency of maximum drawdowns for a given portfolio over a given investment

horizon.

Figure 2.1 shows (A) the empirical maximum drawdown distribution (for paths of length

125 business days) of the daily S&P 500 time series over the period 1950 to 2013, and (B)

the simulated distribution for an idealized Gaussian random variable. Both distributions are

asymmetric, which implies that very large drawdowns occur less frequently than smaller ones.

Using Monte Carlo simlations, Burghardt et al. (2003) show that maximum drawdown distri-

butions are highly sensitive to the length of the track record2 (increases in the length of the

track record shift the entire distribution to the right), mean return (for larger mean returns,

the distribution is less skewed to the right, since large means tend to produce smaller maximum

drawdowns, volatility of returns (higher volatility increases the likelihood of large drawdowns),

and data frequency (a drawdown based on lower frequency data would ignore the flash crash).

The tail of the maximum drawdown distribution, from which the likelihood of a drawdown

of a given magnitude can be distilled, is of particular interest in practice. Our drawdown risk

metric, defined next, is a tail mean of the maximum drawdown distribution.

2.2. Conditional Expected Drawdown. Our proposed drawdown risk metric, the Condi-

tional Expected Drawdown (Definition 2.4), measures the average of worst case maximum draw-

downs exceeding a quantile of the maximum drawdown distribution. Hence, it is analogous to

2The track record is understood as the length of the history of an investment fund since its inception.
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the return-based Expected Shortfall (ES). Both ES and CED are given by the tail mean of an

underlying distribution, namely that of the losses and maximum drawdowns, respectively.

Analogous to the return-based Value-at-Risk (VaR), we define, for confidence level α ∈ [0, 1],

the maximum drawdown threshold DTα to be a quantile of the maximum drawdown distribution:

DTα (µ(X)) = inf {m | P (µ(X) > m) ≤ 1− α}

It is thus the smallest maximum drawdown m for which the probability that the maximum

drawdown µ(X) exceeds m is at most (1 − α). For example, the 95% maximum drawdown is

both a worst case for drawdown in an ordinary period and a best case among extreme scenarios.

It separates the 5% worst maximum drawdowns from the rest.

Definition 2.4 (Conditional Expected Drawdown). At confidence level α ∈ [0, 1], the Condi-

tional Expected Drawdown CEDα : R∞ → R is the function mapping µ(X) to the expected

maximum drawdown given that the maximum drawdown threshold at α is breached. More for-

mally,

CEDα (X) =
1

1− α

∫ 1

α

DTu (µ(X)) du.

If the distribution of µ(X) is continuous, then CEDα is equivalent to the tail conditional expec-

tation:

CEDα (X) = E (µ(X) | µ(X) > DTα (µ(X))) .

In other words, CED is the tail mean (Acerbi and Tasche (2002b)) over the maximum draw-

down distribution, where for confidence level α ∈ (0, 1), and assuming E[µ(X)] <∞, the α-tail

mean of µ(X) is given by:

TMα(µ(X)) =
1

1− α

∫ 1

α

DTu(µ(X))du .

3. Properties of Conditional Expected Drawdown

We derive theoretical properties of Conditional Expected Drawdown, most notably convexity

and positive homogeneity, and prove that it is a generalized deviation measure, as developed by

Rockafellar et al. (2002, 2006). Broadly speaking, deviation measures obey axioms taken from

the properties of measures such as standard deviation and semideviation. We generalize these

axioms to our path-dependent universe.

Definition 3.1 (Generalized Path-Dependent Deviation Measure). A generalized path-dependent

deviation measure is a path-dependent risk measure δ : R∞ → R satisfying the following axioms:

(D0) Normalization: for all constant deterministic C ∈ R∞, δ(C) = 0.

(D1) Positivity: for all X ∈ R∞, δ(X) ≥ 0.

(D2) Shift invariance: for all X ∈ R∞ and all constant deterministic C ∈ R∞, δ(X + C) =

δ(X).
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(D3) Convexity: for all X, Y ∈ R∞ and λ ∈ [0, 1], δ(λ+ (1− λ)Y ) ≤ λδ(X) + (1− λ)δ(Y ).

(D4) Positive degree-one homogeneity: for all X ∈ R∞ and λ > 0, δ(λX) = λδ(X).

Any portfolio of zero value and, more generally, of constant deterministic value is not exposed

to drawdown risk, and so for all constant deterministic C ∈ R∞, we have CEDα(C) = 0, and

hence axiom (D0) is satisfied. Moreover, CED satisfies (D1) because maximum drawdown is

by definition non-negative. The following Lemma proves the shift invariance property (D2),

which essentially states that by (deterministically) shifting the path of the portfolio value up

or down, the drawdown within that path remains unchanged.

Lemma 3.2. For all X ∈ R∞ and all constant almost surely C ∈ R∞, CEDα(X + C) =

CEDα(X) (for all α ∈ (0, 1)).

