Trade and Credit Reallocation:
How Banks Help Shape Comparative Advantage*

CHRISTIAN KEUSCHNIGG AND MICHAEL KOGLER
University of St. Gallen, FGN-HSG
May 19, 2018

Abstract

Trade and innovation cause structural change. Productive factors must flow from declining to growing industries. Banks play a major role in cutting credit to non-viable firms in downsizing sectors and in providing new credit to finance investment in expanding, innovative sectors. Structural parameters of a country’s banking system thus influence comparative advantage and trade. The analysis points to the importance of insolvency laws, minimum capital standards, and cost of bank equity to determine credit reallocation, sectoral expansion and trade patterns.

JEL classification: F10, G21, G28

Keywords: Capital reallocation, banking, trade, comparative advantage.

*Michael Kogler greatly appreciates financial support by the Swiss National Science Foundation, Project No. P2SGP1_171927, for a research visit to New York University. We appreciate very helpful comments by Marc Muendler and by seminar participants of the CESifo Global Economy area conference May 4-5, 2018.
1 Introduction

Innovation and trade are major sources of structural change and are importantly related. Innovative firms with better products conquer world markets and drive the expansion of export industries, while declining sectors with less productive firms must shrink. To exploit comparative advantage, capital and labor must flow from declining towards expanding industries. But the process of sectoral reallocation is, by no means, without frictions. When capital and labor are locked into current uses, a country cannot reap the gains from trade and fails to exploit its comparative advantage.

Many countries are heavily dependent on banks to finance investment, especially in Europe. A major function of the banking sector is to allocate credit to its best use. By terminating credit lines to firms with poor prospects, banks release capital that would otherwise be locked up in unprofitable firms, and make it available for investment of new or expanding firms. Thereby, banks support the Schumpeterian process of creative destruction and contribute to a more efficient allocation of capital. Given the dominant role of banks in financing aggregate investment, structural parameters of the banking system importantly influence credit flows and capital reallocation.

The goal is to explain how banks help shape comparative advantage. Such an analysis not only sheds light on the process of capital reallocation and structural change but also identifies new determinants of trade that could be tested in empirical work. In particular, our findings point to the importance of insolvency laws, capital regulation and cost of bank equity in influencing credit reallocation and sectoral trade patterns. The analysis is also informative about the reverse effects, namely, how trade accelerates structural change in the domestic economy. More specifically, it highlights the consequences of trade liberalization on sectoral investment through the reallocation of credit by banks.

We propose a framework of credit reallocation by banks developed in earlier work (Keuschnigg and Kogler, 2017) as part of a Heckscher-Ohlin model of trade. We picture an economy with two goods and two sectors: an expanding sector with more innovative,
long-term investments and a traditional sector with more opaque projects. Banks initially allocate credit to both sectors. They play a *Schumpeterian* role in the sense that they terminate and reallocate credit when prospects change. They terminate ‘non-performing’ loans of traditional firms whenever their investments turn out to be poor, and make the proceeds available for additional projects in the innovative sector. The extent of credit reallocation inherently depends on a bank’s capital structure. When liquidating poorly performing firms, a bank must absorb short-term losses that erode its equity capital. Its capital structure thus determines the capacity to liquidate loans and to reallocate credit. Consequently, sectoral investment and trade patterns become dependent on institutional and regulatory characteristics that influence how banks choose their capital structure.

To the best of our knowledge, this is the first paper that integrates a meaningful structural banking model to explain the frictions in credit flows and the reallocation of capital in a model of international trade. Our analysis thus identifies novel bank-related and institutional determinants of trade and comparative advantage. We consider three policy interventions, namely, (i) bank regulation with higher capital standards, which capture the essence of recent banking reforms; (ii) institutional reforms relating to investor protection and bankruptcy law. They aim at a lower cost of bank equity and more efficient bankruptcy procedures; and (iii) trade liberalization targeted at lower export costs in the innovative sector. To identify the main channels, we first evaluate these policies in a small, open economy with the relative goods price given on world markets. We then proceed to policy analysis in a large, open economy. Domestic interventions affect the world price and thereby create spillovers on foreign countries.

We obtain three main results. First, *bank regulation* with tighter capital standards boosts credit reallocation. Better capitalized banks can more easily absorb larger write-offs and, in turn, liquidate and reallocate credit more frequently. Banks help shape comparative advantage by shifting investment and output to the innovative sector. By raising supply, capital standards in large economies decrease the world price and, in turn, slow down reallocation and expansion of the innovative sector abroad. Second, *institutional*
reforms such as better investor protection and more efficient bankruptcy laws make bank equity cheaper, and enable banks to extract more capital when liquidating non-performing loans. This induces more credit reallocation and shifts final investment and output to the expanding sector. Countries with strong institutions thus tend to enjoy a comparative advantage in innovative industries. In the world equilibrium, these reforms tend to lower the price of innovative goods and thereby favor consumers and traditional industries abroad. Third, we consider a trade liberalization scenario which lowers export costs and thereby allows for higher domestic producer prices in the innovative sector. Such a policy boosts investment and output in that sector both at the reallocation and entry margins, with negative consequences on foreign suppliers. While this result is standard, the transmission mechanism is entirely different. Another novel finding is that three seemingly unrelated policy interventions have qualitatively similar effects on sectoral investment and trade patterns. These interventions, however, exhibit significant differences in their effects on domestic demand and welfare.

The remainder of this paper is organized as follows: Section 2 explains how our analysis relates to and extends existing research. Section 3 sets out the model. Sections 4 and 5 investigate policy interventions in a small, open economy and in an integrated world equilibrium, respectively. Section 6 concludes.

2 Relation to the Literature

Classical trade theory predicts that comparative advantage and trade patterns are determined mainly by cross-country differences in technology (Ricardian model) or factor endowments (Heckscher-Ohlin model). Trade induced structural change rests on capital and labor flowing from shrinking to expanding sectors. As Mussa (1978) emphasized early on, this process is not at all without frictions, consumes resources and may result in permanent effects on industry structure. Mussa postulated a technology using labor in a ‘capital movement industry’, making fast capital reallocation costly. More recent research
points to the existence of agency problems, limited contract enforcement or labor market rigiditys which affect the ease and speed of investment and hiring. When access to credit differs across sectors, it tends to affect the relative expansion and may distort specialization and trade patterns. A general conclusion is that countries with strong institutions are more likely to enjoy a comparative advantage in sectors prone to such frictions.

Almost exclusively, the trade and finance literature focuses on frictions in financial markets where incentive problems at the firm level limit the access to external finance and hamper firm entry and investment. Financial intermediaries channel savings to firms, subject to a break-even condition. Financial development relates to the effectiveness - depending on the quality of the institutional environment - to exercise oversight and control which alleviates incentive problems and eases access to external finance. It can also relate to competitiveness in terms of intermediaries’ ability to extract rents, thereby increasing firms’ cost of finance. A well-developed financial sector becomes a source of comparative advantage in industries that intensively rely on external finance, see early work by Kletzer and Bardhan (1987) and Baldwin (1989). More recent contributions include Beck (2002), Wynne (2005), Ju and Wei (2011), and Egger and Keuschnigg (2015, 2017). Wynne (2005) points to the role of entrepreneurial wealth in relaxing credit constraints and creating a comparative advantage in financially dependent sectors. Manova (2013) and Chaney (2016) relate financial constraints to firm heterogeneity. They highlight that exporters are particularly dependent on external finance due to high fixed upfront investments.¹ Another string of research explores the effects of short-run trade finance, bridging the time between production and delivery (Antras and Foley, 2015; Niepmann and Schmidt-Eisenlohr, 2017). Financial frictions may also lead to a complementarity in trade and capital movements, i.e., financially less developed countries may attract capital if they open up to trade (Antràs and Caballero, 2009).²

¹ According to Manova (2013), three quarters of the impact of credit constraints are specific to trade and result from distorted firm entry into exporting and reduced firm sales abroad.
² Financial development is usually exogenous. Do and Levchenko (2007) point to a reverse link and argue that a comparative advantage can shape financial institutions. For instance, a country specializing
Empirical results broadly support the importance of credit constraints for international trade (e.g., Beck, 2002, 2003; Svaleryd and Vlachos, 2005; Manova, 2008; Becker et al., 2013; and Chor and Manova, 2012). Financial development boosts exports especially in financially dependent industries with high fixed costs of market entry. The estimates of Svaleryd and Vlachos (2005) suggest that in OECD countries differences in financial development have stronger effects on trade patterns than differences in human capital.