Proof. The drawdown process DX corresponding to X is shift invariant, since for t ∈ [0, T ],

M
(X+C)
t = sup

u∈[0,t]
(X + C)u = sup

u∈[0,t]
(X)u + C = M

(X)
t + C .

It follows that D(X+C) = M (X+C)−X−C = M (X)+C−X−C = M (X)−X = D(X). Therefore,

µ(X + C) = sup
t∈[0,T ]

{
D

(X+C)
t

}
= sup

t∈[0,T ]

{
D

(X)
t

}
= µ(X) .

Hence, CEDα(X + C) = CEDα(X).

�

We next focus on the properties of convexity (D3) and positive homogeneity (D4) of gener-

alized deviation measures.

3.1. Convexity of CED. According to Föllmer and Schied (2002, 2010, 2011), the essence of

diversification is encapsulated in the convexity axiom. Suppose we have two processes X and

Y representing cumuative returns to two portfolios. Rather than investing fully in one of the

two portfolios, an investor could diversify by allocating a fraction λ ∈ [0, 1] of his capital to,

say, X, and the remainder 1−λ to Y . Under a convex risk measure, this diversification cannot

increase risk.

Proposition 3.3 (Convexity of CED). Conditional Expected Drawdown is convex with respect

to portfolio weights: for all X, Y ∈ R∞, λ ∈ [0, 1], and confidence level α ∈ (0, 1), CEDα(λ +

(1− λ)Y ) ≤ λCEDα(X) + (1− λ)CEDα(Y ).

Proof. For λ ∈ [0, 1], we have M (λX+(1−λ)Y ) ≤ λM (X) + (1 − λ)M (Y ) by properties of the

supremum, and therefore

D(λX+(1−λ)Y ) = M (λX+(1−λ)Y ) − λX − (1 + λ)Y

≤ λM (X) + (1− λ)M (Y ) − λX − (1 + λ)Y

= λD(X) + (1− λ)D(Y )
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Assuming that the distributions of µ(X) and µ(Y ) are continuous, and because µ(X) is defined

as the supremum within the drawdown pathD, we have µ(λX+(1−λ)Y ) ≤ λµ(X)+(1−λ)µ(Y ).

Finally, since the tail mean functional TM is subadditive and positive homogenous independent

of the underlying distribution (see Acerbi and Tasche (2002a,b)), and also monotonically non-

decreasing, its composite with µ is also convex, and so CEDα(λ + (1 − λ)Y ) ≤ λCEDα(X) +

(1− λ)CEDα(Y ). �

Remark 3.4 (Drawdown risk optimization). Convexity of CED implies that one can, in theory,

allocate assets to trade off CED risk against portfolio return. There are three crucial ingredi-

ents for carrying out any optimization in practice. Convexity of the objective function to be

minimized ensures that the minimum, if it exists, is a global one. The second ingredient is the

feasibility and efficiency of the optimization algorithm.3 Seminal work of Rockafellar and Urya-

sev (2000, 2002), who developed an efficient linear programming (LP) algorithm for minimizing

the tail mean of a distribution of returns, and of Chekhlov et al. (2003, 2005), who incorporated

drawdown into the LP formulation, can in theory be used to minimize the tail mean of a max-

imum drawdown distribution. The third ingredient, which allows us to move beyond theory, is

an empirically sound estimate of risk. Further empirical exploration of the properties of CED

and the study of its impact on quantitative portfolio construction, are necessary and beyond the

scope of this article.

3.2. Positive Homogeneity of CED. Degree-one positive homogenous risk measures are

characterized by Euler’s homogenous function theorem, and hence play a prominent role in

portfolio risk analysis. More precisely, for a portfolio P =
∑

iwiXi in R∞, a risk measure

ρ : R∞ → R is postive homogenous of degree one if and only if
∑

iwi (∂ρ(P )) /(∂wi) = ρ(P ).4

The risk ρ(P ) of the portfolio P =
∑

iwiXi can therefore be linearly attributed along its factors

Xi.

Proposition 3.5 (Positive homogeneity of CED). Conditional Expected Drawdown is degree-

one positive homogenous with respect to portfolio weights: for all X ∈ R∞, λ > 0 and confidence

level α ∈ (0, 1), CEDα(λX) = λCEDα(X).

Proof. For λ > 0, we have for t ∈ [0, T ], M
(λX)
t = supu∈[0,t](λX)u = λ supu∈[0,t](X)u = λM

(X)
t ,

and therefore D(λX) = λM (X)−λX = λD(X). Because µ(X) is defined as the supremum within

the drawdown path D, we have µ(λX) = λµ(X). Finally, positive homogeneity of the tail mean

functional yields the result.

�
3Another crucial ingredient is having a reliable risk model feeding the optimizer with realistic and useful scenar-
ios. This being beyond the scope of the present article, we have focused on the two main theoretical requirements
in the present article. We refer the reader to Zabarankin and Uryasev (2014), where the theory of risk estimation
and error sensitivity in the context of portfolio optimization is discussed.
4This formula and the topic of risk attribution is discussed in more detail in Section 4.
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4. Drawdown Risk Attribution

With the theoretical framework of drawdown risk measurement in place, the next step is to

understand how Conditional Expected Drawdown can be integrated in the investment process.

We show how to systematically analyze the sources of drawdown risk within a portfolio and how

these sources interact. In practice, investors may be interested in attributing risk to individual

securities, asset classes, sectors, industries, currencies, or style factors of a particular risk model.

In what follows, we assume a generic such risk factor model.

Fix an investment period and let Fi denote the return of factor i over this period (1 ≤ i ≤ n).

Then the portfolio return over the period is given by the sum

P =
n∑
i=1

wiFi ,

where wi is the portfolio exposure to factor i and the summand representing idiosyncratic risk

is not included for simplicity. Because portfolio risk is not a weighted sum of source risks,

there is no direct analog to this decomposition for risk measures. However, there is a parallel

in terms of marginal risk contributions (MRC), which are interpreted as a position’s percent

contribution to overall portfolio risk. They provide a mathematically and economically sound

way of decomposing risk into additive subcomponents.

For a risk measure ρ, the marginal contribution to risk of a factor is the approximate change

in overall portfolio risk when increasing the factor exposure by a small amount, while keep-

ing all other exposures fixed.5 Formally, marginal risk contributions can be defined for any

differentiable risk measure ρ.

Definition 4.1. For a factor Fi in the portfolio P =
∑

iwiFi, its marginal risk contribution

MRCi is the derivative of the underlying risk measure ρ along its exposure wi:

MRCρ
i (P ) =

∂ρ(P )

∂wi
.

If ρ is homogenous of degree one, the overall portfolio risk can be decomposed using Euler’s

homogoneous function theorem as follows:∑
i

wiMRCρ
i (P ) =

∑
i

RCρ
i (P ) = ρ(P ),

where RCρ
i (P ) = wiMRCρ

i (P ) is the i-th total risk contribution to ρ. Finally, fractional risk

contributions

FRCρ
i (P ) =

RCρ
i (P )

ρ(P )

denote the fractional contribution of the i-th factor to portfolio risk.

5Risk contributions have become part of the standard toolkit for risk management, and they are used for risk
budgeting and capital allocation. We refer the reader to Tasche (2000), Kalkbrener (2005), Denault (2001), and
Qian (2006) for more details.
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Risk contributions implicitly define a notion of correlation that is general enough to be defined

for any risk measure. The generalized risk-based correlation Corrρi for a generic risk measure

ρ :M→ R between the portfolio and the ith asset Xi is defined by:

Corrρi =
MRCρ

i (P)

ρ(Xi)
.

Generalized correlations are monotonically decreasing in position weight. Factoring out the ith

marginal risk ρ(Xi) from the ith risk contribution RCi(P ), we obtain the generalized form of

the “X-Sigma-Rho” decomposition of Menchero and Poduri (2008):

RCρ
i (P ) = wiρ(Xi)

MRCρ
i (P )

ρ(Xi)
= wiρ(Xi)Corrρi .

We refer the reader Goldberg et al. (2010) for a more detailed development of generalized

correlations.

4.1. Drawdown Risk Contributions. Menchero and Poduri (2008) and Goldberg et al.

(2010) developed a standard toolkit for analyzing portfolio risk using a framework centered

around marginal risk contributions. By integrating drawdown risk into this framework, in-

vestors can estimate how a trade would impact the overall drawdown risk of the portfolio.

Because Conditional Expected Drawdown is positive homogenous, the individual factor con-

tributions to drawdown risk add up to the overall drawdown risk within a path P ∈ R∞ of

returns to a portfolio with values at time t ≤ T given by Pt =
∑

iwiFi,t
6:

(4.1) CEDα(P ) =
∑
i

wiMRCCEDα
i (P ), α ∈ [0, 1].

Recall that a marginal risk contribution is a partial derivative, and so practitioners can

implement Formula 4.1 using numerical differentiation. However, this tends to introduce noise.

We next show that an individual marginal contribution to drawdown risk can be expressed

as an integral, and this reduces noise, since integration is a smoothing operator.7 Indeed, the

individual marginal contribution MRCCEDα
i of the i-th factor to overall portfolio drawdown risk

CEDα(P ) is given by the expected drop of the i-th factor in the interval [s∗, t∗] ⊂ [0, T ] where

the overall portfolio maximum drawdown µ(P ) occurs, given that the maximum drawdown

of the overall portfolio exceeds the drawdown threshold. This definition is analogous to the

marginal contribution to shortfall, and we formalize it next.