Our analysis explores an entirely different route. It abstracts from incentive problems at the firm level and the well-understood problems with access to external finance. Instead, we focus on the characteristics of the banking sector. We emphasize credit reallocation which is a major function of banks in economies that undergo structural change. Reallocation is a driving force of productivity-enhancing innovation and creative destruction. We offer a structural model of financial development which accelerates reallocation and helps to exploit a comparative advantage in innovative industries. Empirical evidence on ‘Zombie’ lending (e.g., Japan in the 1990s, European periphery today) demonstrates that an ill-functioning banking sector can lock up capital in existing uses with little productivity. Conversely, a resilient and well-functioning financial sector is a prerequisite for the productivity-enhancing reallocation mechanism to work.

Our focus on banks is consistent with their central role in reallocating capital and financing investment. Indeed, banks dominate financial intermediation in many countries, especially in Europe. The theoretical literature has either modeled financial intermediaries in reduced form3 or focused on how institutional and firm-level parameters affect the tightness of credit constraints. We instead propose a full-fledged model of banks that characterizes their main decisions such as lending, capital structure, loan liquidation and credit reallocation. We thereby identify novel determinants of comparative advantage such as capital regulation, cost of bank equity or efficiency of bankruptcy procedures.

A well-functioning financial system importantly contributes to an efficient capital allocation in financially intensive goods faces high demand for external finance, which fosters intermediation.

3Exceptions are Ju and Wei (2011) who picture imperfect competition in intermediation, and Egger and Keuschnigg (2015) who distinguish active and passive intermediaries.
allocation. Wurgler (2000) estimates that the elasticity of investment to value added significantly increases in various measures of financial development. Thus, more (less) productive industries grow (shrink) faster in countries with a developed financial sector. Similarly, evidence from the U.S. (Acharya et al., 2011) and France (Bertrand et al., 2007) shows that banking reforms render capital allocation more efficient. Conversely, a weak financial sector blocks reallocation as poorly capitalized banks often delay the liquidation of non-performing loans to avoid write-offs and violating regulatory or solvency standards. Instead, they engage in ‘Zombie lending’ to quasi-insolvent borrowers, which locks up capital in unprofitable firms and depresses productivity. Japan’s ‘lost decade’ during the 1990s after the collapse of asset prices and collateral values serves as a prominent example (Peek and Rosengren, 2005; Caballero et al., 2008). Recent evidence points to similar problems in the Euro area after the financial crisis (Acharya et al., 2016; Schivardi et al., 2017). Building on the literature on misallocation and financial frictions (e.g., Hsieh and Klenow, 2009), Gopinath et al. (2017) relate low productivity growth in South Europe (Spain, Portugal and Italy) to large capital inflows, a relatively weak financial sector and large capital misallocation. They find no such increase in misallocation in countries with seemingly more robust banking sectors such as Germany, France and Norway.

On the theoretical side, capital reallocation has received much less attention. It is addressed in the finance-growth literature (e.g., King and Levine, 1993; Almeida and Wolfenzon, 2005; or Eisfeldt and Rampini, 2006) which highlights distortions due to financial frictions represented, for instance, by taxes or adjustment costs. These models picture financial institutions mostly in reduced-form if at all. The corporate finance literature (e.g., Stein, 1997; and Mueller and Giroud, 2013) analyzes within-firm reallocation in the presence of financial constraints, although mostly in partial equilibrium. Recent contributions in banking theory emphasize the interaction of loan liquidation with regulatory constraints (Keuschnigg and Kogler, 2017) or risk-shifting incentives (Bruche and Llobet, 2014; Homar & Van Wijnbergen, 2017) as explanations for ‘Zombie lending’ and insufficient credit reallocation. The key novel contribution of this paper, in merging the trade and banking literature, is to shed light on the role of banks in financing productivity-
enhancing structural change and shaping a country’s trade patterns.

Credit reallocation goes in line with a reorientation of firms when hit by foreign competition. Feenstra (2018) points to substantial gains from trade due to creative destruction which arise from productivity gains due to downsizing of less productive and expansion of more productive firms. Indeed, Bloom et al. (2016) investigate employment growth of firms subject to Chinese import competition in 12 European countries and find that the less R&D intensive firms experience strong downsizing, while the most R&D intensive quintile of firms actually expand. The response to import competition seems to be quite heterogeneous with some firms being able to pull off a fresh start with a more innovative strategy. Bernard et al. (2017) document similar patterns among industrial firms in Denmark. While many experienced substantial downsizing or were closing down, more R&D intensive firms were able to engineer renewed growth by switching to highly innovative service sectors. From 2002 to 2007, about 10 percent of industrial firms switched to other industries, which accounted for 42% of employment losses in the industrial sector. In our model, the reallocation of firms is also associated with serial entrepreneurship. Poorly performing firms in the traditional sector are liquidated. Some of them get a second chance and start fresh in the innovative sector. Indeed, Gompers et al. (2010) report that about 9.5 percent of start-ups had previous business experience. They showed that serial entrepreneurs are often more successful than first time entrepreneurs.

3 The Model

Consider an economy with two sectors where firms produce distinct consumption goods, \(x \) and \(z \). In our stylized model, \(x \) refers to an innovative, expanding and \(z \) to a traditional, downsizing sector. The relative price of \(x \)-goods is \(v \), and all markets are competitive. There is a mass 1 of entrepreneurs who manage investment projects and operate firms.

The \(x \)-sector offers innovative long-term investment projects that succeed or fail. Projects in the \(z \)-sector are more opaque and reveal a performance signal already at
an early stage. If the firm is seen to have little chance for success and repayment appears unlikely, banks may prematurely liquidate the ‘non-performing’ loan and use the proceeds to finance new firms in the expanding sector. Banks thus play a central role in financing structural change by lending up-front and reallocating credit if performance is bad.

The timing is as follows: (i) Entrepreneurs develop business ideas which turn to be more or less innovative; (ii) entrepreneurs start a firm in the innovative or traditional sector, take a bank loan, and invest; (iii) banks learn the performance of z-firms and liquidate loans if prospects are poor. They reallocate the proceeds to finance additional x-projects in the expanding sector; (iv) production, consumption and trade take place when projects mature at the end of the period.

3.1 Demand

All agents are risk-neutral. Preferences are linear homogeneous in consumption and additively separable in effort. Given income y_j, demand of household j follows from

$$ w_j = \max_{c_{jx}, c_{jz}} u(c_{jx}, c_{jz}) - h_j \quad s.t. \quad v c_{jx} + c_{jz} \leq y_j. \quad (1) $$

We specify Cobb Douglas utility with expenditure shares $\gamma = v c_{jx} / y_j$ and $1 - \gamma = c_{jz} / y_j$. Welfare is real income minus effort cost, $w_j = y_j / v_c(v) - h_j$ where v_c is the price index, changing by $\hat{v}_c = \gamma \hat{v}$. Denoting aggregate income by Y, total demand is

$$ Y = v C_x + C_z, \quad C_x = \gamma Y / v, \quad C_z = (1 - \gamma) Y. \quad (2) $$

3.2 Banks

There is a mass 1 of entrepreneurs who start 1 firm each with 1 project, and have no own funds. All projects need 1 unit of capital, requiring a credit of size 1. Hence, the bank’s loan portfolio prior to reallocation is $n_x + n_z = 1$ where n_x indicates the number of firms equal to the outstanding loan volume in the x-sector. Correspondingly, n_z is the
initial credit extended to z-firms. Credit repayment depends on the firms’ prospects of success or failure. The x-sector hosts firms with more radical innovations that succeed or fail with probabilities p and $1 - p$, and yield output x or zero. Investments are long-term and mature at the end of period, with no information in between. In the z-sector, projects are heterogeneous and, in general, less innovative. The success probability q' may turn out quite low, making full repayment unlikely. Ex ante, prospects are unknown and uniformly distributed, $q' \sim U[0, 1]$. Since projects are more standard, banks can monitor and receive an early performance signal which perfectly reveals the type q'. If prospects are good, credit is continued and output is z with probability q' and zero else. If success and repayment become unlikely, banks terminate the loan.

More precisely, banks liquidate unprofitable firms with $q' < q$ where q is the pivotal type. Only a share $\int_q^1 dq' = 1 - q$ of startups continue, while the remaining part is closed down. Ex ante, the unconditional success probability is

$$\hat{q} = \int_q^1 q'dq' = \frac{1 - q^2}{2}, \quad \frac{d\hat{q}}{dq} = -q.$$

(3)

The success probability conditional on not being liquidated is

$$\bar{q} = E[q'|q' \geq q] = \frac{\int_q^1 q'dq'}{1 - q} = \frac{1 + q}{2}, \quad \frac{d\bar{q}}{dq} = \frac{1}{2}.$$

(4)

With a uniform distribution, these probabilities are linked by $\hat{q} = (1 - q)\bar{q} = (1 - q^2)/2$.

The sequence of events in bank lending is: (i) pay out $n_x + n_z = 1$ loans of size one; (ii) monitor and get a perfect performance signal q' on loans to z-firms; (iii) liquidate a share $q = \int_0^q dq'$ of non-performing z-loans and use the proceeds for new loans to x-firms. Depending on the stringency of bankruptcy law, banks must write off a part c of the loan upon liquidation and can extract only a fraction $(1 - c)$ funds for new lending.