Proposition 4.2. Marginal contributions to drawdown risk are given by:

(4.2) MRCCEDα
i (P ) = E [(Fi,t∗ − Fi,s∗) | µ(P ) > DTα(P )] ,

6The process corresponding to the i-th factor is written Fi, and its instance at time t ∈ [0, T ] is denoted by Fi,t.
7This is analogous to marginal contributions to Expected Shortfall, which can also be expressed as integrals;
see Tasche (2000) and Tasche (2002) where it is shown that for quantile based risk measures (such as VaR and
ES, but also spectral measures), an Euler attribution can be expressed as an intuitive expectation.
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where CEDα(P ) is the overall portfolio CED, µ(P ) is the maximum drawown random variable,

DTα(P) is the portfolio maximum drawdown threshold at α, and s∗ < t∗ ≤ T are random times

such that:

µ(P ) = Pt∗ − Ps∗ ,

and we assume that the maximum drawdown of P =
∑

iwiFi is strictly positive.

Proof. We use the results of Tasche (2002), Goldberg et al. (2010) and McNeil et al. (2005),

who show that the i-th marginal contribution to Expected Shortfall ESα at confidence level

α ∈ (0, 1) of a random variable L =
∑

iwiYi representing portfolio loss is given by

(4.3) MRCESα
i (L) = E [Yi | L > Varα(L)] ,

where Varα(L) denotes the Value-at-Risk of L at α, that is the α-quantile of the loss distribution

L.

We derive an analog to Formula 4.3. Assuming that the maximum drawdown of P =
∑

iwiFi

is strictly positive, let

µ(P ) = Pt∗ − Ps∗

for some s∗ < t∗ ≤ T . Then the i-th marginal contribution MRCCEDα
i (P ) to overall portfolio

drawdown risk CEDα(P ) is given by

MRCCEDα
i (P ) =

∂

∂wi
(TMα (µ(P )))

=
∂

∂wi
E [µ(P ) | µ(P ) > DTα(P )]

=
∂

∂wi
E [(Pt∗ − Ps∗) | µ(P ) > DTα(P )]

=
∂

∂wi
E

[(
n∑
i=1

wiFi,t∗ −
n∑
i=1

wiFi,s∗

)
| µ(P ) > DTα(P )

]

=
∂

∂wi
E

[
n∑
i=1

wi (Fi,t∗ − Fi,s∗) | µ(P ) > DTα(P )

]

=
∂

∂wi

(
n∑
i=1

wiE [(Fi,t∗ − Fi,s∗) | µ(P ) > DTα(P )]

)
(4.4)

Using the fact that the partial derivative with respect to a quantile is zero, as discussed by

Bertsimas et al. (2004), Formula 4.4 simplifies to:

MRCCEDα
i (P ) = E [(Fi,t∗ − Fi,s∗) | µ(P ) > DTα(P )] .
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Volatility ES0.9 CED0.9 (6M-paths) CED0.9 (1Y-paths) CED0.9 (5Y-paths)

US Equity 18.35% 2.19% 47% 51% 57%
US Bonds 5.43% 0.49% 29% 32% 35%
50/50 9.53% 1.30% 31% 32% 35%
60/40 11.12% 1.35% 33% 35% 38%
70/30 12.92% 1.40% 36% 40% 44%

Table 5.1. Summary statistics for daily US Equity and US Bond Indices and

three fixed-mix portfolios over the period 1 January 1982 to 31 December 2013.

Expected Shortfall and Conditional Expected Drawdown are calculated at the

90% confidence level. Three drawdown risk metrics are calculated by considering

the maximum drawdown within return paths of different fixed lengths (6 months,

1 year and 5 years).

Finally, note that the variables s∗ and t∗ are stochastic. This means that in a Monte Carlo

simulation of a discretized version of this problem, they will take on a different value scenario

by scenario. �

5. Empirical Analysis of Drawdown Risk

We analyze historical values of Conditional Expected Drawdown based on daily data for two

asset classes: US Equity and US Government Bonds. The US Government Bond Index we use8

includes fixed income securities issued by the US Treasury (excluding inflation-protected bonds)

and US government agencies and instrumentalities, as well as corporate or dollar-denominated

foreign debt guaranteed by the US government, with maturities greater than 10 years. These

include government agencies such as the Federal National Mortgage Association (Fannie Mae)

and the Federal Home Loan Mortgage Corporation (Freddie Mac) without an explicit guarantee.

In comparison to US Treasury Bond Indices, US Government Bond Indices were highly volatile

and correlated with US Equities during the financial crisis of 2008. The effect of this will be

seen in our empirical analysis.9 Summary risk statistics for the two asset classes and three

fixed-mix portfolios are shown in Table 5.1.