Given credit reallocation, the loan portfolio and the number of active firms evolves as

$$n'_x = n_x + (1 - c)qn_z, \quad n'_z = n_z - qn_z.$$

(5)

4Note: c is liquidation cost, whereas c_j with an index j refers to consumption of good j.

10
Liquidation losses shrink final investment by \(n'_x + n'_z = 1 - cqn_z \). Figure 1 illustrates how credit reallocation affects the direction of investment and sectoral structure.

In the beginning, banks raise deposits \(d \) and equity \(e \) from investors, paying gross returns 1 and \(\rho \equiv 1 + \theta \) where \(\theta > 0 \) denotes an equity premium. In lending to firms, they charge gross interest \(i_z \) on loans to \(z \)-firms and \(i_x \) and \(i'_x \) on initial and reallocated loans to \(x \)-firms. Expected profit of a bank is

\[
\pi_b = pi_x n_x + \pi_{bz} n_z - d - \rho e, \quad \pi_{bz} \equiv q_i (1 - q) + p i'_x (1 - c) q, \quad d = n_x + n_z - e, \quad (6)
\]

where \(\pi_{bz} \) denotes expected earnings on a \(z \)-loan. With probability \(1 - q \), the bank continues lending and earns expected interest \(\bar{q} i_z \). With probability \(q \), it liquidates, extracts \(1 - c \) of the loan and incurs a loss \(c \). Hence, the proceeds \((1 - c) q \) become available for new loans with expected interest earnings \(p i'_x \). Since loan size is one, the mass of additional \(x \)-firms that get funded is \((1 - c) q n_z \).

Banks are ‘Schumpeterian’ in the sense that their credit decisions drive productivity enhancing ‘creative destruction’. In liquidating poor firms, they terminate unproductive
projects, extract capital and steer it towards more profitable use by lending to additional x-firms. Banks finance the expansion of the innovative sector with initial lending to x-sector startups plus credit reallocated from the downsizing sector.

3.3 Firms

When setting up a firm, entrepreneurs must anticipate future profits. In the innovative x-sector, firms make risky long-term investments and expect profits of

$$
\pi_x = p(vx - i_x).
$$

When starting a less innovative z-firm, the entrepreneur faces three possibilities: (i) continue with probability $1 - q$ if the early performance signal is good; (ii) get liquidated and become a ‘serial’ entrepreneur by starting a new x-firm with probability $(1 - c) q$; and (iii) get liquidated and fail to get a second chance with probability cq. The possibility of a fresh start importantly hinges on bankruptcy laws, which determine liquidation losses and credit rationing.5 Conditional on continuation or reallocation, expected firm profit is

$$
\pi_z = \tilde{q} (z - i_z), \quad \pi'_x = p (vx - i'_x).
$$

The ex ante profit from entering the z-sector amounts to

$$
\bar{\pi}_z = \pi_z \cdot (1 - q) + \pi'_x \cdot (1 - c) q = \tilde{z} - \pi_{bz}, \quad \tilde{z} \equiv \tilde{q} z (1 - q) + vpx (1 - c) q,
$$

where \tilde{z} denotes expected earnings.

At the beginning, entrepreneurs must expend an R&D effort and prepare a business plan. Innovation is risky. With probability s, R&D results in an innovative x-project. With probability $1 - s$, she ends with a more traditional and less profitable z-project.

5Banks extract $1 - c$ from a non-performing loan. The initial credit volume is n_z. Liquidation of qn_z firms releases funds of $(1 - c) qn_z$ available for new lending. Since each fresh-start needs a loan of size 1, $cq n_z$ entrepreneurs get rationed and are terminally out.
Effort cost $h(s)$ is convex increasing. By choosing R&D intensity, an entrepreneur maximizes her welfare equal to expected real income, reduced by effort cost,

$$w_e = \max_s \pi_e / v_c - h(s), \quad \pi_e \equiv s \cdot \pi_x + (1 - s) \cdot \bar{\pi}_z.$$ \hfill (10)

Optimal R&D balances the increase in expected real profits with effort cost at the margin,

$$\pi_x - \bar{\pi}_z = v_c h'(s).$$ \hfill (11)

By the law of large numbers, a fraction $n_x = s$ of entrepreneurs ends up in the innovative sector while the other part is left with a more traditional project, $n_z = 1 - s$. The result of initial R&D effort thus determines sectoral entry, $n_x + n_z = 1$. Note that some entrepreneurs become ‘serial’. They first accumulate experience in a z-firm and, when failing, go for a fresh start in the expanding x-sector.\(^6\)

3.4 Equilibrium

Investors are endowed with capital $I > 1$ which they invest in deposits, bank equity and an alternative investment opportunity A with a gross return 1. Investor profits are

$$\pi_i = \rho e + d + A - \theta e, \quad e + d + A = I, \quad \rho = 1 + \theta.$$ \hfill (12)

To exercise oversight and control, equity investors incur management costs θe, measured in units of traditional sector output. It is a classical result of corporate finance that active forms of financing are more costly than passive funds. For simplicity and tractability, we assume that the equity premium is fixed. Assets are perfect substitutes and the supplies of deposits and equity are perfectly elastic at gross returns 1 and ρ.

The economy is endowed with capital $I > 1$ and entrepreneurial labor of mass 1. Noting final sectoral investment in (5), aggregate outputs amount to

$$X \equiv pxn_x^1, \quad Z \equiv qzn_z^1 + A - \theta e.$$ \hfill (13)

\(^6\)One could include an additional fixed R&D effort to redesign a firm’s business model, thereby making reallocation more difficult. For simplicity, we abstract from this complication. At this stage, firms already have invested in R&D and have additionally accumulated valuable business experience.
Apart from the production of traditional firms, z-sector supply is augmented by output of the alternative technology which converts one unit of capital into one unit of output. Residual capital use $A = I - e - d$ is positive since $I > 1$ and $e + d = n_x + n_z = 1$.

Aggregate income is $Y = \pi_e + \pi_b + \pi_i = p\nu xn_x + \bar{z}n_z + A - \theta e$, where the second equality results upon substituting profit definitions. Using (5), (9) and (13) yields the national income identity,

$$Y = vX + Z. \quad (14)$$

The resource constraint on capital use is identically fulfilled by the assumption of residual investment in the traditional sector. Combining (2) and (14) yields

$$v (C_z - X) + (C_z - Z) = 0. \quad (15)$$

This condition reflects trade balance in an open economy without international capital flows. Worldwide, market clearing for innovative goods, $\sum_i (C_x^i - X^i) = 0$, implies market clearing for traditional goods, $\sum_i (C_z^i - Z^i) = 0$.

3.5 Credit Reallocation

Capital Structure: Banks first choose capital structure and initial lending and subsequently decide on liquidation and reallocation of credit. Their capacity to absorb liquidation losses on non-performing loans and to reallocate credit to new ventures importantly depends on the capital structure. When liquidating loans, a bank must make sure that it remains solvent and still satisfies minimum capital standards. Liquidation generates a loss and diminishes bank equity since a part c of the loan must be written off. After substantial write-offs, a bank is typically unable to quickly raise new equity. Hence, new lending is restricted to the funds $(1 - c) qn_z$ which are released in the liquidation process.

More specifically, we assume that banks must always maintain a capital ratio of at least $k \geq 0$. Since lending to z-firms involves costly liquidation and banks are unable to
raise new equity at a time of distress, they must raise a voluntary capital buffer ex ante to keep satisfying capital standards even after incurring liquidation losses,

\[e - cq_n \geq k \cdot (n'_x + n'_z). \]

(16)

Credit reallocation has two effects. First, when a bank liquidates \(qn_z \) loans, the loss \(cqn_z \) reduces actual equity to \(e - cqn_z \). Second, liquidation shrinks assets (outstanding loans) to \(n'_x + n'_z = n_x + n_z - cqn_z \), making required equity fall by \(kcqn_z \). The net loss of equity, which must be covered by a ‘voluntary’ buffer ex ante, is \((1 - k) cqn_z \). This extra buffer becomes smaller when the capital standard is tighter. Importantly, (16) is equivalent to a solvency constraint if capital requirements are zero, \(k = 0 \). In this case, the capital buffer must cover the short-term losses during the reallocation process, \(e \geq cqn_z \).