5.1. Time-varying Drawdown Risk Concentrations. Using the definition of marginal con-

tributions to Conditional Expected Drawdown (derived in Proposition 4.3), we look at the time

varying contributions to CED. Figure 5.1 displays the daily 6-month rolling fractional contri-

butions to drawdown risk CED0.9 (at the 90% threshold of the 6-month maximum drawdown

8See Appendix A for details on the data and their source.
9We thank Robert Anderson for pointing out the important distinction between US Government Bond and US
Treasury Bond Indices.
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Figure 5.1. Daily 6-month rolling Fractional Risk Contributions (FRC) along

the 90% Conditional Expected Drawdown (CED) of US Equity and US Bonds

to the balanced 60/40 portfolio. Also displayed is the daily VIX series over the

period 1982 – 2013, with the right-hand axis indicating its level.

distribution) of the two asset classes (US Equity and US Bonds) in the balanced 60/40 alloca-

tion.10 Between 1982 and 2008, and between 2012 and 2013, the contributions of US Equity to

overall drawdown risk fluctuated between 80% and 100%. Note that this period includes two

of the three turbulent market regimes that occurred during this 30-year window, namely the

1987 stock market crash and the burst of the internet bubble in the early millennium. During

the credit crisis of 2008, however, we see, unexpectedly, that bonds contributed almost as much

as equities to portfolio drawdown risk.

Our analysis shows little connection between market turbulence and drawdown risk con-

centration in the 60/40 fixed mix of US Equity and US Bonds. Notably, the most equitable

attribution of drawdown risk occurred during the 2008 financial crisis. This can be explained

by the inclusion of bonds issued by Fannie Mae and Freddie Mac in the US Government Bond

Index. In calm regimes, these Agency Bonds tended to be correlated with US Treasury bonds,

but during the financial crisis, Agency Bonds were more correlated with US Equity. For com-

parison, we provide the same analysis when the underlying Bond Index used is the US Treasury

Bond Index (see Figures B.1 and B.2 in Appendix B). In this case, as one would expect, the

least equitable attribution of drawdown risk occurred during turbulent market periods.

To understand the sources of the risk contributions, particularly during the credit crisis of

2008 where the concentrations of US Equity and US Government Bonds approached parity,

we carry out the “X-Sigma-Rho” decomposition of Menchero and Poduri (2008). Recall from

Section 4 that risk contribution is proportional to the product of standalone risk and generalized

10See Appendix B for details on the risk estimation and portfolio construction methodologies used. Note also
that similar effects can be seen in other fixed-mix portfolios, such as the equal-weighted 50/50 portfolio and the
70/30 allocation. In the following empirical analyses, we will be focusing exclusively on the traditional 60/40
allocation.
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Figure 5.2. Decomposition of the individual contributions to drawdown risk

RCCED
i (P ) = wiCED(Xi)CorrCED

i for the 60/40 allocation to US Equity and US

Bonds over the period 1982 – 2013. The top two panels show the daily 6-month

rolling standalone 90% Conditional Expected Drawdown (CED) of the two asset

classes, while the bottom two panels show the daily 6-month rolling generalized

correlations of the individual assets along CED.

correlation. In the case of Conditional Expected Drawdown, this means that:

RCCED
i (P ) = wiCED(Xi)CorrCED

i .

Because we are working with a fixed-mix portfolio, the exposures wi are constant: 0.6 and 0.4

for US Equity and US Bonds, respectively. This means that the time-varying risk contributions

of Figure 5.1 depend on the time-varying drawdowns (CED(Xi)) and correlations (CorrCED
i ).

Figure 5.2 displays these for each of the two assets in our 60/40 portfolio. Observe that during

the 2008 financial crisis, both the drawdown risk contribution of US Bonds and its generalized

correlation were elevated relative to the subsequent period. On the other hand, the generalized

correlation of US Equity during the 2008 crisis decreased. The combination of these effects may
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have driven the changes in the drawdown contributions of US Bonds and US Equity during the

2008 crisis.11

In Section 5.2, we give a statistical analysis that supports the economic explanation of the

increased CED values for US Government Bonds. In practice, investors can efficiently control

such regime-dependent fluctuations in drawdown risk concentrations since Conditional Ex-

pected Drawdown is a convex risk measure; that is both the return path and the drawdown

path are convex with respect to asset weights. Hence, they are convex functions of factors that

are linear combinations of asset weights. This implies that reducing the portfolio exposure to

an asset or factor in a linear factor model decreases its marginal contribution to overall portfolio

drawdown.

It is possible for a portfolio to have equal risk contributions with respect to one measure

while harboring a substantial concentration with respect to another.12 Figure 5.3 illustrates

such a case. Four portfolios are constructed to be maximally diversified along the following risk

measures: volatility, Expected Shortfall, and Conditional Expected Drawdown. The underlying

asset classes are US Equity and US Government Bonds as before from 1982 to 2013.13 We refer

to these as being in parity with respect to the underlying risk measure. The confidence level for

both ES and CED is fixed at 90%. Figure 5.3 shows fractional risk contribution of the equity

component to each of three risk measures in three types of risk parity portfolios. Concentrations

in terms of drawdown risk, in particular, are revealed. For instance, even though the ES Parity

portfolio, which has equal contributions to Expected Shortfall, is constructed to minimize

downside risk concentrations, it turns out to have 75% of its drawdown risk concentrated in

US Equity.

5.2. Drawdown Risk and Serial Correlation. One advantage of looking at maximum draw-

down distributions rather than return distributions, and thus Conditional Expected Drawdown

rather than Expected Shortfall, lies in the fact that drawdown is inherently path dependent.

In other words, drawdown measures the degree to which losses are sustained, as small but

persistent cumulative losses may still lead to large drops in portfolio net asset value, and hence

may force liquidation. On the other hand, volatility and Expected Shortfall fail to distinguish

between intermittent and consecutive losses. We show that, to a greater degree than these

two risk measures, Conditional Expected Drawdown captures temporal dependence. Moreover,

the effect of serial correlation on drawdown risk can be seen in the drawdown risk contributions.

An increase in serial correlation increases drawdown risk. To see how temporal

dependence affects risk measures, we use Monte Carlo simulation to generate an autoregressive

11For comparison, we include in Figure C.1 of Appendix C the risk decomposition along Expected Shortfall.
12Risk parity portfolios, which are constructed to equalize risk contributions, have been popular investment
vehicles in the wake of the 2008 financial crisis (see Anderson et al. (2012) and Anderson et al. (2014)). This is
in spite of the fact that there may be no theoretical basis for the construction.
13See Appendix B for details on the data, risk estimation, and portfolio construction methodologies used.
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Figure 5.3. Fractional Risk Contributions (FRC) of US Equity measured along

three different risk measures (volatility, 90% Expected Shortfall and 90% Con-

ditional Expected Drawdown) for the following two-asset portfolios consisting

of US Equity and US Bonds over the period 1982–2013: Volatility Parity, ES

Parity and CED Parity. Each parity portfolio is constructed to have equal risk

contributions along its eponymous risk measure.

AR(1) model:

rt = κrt−1 + εt,

with varying values for the autoregressive parameter κ (while ε is Gaussian with variance 0.01),

and calculate volatility, Expected Shortfall, and Conditional Expected Drawdown of each sim-

ulated autoregressive time series. Figure 5.4 displays the results. All three risk measures were

affected by the increase in the value of the autoregressive parameter, but the increase is steepest

by far for CED. We next use maximum likelihood to fit the AR(1) model to the daily time

series of US Equity and US Government Bonds on a 6-month rolling basis to obtain time series

of estimated κ values for each asset. The correlations of the time series of κ with the time se-

ries of 6-month rolling volatility, Expected Shortfall, and Conditional Expected Drawdown are

shown in Table 5.2. The correlations are substantially higher for US Equity across all three risk

measures. Note that for both asset classes, the correlation with the autoregressive parameter is

highest for CED. Figure 5.5 contains the scatter plots of estimated κ parameters for US Equity

and US Bonds against their CED.

An increase in serial correlation increases drawdown risk concentrations. We now

show how temporal dependence is manifest in the drawdown risk contributions. Figure 5.6a

shows the fractional risk contributions over the entire period 1982–2013 of US Equity to the

balanced 60/40 portfolio for three risk measures, volatility, ES, and CED, based on daily data.
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Figure 5.4. Volatility, 90% Expected Shortfall (ES), and 90% Conditional Ex-

pected Drawdown (CED) of a Monte Carlo simulated AR(1) model (with 10,000

data points) for varying values of the autoregressive parameter κ.

Volatility ES0.9 CED0.9

US Equity 0.47 0.52 0.75
US Bonds 0.32 0.39 0.69

Table 5.2. For the daily time series of each of US Equity and US Government

Bonds, correlations of estimates of the autoregressive parameter κ in an AR(1)

model with the values of the three risk measures (volatility, 90% Expected Short-

fall and 90% Conditional Expected Drawdown) estimated over the entire period

(1982–2013).

The fractional contributions of US Equity to volatility and ES were large (over 90%) and close

in magnitude. For CED, however, the concentration was less pronounced, which means that the

contribution of US Bonds to drawdown risk exceeded its contribution to volatility and shortfall

risk. A candidate explanation is temporal dependence: while bonds systematically have lower

volatility and shortfall risk than do equities, they do occasionally suffer from extended periods

of consecutive losses.

To test this hypothesis, we simulate the returns rE and rB to two assets E and B representing

equities and bonds, respectively, with an autoregressive AR(1) model:

rE,t = κErE,t−1 + εE,t,

and

rB,t = κBrB,t−1 + εB,t,
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Figure 5.5. For each of US Equity and US Government Bonds, scatter plots of

the daily time series of 6-month rolling estimates of the autoregressive parameter

κ with the 6-month rolling estimates of 90% Conditional Expected Drawdown.

and we construct a simulated 60/40 fixed-mix portfolio. The AR(1) model parameters are

obtained by calibrating to daily time series of US Equity and US Bonds. The estimated au-

toregressive parameters are κE = 0.43 and κB = 0.35. We assume the ε variable is Gaussian,

with volatility of 18.4% for asset E (based on the volatility of US Equity) and 5.5% for asset

B, (based on the volatility of US Bonds). From the simulated data, we fit AR(1) models and

their fractional contributions to volatility, ES and CED. When using only the residuals, we ob-

tain statistically equal risk contributions since the innovations are Gaussian. However, without

removing the autoregressive component, contributions to CED once again differ from contri-

butions to volatility and ES. Figure 5.6b displays the corresponding fractional contributions of

the more volatile asset class, E, to the three risk measures. Note that the two panels in Figure

5.6 are visually indistinguishable even though one is based on historical data, whereas the other

is simulated.