Reallocation: We solve the banking problem by backward induction and first derive the liquidation rate \(q \). After observing success probabilities, banks decide about loan liquidation to maximize expected earnings \(\pi_{bz} \) on initial \(z \)-loans. They take loan rates and capital structure as given and must satisfy capital requirements per \(z \)-project:

\[\pi_{bz} = \max_q \int_q^1 q' i_z dq' + \int_0^q p_{t} (1 - c) dq' + \lambda \cdot [e - cqn_z - kn_x - k(1 - cq) n_z] / n_z. \]

(17)

The optimal cut-off is characterized by

\[p_{t} (1 - c) - qi_z = \lambda (1 - k) c \quad \Rightarrow \quad q = \frac{p_{t} (1 - c) - \lambda (1 - k) c}{i_z}. \]

(18)

Lending: In the first stage, banks raise equity capital and deposits and cut loan rates to compete for borrowers until they hit break-even. Note bank profits as in (6), \(\pi_b = [p_i x - 1] n_x + [\pi_{bz} - 1] n_z - \theta e \), and \(d\pi_{bz}/de = \lambda / n_z \) from (17). Since optimal equity must satisfy \(d\pi_{b}/de = \lambda - \theta = 0 \), the regulatory constraint binds as long as equity earns a premium. Using the binding constraint to substitute for \(e \) yields

\[\pi_b = [p_i x - r] n_x + [\pi_{bz} - r - \theta (1 - k) cq] n_z, \quad r \equiv (1 - k) \cdot 1 + k \cdot \rho = 1 + \theta k. \]

(19)

When the bank operates at the regulatory minimum, a loan of size 1 to an \(x \)-firm must be refinanced with equity \(k \) and deposits \(1 - k \), giving a weighted cost of capital \(r \).
Since a z-loan might involve credit losses in case of premature liquidation, the bank must raise additional equity $(1 - k) cq$ ex ante to satisfy capital requirements. A loan to the downsizing sector thus makes more intensive use of bank equity due to the extra buffer which makes the refinancing cost exceed the common cost r by $\theta (1 - k) cq$.

Bank profit is linear in loans, n_x and n_z. Competition thus drives down loan rates until break-even. For x-loans, zero profits imply $p_i = r$. When offering credit to a z-firm, banks set interest rates for continued and reallocated loans, i_y and i'_y. They first set the ratio of loan rates so that the liquidation decision in (18) maximizes the joint surplus. Thereafter, they scale down rates to shift the surplus to firms. These are the best deals that banks can offer since they maximize firm profits subject to a break-even condition.

Adding the surplus of banks and firms per z-project in (19) and (9) yields a joint surplus of $S \equiv \bar{z} - r - \theta (1 - k) cq$. The joint surplus is maximized $(dS/dq = 0)$ if the gain $vpx (1 - c) - qz$ from reallocation is equal to the cost of bank equity $\theta (1 - k) c$ that is additionally required to absorb liquidation losses. The optimal liquidation rate is

$$q = \frac{vpx (1 - c) - \theta (1 - k) c}{z}. \quad (20)$$

The liquidation cost or equity premium can be so high and the capital standard so low that banks might not reallocate credit, $q = 0$.\footnote{This requires $\theta (1 - k) c > vpx (1 - c) \Leftrightarrow c > vpx/|vpx + \theta (1 - k)|$ leading to $q = 0$.} In such a ‘rigid’ economy, sectoral investment and output are exclusively determined by entry.

Given q, loan rates i_z and i'_x must satisfy two conditions: a z-loan yields zero profits,

$$\pi_{bz} \equiv q i_z (1 - q) + pn'_x (1 - c) q = r + \theta (1 - k) cq, \quad (21)$$

and the liquidation decision in (18) supports the optimal cut-off q in (20). Since q is fixed by (20), one uses (18) with $\lambda = \theta$ to eliminate $p_i' x (1 - c)$ in (21). Rearranging and noting $\bar{q} (1 - q) = (1 - q^2)/2$ yields interest on a continued z-loan. Knowing i_z and q, we also find interest i'_x on a reallocated z-loan,

$$i_z = \frac{2}{1 + q^2} \cdot r, \quad i'_x = \frac{q \cdot i_z + (1 - k) \theta c}{(1 - c) p}. \quad (22)$$
Entry: Substituting for competitive loan rates gives expected profits

$$\pi_x = vpx - r, \quad \bar{\pi}_x = \bar{z} - \pi_{by} = \bar{z} - r - \theta (1 - k) cq. \quad (23)$$

Anticipating expected profit for each outcome, entrepreneurs set up a firm by design of a business plan and choose R&D intensity, $$\pi_x - \bar{\pi}_x = v_ch'(s)$$. Assuming identically and independently distributed R&D risk, the law of large numbers leads to sectoral entry $$n_x = s$$ and $$n_x = 1 - s$$. Given entry, subsequent reallocation shrinks the number of firms in the $$z$$-sector and augments those in the $$x$$-sector. After that, firms succeed at rates $$p$$ and $$\bar{q}$$ in the two sectors.

4 Small Open Economy

We evaluate the consequences of four policy interventions for trade structure: (i) bank regulation with higher capital requirements $$k$$; (ii) better investor protection that reduces the investor’s cost of managerial supervision and control, and thus contributes to a lower equity premium $$\theta$$;\(^8\) (iii) more efficient bankruptcy procedures that reduce liquidation costs $$c$$ and allow banks to extract a larger share from terminated loans; and (iv) trade liberalization favoring the innovative export sector.

Our trade scenario pictures an advanced economy being an exporter of innovative goods. Exporters incur differential costs relative to foreign competitors, such as transport costs, compliance to foreign regulations, foreign market research, extra legal costs, export insurance etc. With a producer price of $$v$$, exporters must charge $$(1 + \tau) v$$ to foreign clients to cover such real trade costs. Competition forces them to match the world market price $$v^*$$ which links prices by $$v^* = (1 + \tau) v$$. Price changes are related by $$\hat{\nu}^* = \hat{\nu} + \hat{\tau}$$ where $$\hat{\tau} \equiv d\tau / (1 + \tau)$$. Hats indicate percent changes, that is, $$\hat{\nu} = dv / v$$, whereas rates and

\(^8\)A tax reform such as an allowance for corporate equity to eliminate the debt bias in corporate taxation would have a similar effect on the equity premium and the cost of bank equity. Schepens (2016) found that Belgian banks raised their equity ratios by about 13% compared to other European banks after Belgium introduced a tax deduction of notional interest on equity capital.
shares \(d\theta, dk, dc, \text{etc.}\) are stated in absolute changes. Trade frictions reduce domestic prices, \(\hat{\nu} = -\hat{\tau}\), since foreign prices are exogenous to a small open economy. Trade liberalization squeezes trade costs \(\tau\) which boosts domestic producer prices.

Without loss of generality, we evaluate equilibrium for very low capital requirements, \(k \to 0\). This helps to simplify comparative statics and is consistent with the low capital standards in reality. As a result, the regulatory constraint (16) collapses to the solvency constraint, \(e = cqn_x\), which ensures that bank equity never becomes negative. An increase in capital standards, \(dk > 0\), is thus equivalent to introducing capital requirements.

4.1 Supply

The output response is driven by initial entry and credit reallocation, which depends on liquidation decision of banks. The liquidation rate \(q\) in (20) changes by

\[
dq = \frac{vpx (1 - c)}{z} \cdot \hat{\nu} - \frac{\varepsilon_{qc}}{z} \cdot dc - \frac{c}{z} \cdot d\theta + \frac{\theta c}{z} \cdot dk, \quad \varepsilon_{qc} \equiv vpx + \theta. \tag{24}
\]

Quite intuitively, a higher price makes liquidation and new lending more attractive as fresh starts in the innovative sector promise larger profits. Higher bankruptcy costs reduce liquidation. If the equity premium rises, banks become more hesitant to liquidate as this would require a higher capital buffer which is costly. In contrast, higher capital requirements reduce the extra capital buffer since liquidation also shrinks a bank’s balance sheet and thereby requires less equity. For this reason, the \textit{net} use of equity in liquidation falls which facilitates reallocation.

Sectoral entry shifts in response to expected future profits which, in turn, depend on funding costs that rise with higher capital standards. Noting \(r = 1 + \theta k\) with \(k \to 0\) and \(pi_x = r\), expected profit \(\pi_x = vpx - r\) of an \(x\)-firm clearly rises with an increasing output price but suffers on account of higher capital standard,

\[
\begin{align*}
 dr &= \theta \cdot dk, \quad p \cdot di_x = dr, \\
 d\pi_x &= vpx \cdot \hat{\nu} - \theta \cdot dk. \tag{25}
\end{align*}
\]
Using the Envelope theorem on \(\bar{\xi} = \max_{\theta} \bar{\xi} - r - \theta (1 - k) cq \) yields

\[
d\bar{\xi} = vpx(1 - c)q \cdot \hat{v} - cq \cdot d\theta - (1 - cq) \theta \cdot dk - \varepsilon_{qe} q \cdot dc. \tag{26}
\]

Expected profit of a \(z \)-entrant rises when a higher price of innovative goods boosts the gains from reallocation. Higher funding and liquidation costs as well as tighter capital standards make these firms less profitable.

Entry in the \(x \)-sector, \(n_x = s \), hinges on initial R&D effort, driven by \(\pi_x - \bar{\pi}_x = v_x h'(s) \), which determines the success of firms in developing a more innovative product as opposed to a traditional design. Taking the differential gives \(d\pi_x - d\bar{\pi}_x = v_x h''dn_x + \gamma v_x h'\hat{v} \). Noting (25) and (26) gives

\[
dn_x = \beta_v \cdot \hat{v} + \beta_\theta \cdot d\theta - \beta_k \theta \cdot dk + \beta_c \cdot dc, \tag{27}
\]

where coefficients are defined in Appendix (A.1) and all positive. Traditional firms are subject to early liquidation and use bank equity more intensively. For this reason, a higher equity premium as well as more costly liquidation reduce their profitability and unambiguously encourage entry into the innovative sector. Tighter capital standards raise funding costs in both sectors. A loan to a traditional firm makes more intensive use of costly bank equity due to the extra capital buffer. However, a higher capital standard reduces the required voluntary buffer which additionally benefits traditional sector and thereby shifts entry from the \(x \)- to the \(z \)-sector. Finally, a higher price of the innovative good boosts expected profit of an \(x \)-startup. But a \(z \)-startup benefits as well since it expects to enter the \(x \)-sector on a second chance with probability \((1 - c) q \). Except in a very degenerate case, a higher price benefits successful innovators more than those which start with a more conservative business model. In consequence, entry shifts to the innovative sector (see A.1 for \(\beta_v > 0 \) in Appendix A).

Final investment of the innovative sector, \(n'_x = n_x + (1 - c) q n_z \), changes by

\[
dn'_x = [1 - (1 - c) q] \cdot dn_x + n_z \cdot d[(1 - c) q]. \tag{28}
\]

Expansion of the \(x \)-sector feeds on initial entry decisions (first term) and subsequent
reallocation (second term). Appendix A derives in several steps the response of final investment, \(d\nu_x\), and aggregate supply \(dx = px \cdot dn'_x\).

Noting \(d(1-c)q = (1-c)dq - qdc\), the change in the reallocation rate reflects a behavioral effect due to more aggressive liquidation and a mechanical effect in case of a rising liquidation cost, which directly lowers the proceeds available for new lending. More frequent credit reallocation adds to investment in the innovative sector. When initial entry shifts to the innovative sector, subsequent capital reallocation might reinforce or offset the effect of entry on final investment and output.

Assumption 1 (Inelastic entry) The entry elasticity \(\eta \equiv [1 - (1-c)q]/(q, h'(h')) > 0\) is small relative to the reallocation elasticity \(\mu \equiv (1-c)n_z/z > 0\), so that \(\mu > \eta q\). Entry is inelastic when \(h''\) is large.

To highlight the novel reallocation channel and avoid cumbersome case distinctions, we restrict the relative magnitude of the elasticities as defined in Appendix A. The assumption pins down supply effects.

Proposition 1 (Supply) Reflecting entry and reallocation, aggregate supply of the innovative sector increases with a higher output price, lower liquidation costs, a lower cost of bank equity and higher capital standards.

Proof. Use (A.2) and the definitions \(\delta_v \equiv \frac{1-(1-c)q}{n_v} \cdot \beta_v + \mu(1-c)p_x > 0\), \(\delta_\theta \equiv \frac{(\mu-\eta q)c}{n_v} > 0\), \(\delta_k \equiv \frac{(\mu-\eta q)c}{n_v} > 0\), and \(\delta_c \equiv \frac{q+(\mu-\eta q)c}{n_v} > 0\) to get

\[
\hat{X} = \delta_v \cdot \hat{v} - \delta_\theta \cdot d\theta + \delta_k \theta \cdot dk - \delta_c \cdot dc, \tag{29}
\]

where we imposed Assumption 1, \(\mu > \eta q\), to sign the coefficients. □

A higher price boosts final investment and supply of the innovative sector. The entry and reallocation margins reinforce each other. A rising liquidation cost involves several effects. The direct, mechanical effect slows down the expansion of the \(x\)-sector since less
capital is extracted upon liquidation and, in turn, less bank credit is made available to finance additional investment in the innovative sector. In addition, a higher liquidation loss reduces the liquidation rate in (24) which locks up a larger number of weak firms in the traditional sector. However, since more costly liquidation cuts the ex ante profits of traditional firms without affecting profitability of innovative investment, entry in (27) shifts towards the innovative sector which tends to offset induced reallocation effect. By Assumption 1, entry is inelastic so that the mechanical and behavioral reallocation effects dominate. A higher liquidation cost thus shrinks the innovative sector, \(\delta_e > 0 \).

If bank equity becomes more costly, for instance, due to lacking investor protection or tax disadvantages of equity, banks seek to economize on the voluntary capital buffer by liquidating non-performing loans less aggressively, see (24). This slows down reallocation and locks up credit in the traditional sector, thereby shifting sectoral supply from the innovative to the traditional sector. The shock also raises funding costs relatively more in the traditional sector which uses bank equity more intensively. As \(z \)-firms become less profitable compared to innovative firms, entry shifts towards the innovative sector. In our main scenario where reallocation responds more elastically, a higher equity premium leads to a contraction of aggregate supply in the innovative sector, \(\delta_\theta > 0 \).

Finally, tighter regulatory capital requirements force banks to build up larger capital buffers which makes them liquidate poorly performing loans more aggressively, see (24). More frequent credit reallocation, in turn, boosts the expansion of the innovative sector. In addition, firms in both sectors incur higher capital costs, \(dr = \theta \cdot dk \). Expected profit of an \(x \)-entrant shrinks by \(d\pi_x = -\theta \cdot dk \). Bank equity is costly and \(z \)-firms use it more intensively. However, an increase in the standard requires a lower voluntary buffer which benefits \(z \)-firms. On net, a higher capital standard raises funding costs less than for \(x \)-entrants. Expected profit of a \(z \)-entrant is, thus, hit to a smaller extent, \(d\bar{\pi}_z = -(1 - cq) \theta \cdot dk \). The net effect on relative profits shifts entry towards the \(z \)-sector. Given inelastic entry, the reallocation channel dominates and tighter capital standards boost the expansion of the innovative sector, \(\delta_k > 0 \).
4.2 Demand

National income equals $Y = \pi_e + \pi_b + \pi_i$. In equilibrium, $\pi_b = 0$ and $\pi_i = I$. A marginal change in the liquidation rate has no effect on income since liquidation maximizes the joint surplus.9 Income thus changes by $dY = d\pi_e = (\pi_x - \bar{\pi}_z)dn_x + n_xd\pi_x + n_zd\bar{\pi}_z$. Upon substitution and using (5), we get

$$
\hat{Y} = (\gamma_x + \alpha_v) \cdot \hat{v} - \alpha_\theta \cdot d\theta - \alpha_k \cdot dk - \alpha_c \cdot dc,
$$

(30)

where the supply side income share is $\gamma_x \equiv vX/Y$ and the α-coefficients are defined as

$$
\begin{align*}
\alpha_v & \equiv \frac{\pi_x - \bar{\pi}_z}{Y} \beta_v > 0, \\
\alpha_k & \equiv 1 - cqn_z + (\pi_x - \bar{\pi}_z) \beta_k > 0, \\
\alpha_\theta & \equiv \frac{cqz - (\pi_x - \bar{\pi}_z) \beta_\theta}{Y}, \\
\alpha_c & \equiv \frac{\varepsilon_q qn_z - (\pi_x - \bar{\pi}_z) \beta_c}{Y}.
\end{align*}
$$

Changes in national income reflect direct effects and indirect ones which arise from induced entry into the innovative sector. A higher price directly boosts national income, in proportion to the supply side income share γ_x of the innovative sector. Since it also boosts entry in that sector, it yields an income gain in proportion to $\pi_x - \bar{\pi}_z$. Bank regulation in terms of a higher capital standard k directly erodes income in proportion to the final credit to GDP ratio $(1 - e)/Y$ multiplied by the equity premium (note $e = cqn_z$). Income further declines since regulation also discourages entry into the innovative sector where expected income is higher.

A higher resource cost of managing bank equity shrinks income in proportion to the GDP share of bank equity, e/Y. This direct effect is offset by the income losses from shifting towards the traditional sector, but only partly so if entry is inelastic. Finally, higher liquidation costs directly impose a marginal income loss. First, when banks liquidate a non-performing z-loan, they are left with less funds for new lending to additional x-projects. The marginal output loss is $d\bar{\pi}/dc = vpxq$ per z-startup, or vpx for each of the qn_z liquidated loans. Second, higher liquidation costs force banks to raise a larger

9Evaluating at $k = 0$ gives $d\pi_e = [vpx(1 - c) - qz - \theta c]n_z \cdot dq = 0$ since competition leads banks to choose liquidation so as to maximize the joint surplus of a z-firm as in (20).
capital buffer ex ante. The binding regulatory (solvency) constraint requires bank equity of \(e = cn_{z} \) with an additional cost that amounts to \(\theta \cdot de/dc = \theta qn_{z} \), or \(\theta \) per liquidated loan. Adding up gives a total income loss equal to \(\varepsilon_{q} \) per liquidated loan. However, since these losses fall on traditional sector firms only, entry shifts towards the innovative sector, leading to offsetting income gains in proportion to \(\pi_{x} - \pi_{z} \). The mechanical income loss prevails when entry is inelastic.