6. Drawdown: From Practice to Theory and Back Again

Financial practitioners rely on maximum drawdown as an indicator of investment risk. How-

ever, due to its inherent path dependency, maximum drawdown has tended to fall outside of

probabilistic treatments of investment risk, which focus on return and loss distributions at

fixed horizons. As a result, maximum drawdown has been excluded from standard portfolio

analysis toolkits that attribute risk to factors or asset classes, and that use risk forecasts as

counterweights to expected return in portfolio construction routines.
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(a) (b)

Figure 5.6. (A) Fractional contributions over the entire period 1982–2013 of

the US Equity asset to volatility, 90% Expected Shortfall and 90% Conditional

Expected Drawdown in the 60/40 portfolio, based on daily data. (B) Fractional

contributions of the simulated high-volatility AR(1) asset to volatility, 90% Ex-

pected Shortfall and 90% Conditional Expected Drawdown in the 60/40 portfolio.

In this article, we develop a new probabilistic measure of drawdown risk, Conditional Ex-

pected Drawdown (CED), which is the tail-mean of a drawdown distribution at a fixed horizon.

Since CED is perfectly analogous to the familiar return-based risk measure, Expected Shortfall

(ES), CED is easy for practitioners to interpret and it enjoys desirable theoretical properties of

tail-means such as positive degree-one homogeneity and convexity. Thus, the development of a

consistent theory for drawdown facilitates an extension of its current practical applications.

The path dependency of Conditional Expected Drawdown makes it more sensitive to serial

correlation than Expected Shortfall or volatility. We demonstrate this using a simulated AR(1)

model. All else equal, CED increases much more rapidly as a function of the autoregressive

parameter κ than do Expected Shortfall or volatility. In an empirical study, we find relatively

high correlations between serial correlation and estimated CED (.75 for US Equity, .69 for US

Bonds) compared to Expected Shortfall (.52 for US Equity, .39 for US Bonds) and volatility

(.47 for US Equity, .32 for US Bonds).

Since it is positive degree-one homogenous, CED (like ES and volatility) can be decomposed

into a sum of risk contributions, and the relative sensitivity of CED to serial correlation is

manifest in risk concentrations. In an empirical study of a balanced 60/40 portfolio of US

Equity and US Bonds over the period 1982–2013, US Equity accounted for roughly 75% of

CED, but more than 90% of ES and volatility. A plausible explanation is the relatively high

level of serial correlation in US Bonds. We support this hypothesis with another simulation: we

replicate the empirically observed concentrations of CED, ES and volatility using a simulated

60/40 balanced portfolio based on AR(1) models calibrate to US Equity and US Bonds over

the study period.
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Since CED is convex, it can serve as a counterweight to expected return in a quantitative

optimization. Exploiting the parallels between Expected Shortfall as a tail-mean of a return

distribution and Conditional Expected Drawdown as a tail-mean of a drawdown distribution,

one can in theory use the linear programming algorithm developed by Rockafellar and Uryasev

(2000, 2002).

This article lays the foundation needed to incorporate Conditional Expected Drawdown in

the investment process. Further empirical exploration of the properties of CED, research into

the incremental information it adds beyond what is in return-based risk measures, and the

study of its impact on quantitative portfolio construction, are the next steps.
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Appendix A. Data and Estimation Methodologies

A.1. Data. The data were obtained from the Global Financial Data database. We took the

daily time series for the S&P 500 Index and the USA 10-year Government Bond Total Return

Index.

A.2. Portfolio Construction. Rather than provide thorough realistic empirical analyses of

portfolio risk and return, our goal behind the simulated portfolios is to illustrate this arti-

cle’s theoretical development in relation to drawdown risk. For simplicity, we therefore do

not account for transaction costs or market frictions in all hypothetical portfolios constructed

throughout this study. Moreover, we assume that all portfolios are fully invested and long only.

Fixed-mix portfolios. In the fixed-mix portfolios, rebalancing to the fixed weights is done

on a monthly basis. When comparing to other popular rebalancing schemes (quarterly, bi-

annually and yearly), similar results were obtained.