Given constant expenditure shares, demand in (2) changes by \(\hat{C}_{x} = \hat{Y} - \hat{v} \) or

\[
\hat{C}_{x} = -(1 - \gamma_{s} - \alpha_{v}) \cdot \hat{v} - \alpha_{\theta} \cdot d\theta - \alpha_{k} \theta \cdot dk - \alpha_{c} \cdot dc,
\]

Domestic demand for innovative goods changes in proportion to income, plus an additional price effect. A price increase of one percent reduces demand by one percent. Since it also boosts income by \(\gamma_{s} + \alpha_{v} \) percent, demand shrinks by \(1 - \gamma_{s} - \alpha_{v} \) percent on net, as long as entry is not too elastic and, thus, \(\alpha_{v} \) not too large. The other demand shocks simply reflect the income changes noted in (30).

Domestic welfare \(w = Y/v_{c} - h(n_{x}) \) is equal to real income minus R&D effort costs of entrepreneurs. Since effort is optimally chosen, a variation of entry cannot affect welfare, \(dw = [(\pi_{x} - \pi_{z})/v_{c} - h']dn_{x} = 0 \). Ignoring all effects due to entry (terms multiplying by \(\beta \) in 30) leaves only the direct effects. The welfare change in percent of real income is

\[
\hat{w} \equiv \frac{dw}{Y/v_{c}} = (\gamma_{s} - \gamma) \cdot \hat{v} - \frac{cn_{z}}{Y} \cdot d\theta - \frac{1 - cn_{z}}{Y} \theta \cdot dk - \frac{\varepsilon_{q}q_{n_{z}}}{Y} \cdot dc.
\]

Since the market equilibrium is constrained efficient, only the direct effects matter. A higher domestic price of innovative goods benefits an export country (\(\gamma_{s} > \gamma \)). Better insolvency laws and a lower equity premium boost welfare but tighter capital requirements are welfare-reducing as more equity increases the cost of supervision and management.\(^{10}\)

\(^{10}\)From now on, we abstain from welfare statements with regard to capital standards. Our model is designed to shed light on the consequences for credit reallocation but cannot capture the contribution of higher capital requirements to financial stability.
4.3 Trade

The trade pattern is reflected in the trade balance $\zeta_x = X - C_x$. In defining $\hat{\zeta}_x \equiv v d \zeta_x / Y$, one obtains the change in the trade structure

$$
\hat{\zeta}_x = \gamma_s \cdot \hat{X} - \gamma \cdot \hat{C}_x.
$$

(33)

We focus on a developed and technologically advanced country which runs a trade surplus $\zeta_x > 0$ in innovative x-goods, implying $\gamma_s > \gamma$. Upon substitution, we have

$$
\hat{\zeta}_x = \sigma_v \cdot \hat{v} - \sigma_c \cdot \hat{d} - \sigma_\theta \cdot \hat{d}\theta + \sigma_k \theta \cdot \hat{d}k,
$$

(34)

where coefficients are defined as

$$
\sigma_v \equiv \gamma_s \delta_v + \gamma (1 - \gamma_s - \alpha_v), \quad \sigma_c \equiv \gamma_s \delta_c - \gamma \alpha_c, \quad \sigma_\theta \equiv \gamma_s \delta_\theta - \gamma \alpha_\theta, \quad \sigma_k \equiv \gamma_s \delta_k + \gamma \alpha_k.
$$

Trade induced structural change can happen only if factors flow from declining to expanding industries. The frictions and impediments to factor reallocation across sectors are relatively neglected in trade theory, in particular, when it comes to the role of the banking sector. This is in stark contrast to the dominant role of banks in financing sectoral investment. What are the determinants of credit reallocation and what is the role of the banking sector in shaping a country’s trade pattern? To illustrate the mechanism, we analyze the consequences of several policy interventions.

Trade liberalization: In a small open economy, the world price of innovative goods is fixed. Cutting export costs raises the domestic producer price by $\hat{v} = \hat{r}$.

Proposition 2 (Trade liberalization) A higher price of x-goods attracts entry and accelerates credit reallocation towards innovative sector investment. It expands aggregate supply, raises income and, for a net exporting country, boosts welfare. In spite of somewhat higher income, the increase in domestic producer prices reduces consumer demand. Supply and demand reactions both contribute to a larger trade surplus in innovative goods.
Proof. See (24-27) on loan termination, firm profits and initial entry. (28-29) and Appendix A show how entry and reallocation affect aggregate investment and output. (30-34) calculate the effects on income, demand, welfare and the trade balance.

A higher domestic price boosts the trade surplus in innovative goods since it stimulates supply and cuts back demand, $\sigma > 0$. The effect on trade patterns is standard, but the mechanism is entirely different. A higher relative price boosts earnings and profits of innovative firms. Given better prospects in the expanding x-sector, banks terminate poorly performing loans in the traditional sector more aggressively and provide new loans to firms that opt for a fresh start and move to the innovative sector. Aggregate output thus draws on own start-up investment as well as reallocation from the downsizing sector. While output of innovative goods increases, domestic consumers cut back on demand. Both supply and demand adjustments result in a larger trade surplus. Trade liberalization also raises national income due to higher firm profits. In an export country, welfare rises by the usual terms of trade effect.

Bank regulation: Depending on structural characteristics of the banking sector, banks can importantly influence the ‘Schumpeterian process’ of creative destruction by liquidating poorly performing firms and reallocating credit to more innovative investments. Empirical evidence points to a key role of capital standards k, leading us to explore the consequences of bank regulation for structural change and trade patterns.

Proposition 3 (Bank capital regulation) Higher capital standards boost reallocation towards the innovative sector, but reduce entry. The supply of innovative goods rises if entry is relatively inelastic. Tighter capital standards reduce income and demand. Demand and supply reactions augment the trade surplus in innovative goods.

Proof. See (24-34) as before.

Intuition rests on the fact that bank equity is expensive due to the extra costs of oversight and control by equity investors. Higher capital standards thus raise the cost of capital r and reduce firm profits in both sectors. However, banks must build up an
extra voluntary capital buffer when financing firms in the downsizing sector. Since banks expect write-offs on non-performing \(z \)-loans, they need this voluntary buffer to digest the associated loss of equity capital without violating capital standards ex post. However, the write-offs also shrink the banks’ balance sheets and partly reduce the need for bank equity, giving a net voluntary buffer proportional to \(1 - k \). The higher capital standards are, the smaller is the voluntary buffer on \(z \)-loans subject to liquidation risk. The upshot is that higher capital standards raise the cost of capital in both sectors, but only the standard sector benefits from the savings in the voluntary buffer. Entry thus shifts from the innovative towards the standard sector.

Raising minimum capital standards reduces the net loss of equity during the reallocation process, making banks liquidate more aggressively poorly performing loans. More capital is released in the downsizing sector and more entrepreneurs with previous business experience receive a second chance to start a new venture in the expanding industry. Although firm entry declines and shifts towards the standard sector, strong reallocation reverses the entry effect and leads to an expansion of the innovative sector, at least as long as entry is relatively inelastic. Since bank equity is expensive and requires resource costs for management, control and supervision, higher capital standards reduce national income and demand. In addition, firm entry shifts towards the standard sector which further reduces income and demand. In consequence, tighter bank capital regulation, by facilitating reallocation from declining to expanding industries, and by reducing domestic demand, results in a larger trade surplus in innovative goods.

Institutional reforms: A potential impediment to structural change results from inefficient bankruptcy procedures. Good insolvency law can make firm liquidation more efficient and protect asset values. In reducing liquidation losses \(c \), bankruptcy reform can help banks (and other investors) to extract more funds from terminated loans for new lending to more promising projects. Another area of institutional reform is better investor protection and corporate governance which reduce the costs of oversight and control and help to limit investor risk. We capture this in reduced form by a reduction of the required
equity premium θ which, in turn, reduces bank funding costs. A lower equity premium will also result if government eliminates the tax bias against equity capital. We jointly discuss both policy interventions since they have qualitatively similar effects. In both cases, a reduction in c and θ indicate a policy improvement.

Proposition 4 (Institutional reform) Better insolvency laws and investor protection favor entry into the traditional sector. They boost termination of weak firms and reallocation towards the innovative sector, leading to a net increase in innovative goods supply. They also raise aggregate income and consumption demand and yield welfare gains. The trade surplus in innovative goods improves if the entry elasticity is not too large.

Proof. Evaluate (24-34) for $dc < 0$ and $d\theta < 0$, and see (A.3-A.5). ■

When the equity premium falls, banks afford a larger capital buffer which allows them to liquidate non-performing loans more aggressively. Lowering liquidation costs yields the same incentives but involves an additional mechanical effect as more capital is released from terminated loans. Such reforms thus boost reallocation by raising the liquidation rate q. Accelerating reallocation eventually increases the supply of innovative goods. Although more entrepreneurs start firms in the traditional sector, see (27), innovative investment and output rise on net when entry is relatively inelastic. At the same time, aggregate income also rises either due to higher average earnings of z-firms or smaller management costs of bank equity. Demand for innovative goods picks up. Although supply and demand both increase, the supply effect prevails and the trade surplus rises. Appendix A derives the combined adjustment by substituting coefficients. As long as the entry elasticity η is small - as in our main scenario - lower liquidation costs create excess supply and raise the export surplus in innovative goods ($\sigma_c > 0$ in 34 and A.3). Similarly, with low capital standards, the GDP share of bank equity is very low so that the supply side reactions of reducing the cost of bank equity dominate over the income effect. A lower equity premium and, in turn, declining funding costs of firms thus tend to augment the export surplus in innovative goods ($\sigma_\theta > 0$ in A.5). Good institutions foster a comparative advantage in
innovative goods by facilitating the process of credit reallocation. In reducing resource costs, they also expand national income and raise welfare.

5 World Economy

In large open economies, national policies affect the world price v^*. The induced price changes have an additional second-order effect on the domestic economy and cause spillovers to other countries. At the outset, we assume that countries are symmetric at least with regard to trade frictions, $\tau^i = \tau$ such that $v^i = v$. World market equilibrium requires $d\zeta_x + \sum_i d\zeta^i_x = 0$ where ζ^i_x denotes excess supply in other countries. Multiplying by $v = v^i$, dividing by world income $Y + \sum_i Y^i$, and using a country’s income share $\omega^i \equiv Y^i / (Y + \sum_i Y^i)$ gives changes in global market clearing $\omega \hat{\zeta}_x + \sum_i \omega^i \hat{\zeta}^i_x = 0$, which pins down the impact on the world price. Note that income shares add up to one, $\omega + \sum_i \omega^i = 1$. The domestic trade surplus, ζ_x, adjusts as in (34). Given symmetry, trade imbalances in foreign countries respond to price changes in exactly the same way,

$$\hat{\zeta}^i_x = \sigma^i_v \cdot \hat{v}^*,$$

$$\sigma^i_v \equiv \gamma^i_v \delta^i_v + \gamma^i_v (1 - \gamma^i_x - \alpha^i_v) > 0. \quad (35)$$

Lemma 1 (World price) The world price v^* falls in the capital standard k, and rises in the export cost τ, the liquidation cost c, and in the equity premium θ of a large economy.

Proof. Use (34-35), substitute $\hat{v} = \hat{v}^* - \hat{\tau}$ and solve $\omega \hat{\zeta}_x + \sum_i \omega^i \hat{\zeta}^i_x = 0$,

$$\hat{v}^* = \frac{\omega}{\sigma^*_v} [\sigma_v \cdot \hat{\tau} + \sigma_c \cdot dc + \sigma_\theta \cdot d\theta - \sigma_k \cdot dk], \quad (36)$$

where $\sigma^*_v \equiv \omega \sigma_v + \sum_i \omega^i \sigma^i_v$ is the GDP-weighted price elasticity. ■

Policy interventions now entail both direct and second-order effects since the induced price change feeds back on the home economy. A country with a relatively small share ω in world GDP has little impact on the world price. Although this price change partly offsets the direct effects, the net responses of investment, production, and consumption
are qualitatively the same but less pronounced than in a small open economy. For a large country, the feedback effect may be quite strong and could potentially introduce some ambiguities, see (B.1-B.4) of Appendix B. However, the consequences for trade are determinate in all cases. By influencing the world price, policy interventions create spillovers to foreign countries. The (net) impact on domestic and foreign economies are qualitatively described in the preceding analysis. We thus focus on changes in trade and welfare of domestic and foreign countries.

Trade liberalization: Consider a decrease in real trade costs $-\hat{\tau}$ which facilitates exports and thereby allows home firms to charge a higher producer price. In boosting supply, the policy reduces the world market price which partly offsets its direct effect.

Proposition 5 (Spillovers from trade liberalization) Reducing export trade costs by $-\hat{\tau}$ (i) boosts the domestic producer price and reduces the world market price for innovative goods; (ii) raises the domestic trade surplus and reduces the total trade deficits of foreign countries; (iii) raises domestic welfare and raises (reduces) welfare of foreign import (export) countries.

Proof. (i) Substituting (36) in $\hat{v} = \hat{v}^* - \hat{\tau}$ yields

$$\hat{v} = -\left[1 - \frac{\omega \sigma_v}{\sigma_v^*}\right] \cdot \hat{\tau}, \quad \hat{v}^* = \hat{v} + \hat{\tau} = \frac{\omega \sigma_v}{\sigma_v^*} \cdot \hat{\tau}. \tag{37}$$

By definition of σ_v^*, the square bracket equals $\sum_i \omega_i \sigma_i^*/\sigma_v^* > 0$. The domestic producer price v rises, although less than in a small open economy. (ii) See (34-35) together with (37). (iii) Since the home country is a net exporter, it benefits from a higher price by $\hat{w} = (\gamma_s - \gamma) \cdot \hat{v}$, see (32). A lower world price affects foreign welfare by $\hat{w}^i = (\gamma_i - \gamma^i) \cdot \hat{v}^*$ which is positive (negative) for import (export) countries. ■

Proposition 2 discusses the detailed impact of trade liberalization on the home economy in response to a rising domestic producer price \hat{v}. Although the declining world price dampens the magnitude of the response, the qualitative results are generally unchanged. Foreign economies are affected by a declining world market price v^* which triggers the
same adjustments as in Proposition 2, but in opposite direction. In particular, the domestic economy records a larger export surplus in innovative goods, $\zeta_x = \sigma_v \cdot \hat{v} > 0$, as noted in (34), while foreign countries run smaller trade surpluses, $\zeta_x^i = \sigma_v^i \cdot \hat{v}^* < 0$. Since the home economy is a net exporter, the total rest of the world is a net importer. However, individual foreign countries may be export or import nations, with diminishing export surpluses or rising trade deficits. In the same vein, the home economy and foreign import countries benefit from terms of trade gains, while the unilateral policy change deteriorates the terms of trade of foreign export nations and imposes welfare losses on them.

Bank regulation: In raising bank capital standards, the home country strengthens its banking sector, making it more aggressively liquidate non-performing loans concentrated in declining industries and redirect lending to firms with better prospects in the expanding innovative sector. In facilitating structural change by creative destruction, the home economy experiences an expansion of the innovative sector which puts downward pressure on the world market price. Proposition 3 illustrates the detailed impact on the domestic economy although the declining price shrinks the magnitude of adjustments. Foreign countries are exclusively affected by declining prices, giving adjustments described by Proposition 2, although in opposite direction. As in Proposition 3, we abstain from statements on domestic welfare but report spillovers to foreign countries where the structural parameters of the banking sector remain unchanged.

Proposition 6 (Spillovers from bank regulation) Tighter capital requirements k for banks (i) reduce the world market price for innovative goods; (ii) raises (shrinks) domestic (foreign) trade surpluses; and (iii) raises (reduces) welfare of foreign import (export) countries via improving (deteriorating) terms of trade.

Proof. (i) The world market price declines by $\hat{v} = \hat{v}^* = - (\omega \sigma_k \theta / \sigma_v^*) \cdot dk$, see (36). (ii) Rising domestic export surpluses, as shown in (B.5), are mirrored by rising foreign trade deficits (or shrinking export surpluses), $\zeta_x^i = \sigma_v^i \cdot \hat{v}^*$. (iii) Welfare of foreign countries, $\hat{w}^i = (\gamma_s^i - \gamma) \cdot \hat{v}^*$, is only affected by changing terms of trade, where $\gamma_s^i > (<) \gamma^i$ for export (import) nations. ■
Institutional Reforms: Better investor protection lowers the equity premium θ and reduces bank funding costs. Reforming insolvency laws for more efficient liquidation procedures reduces liquidation costs and allows banks to extract a larger share of funds for new lending.

Proposition 7 (Spillovers from institutional reform) Better investor protection and more efficient insolvency procedures (θ and c reduced) lead to (i) a lower price for innovative goods; (ii) to higher (lower) domestic (foreign) trade surpluses; and (iii) boosts domestic welfare if the home country is not too large, and reduces (raises) welfare of foreign export (import) countries via deteriorating (improving) terms of trade.