Risk parity portfolios. In risk parity strategies, assets are weighted so their ex post risk

contributions are equal. As mentioned in Section 5, parity portfolios are not restricted to

volatility only, but can be constructed along other risk measures, such as Expected Shortfall

and Conditional Expected Drawdown. Asset weights in the strategies depend on estimates

of the underlying risk measures (see Section A.3), which are calculated using a 3-year rolling

window of trailing returns. Varying the estimation methodology by changing the length of

the rolling window or the weighting scheme applied to the returns within this window did not

alter our results substantially. Similar to the fixed-mix portfolios, risk parity portfolios are

rebalanced monthly, with other rebelancing schemes yielding similar results.

A.3. Risk Estimation.

Volatility. Portfolio volatility is calculated as the annualized standard deviation of the daily

time series over the entire period under consideration. To obtain the volatility risk contributions

for a n-asset portfolio P =
∑

iwiXi, note that the i-th total contribution RCσ
i to portfolio

volatility

σ(P ) =
∑
i

w2
i σ

2
i +

∑
i

∑
j 6=i

wiwjσi,j

is

RCσ
i = w2

i σ
2
i +

∑
j 6=i

wiwjσi,j,

where σ2
i is the variance of Xi and σi,j is the covariance of Xi and Xj. Then, the i-th fractional

contribution to volatility is given by

FRCσ
i (P ) =

w2
i σ

2
i +

∑
j 6=iwiwjσi,j

σ(P )
.
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Expected Shortfall. For confidence level α ∈ (0, 1), an estimate for the Expected Shortfall

of a portfolio is calculated by ordering the daily return time series over the whole period

according to the magnitude of the returns, then averaging over the worst (1 − α) percent

outcomes, more specifically:

ÊSα =
1

K

K∑
i=1

r(i),

where T is the length of the daily time series, K = bT (1 − α)c, and r(i) is the i-th return of

the magnitude-ordered time series. To obtain the contributions to shortfall risk, recall that

under a continuity assumption, the Expected Shortfall of an asset X ∈ M can be expressed

as ESα(X) = E (X | X ≥ VaRα(X)), or the expected loss in the event that its Value-at-Risk

at α is exceeded.14 As usual, let P =
∑

iwiXi be the portfolio in consideration. Assuming

differentiability of the risk measure VaR, the marginal contribution of Xi to portfolio shortfall

ESα(P ) is given by

MRCESα
i (P ) =

∂ESα(P )

∂wi
= E(Xi | P ≥ VaRα(P )) .

An estimate for the i-th marginal contribution to shortfall risk is then obtained by averaging

over all the returns of asset Xi that coincide with portfolio returns exceeding the portfolio’s

Value-at-Risk at threshold α.

Conditional Expected Drawdown. The first step in calculating an estimate for Condi-

tional Expected Drawdown is to obtain the empirical maximum drawdown distribution. From

the historical time series of returns, we generate return paths of fixed length n using a one-day

rolling window. This means that consecutive paths overlap. The advantage is that for a return

time series of length T , we obtain a maximum drawdown series of length T −n, which for large

T and small n is fairly large, too. From these T − n return paths we calculate the maximum

drawdown as defined in Section 2. An estimate for the Conditional Expected Drawdown at

confidence level α ∈ (0, 1) is then calculated as the average of the largest (1− α) percent max-

imum drawdowns. To obtain an estimate for the i-th contribution to drawdown risk CED, we

take the average over all the drawdowns of the i-th asset in the path [tj∗, tk∗] that coincide with

the overall portfolio’s maximum drawdowns that exceed the portfolio’s drawdown threshold

DTα at confidence level α. (Recall that j∗ < k∗ ≤ n are such that µ(PTn) = Ptk∗ − Ptj∗ .)

14See for example McNeil et al. (2005).
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Appendix B. Drawdown risk decomposition along a balanced portfolio of US

Equity and US Treasury Bonds

Figure B.1. Daily 6-month rolling Fractional Risk Contributions (FRC) along

90% Conditional Expected Drawdown (CED) of US Equity and US Treasury

Bonds to the balanced 60/40 portfolio over the period 1982–2013. Also displayed

is the daily VIX series over the same period, with the right-hand axis indicating

its level.

Figure B.2. Decomposition of drawdown risk contributions RCCED
i (P ) =

wiCED(Xi)CorrCED
i for the 60/40 allocation to US Equity and US Treasury

Bonds over the period 1982–2013. The top two panels show the daily 6-month

rolling standalone 90% Conditional Expected Drawdown (CED) of the two assets,

while the bottom two panels show the 6-month rolling generalized correlations of

the individual assets along CED.



DRAWDOWN: FROM PRACTICE TO THEORY AND BACK AGAIN 25

Appendix C. Risk decomposition along Expected Shortfall

(a)

(b)

Figure C.1. Decomposition of contributions RCES
i (P ) = wiES(Xi)CorrESi to

90% Expected Shortfall (ES) for the 60/40 allocation to (A) US Equity and US

Government Bonds, and (B) US Equity and US Treasury Bonds over the time

period 1982–2013.
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