Proof. (i) The world market price declines by $\hat{\omega} = \hat{\omega}^* = \frac{\partial}{\partial \sigma} (\sigma_c \cdot dc + \sigma_b \cdot d\theta)$, see (36). (ii) The domestic export surplus rises as shown in (B.10) which is mirrored by rising foreign trade deficits (or shrinking export surpluses), $\hat{\xi}_x^i = \sigma_v^i \cdot \hat{\omega}^*$. (iii) Substitute the price change into (32) and get

$$\hat{\omega} = - \left[\frac{\varepsilon_{qc} qm_z}{Y} - \omega (\gamma_s - \gamma) \frac{\sigma_c}{\sigma_v^*} \right] \cdot dc - \left[\frac{cqm_z}{Y} - \omega (\gamma_s - \gamma) \frac{\sigma_b}{\sigma_v^*} \right] \cdot d\theta. \quad (38)$$

Note $\gamma_s > \gamma$. The net welfare gains remain positive as long as the country is not too large (small ω). Welfare of foreign countries depends exclusively on terms of trade changes, $\hat{\omega}^i = (\gamma_s^i - \gamma^i) \cdot \hat{\omega}^*$. In line with $\gamma_s^i > (<) \gamma^i$, a falling world market price reduces (raises) welfare in foreign export (import) nations. ■

Institutional reform contributes to savings in resource costs and yields welfare gains by rendering insolvency procedures more efficient and simplifying oversight and control of equity investors. Mainly by facilitating reallocation and structural change, the policy boosts domestic supply of innovative goods which depresses world prices. Since the home country is a net exporter, the resulting deterioration in the terms of trade imposes second order welfare losses which run counter to the direct welfare gains from institutional reform. Domestic reform yields positive spillovers to the rest of the world which is, in total, a net importer of innovative goods. With many foreign countries, some of them may also be net exporters and would experience negative spillovers.
6 Conclusions

For a country to fully exploit its comparative advantage, it must embrace structural change and reduce the frictions that may lock up capital and labor in old uses and stand in the way of reallocation from declining to expanding industries. Given the predominant role of banks in financing investment, the structure of a country’s banking sector is critical in this process. Banks can support the Schumpeterian process of creative destruction in resolving non-performing loans and redirecting credit to more promising investments. Depending on the institutional environment and its own endowment with loss-absorbing equity capital, banks can accelerate or slow down the reallocation of capital, resulting in more or less frequent fresh starts for better use of entrepreneurial labor and capital. Specifically, our analysis identifies novel, bank-related and institutional determinants of reallocation with direct consequences for trade and specialization: the quality of insolvency laws, the cost of bank equity and the tightness of capital regulation. Those factors importantly influence the capital structure of banks and their ability to reallocate credit.

Our main findings point to the importance of three different policy areas which may significantly influence trade patterns and enhance the potential of trade policy to improve economic performance. First, tighter capital regulation raises the loss absorbing capacity of banks which strengthens their ability to unlock capital in the downsizing sector by liquidating non-performing loans and redirecting credit towards expanding industries. Second, more efficient bankruptcy procedures reduce the waste of resources in the process of resolving unprofitable firms and allow banks to extract more funds for new lending to more promising projects. Third, reforming investor protection and corporate governance, or eliminating the tax bias in favor of debt at the expense of equity capital, can reduce banks’ cost of equity funding and incentivize them to build up larger loss absorbing voluntary capital buffers. Consequently, their ability to liquidate non-performing loans and lend to firms moving towards the expanding sector is enhanced. We have also analyzed how trade liberalization, by shifting firm profitability from declining to expanding sectors, feeds back on the structure and efficiency of a country’s banking sector. These changes
influence the potential of trade liberalization for affecting trade patterns and a country’s economic performance.

The predominant role of banks in financing investment and the findings of empirical research on ‘zombie’ lending of weakly capitalized banks, as discussed in Section 2, leads us to believe that the proposed mechanisms are quantitatively important. Future research could empirically test how the novel structural parameters - liquidation costs, costs of bank equity, and capital standards - affect credit reallocation and trade patterns. Research could also incorporate credit reallocation in quantitative general equilibrium models to explore the economic significance of the discussed policy interventions.

Appendix

A. Small Open Economy

Entry: Entry in the \(x \)-sector follows from the differential of \(\pi_x - \bar{\pi}_z = v_c h' (s) \), as given in (27) where coefficients are defined by

\[
\beta_v = \frac{[1 - (1 - c)q] vpx - \gamma v_c h'}{v_c h''}, \quad \beta_\theta = \frac{cq}{v_c h''}, \quad \beta_k = \frac{cq}{v_c h''}, \quad \beta_\epsilon = \frac{\bar{\epsilon} c q}{v_c h''} \quad \text{(A.1)}
\]

All coefficients are positive. To show \(\beta_v > 0 \), use \(\bar{z} \equiv \bar{q} z (1 - q) + vpx (1 - c) q \) and get \(v_c h' = \pi_x - \bar{\pi}_z = [1 - (1 - c) q] vpx - [z\bar{q} (1 - q) - \theta (1 - k) cq] \). We thus have

\[
v_c h'' \beta_v = (1 - \gamma) [1 - (1 - c)q] vpx + \gamma [z\bar{q} (1 - q) - (1 - k) \theta cq].
\]

The first square bracket is positive. Note \(\dot{q} = \bar{q} (1 - q) = (1 - q^2) / 2 \), which is declining in \(q \) by \(d\bar{q} / dq = -q \). Hence, as \(q \) rises from 0 to 1, the second square bracket starts out positive and ends in the negative, falling from \(z/2 \) to \(- (1 - k) \theta c \). Since we evaluate differentials at \(k = 0 \), we get the threshold value

\[
1 - q^2 = q^2 \theta c / z \quad \iff \quad q^0 = -\frac{\theta c}{z} + \sqrt{1 + (\theta c/z)^2} > 0.
\]
A sufficient condition for $\beta_v > 0$ is $q = \frac{vpx(1-c) - \theta(1-k)c}{z} < q^\circ$. As $\frac{\theta c}{z} \to 0$, $q^\circ \to 1$, so that $q < q^\circ$ would be always satisfied for sensible parameter values. Hence, for $\theta c/z$ small, the last square bracket is positive, which is sufficient for $\beta_v > 0$. Even if β_v were negative in a degenerate case, the coefficient β_v would be small in magnitude in our main scenario of inelastic entry (large value of h''). The supply side reaction to a higher price in Proposition 1 would thus remain unaffected.

Supply Side Reactions: To derive the impact on aggregate supply, we start with (28) and substitute (24) for $d(1-c)q = (1-c) \cdot dq - q \cdot dc$ and (27) for dn_z, giving

$$dn'_z = \left[[1 - (1-c)q] \beta_v + (1-c) vpx \frac{(1-c)n_z}{z} \right] \cdot \hat{v}$$

$$- \left[(1-c) \frac{n_x}{z} - [1 - (1-c)q] \frac{q}{v\phi x} \right] c \cdot d\theta$$

$$+ \left[(1-c) \frac{n_x}{z} - [1 - (1-c)q] \frac{q}{v\phi x} \right] \theta c \cdot dk$$

$$- \left[q + \left((1-c) \frac{n_x}{z} - [1 - (1-c)q] \frac{q}{v\phi x} \right) \epsilon_{qc} \right] \cdot dc.$$

Inspecting (28) motivates the definition of a reallocation elasticity $\mu \equiv (1-c) n_z/z > 0$ and an entry elasticity $\eta \equiv [1 - (1-c)q] / (v_x h'') > 0$, leading to

$$dn'_x = \left[(1-c) \beta_v + (1-c) vpx \mu \right] \cdot \hat{v} - (\mu - \eta q) c \cdot d\theta$$

$$+ (\mu - \eta q) \theta c \cdot dk - [q + (\mu - \eta q) \epsilon_{qc}] \cdot dc,$$

where $\beta_v \equiv \eta vpx - \gamma h'/h'' > 0$ was already shown in (A.1). Reallocation strengthens the entry effect of a price increase. Using this in $dX = px \cdot dn'_x$ pins down the response in aggregate supply given in (29).

Trade Balance: We first calculate how liquidation costs c affect trade, $\sigma_c \equiv \gamma_s \delta_c - \gamma \alpha_c$. Substituting coefficients, separating the mechanical supply effect, collecting the other terms and using $\gamma_s = vpxn'_x/Y$ yields $\sigma_c = \gamma_s \frac{q}{n_x} + \left[\mu - \eta q - \gamma \frac{n_x}{vpx} \right] \frac{\gamma x}{n_x} + \gamma \frac{\pi - \pi_x}{Y} \beta_c$. Rewrite the square bracket by substituting $\mu = (1-c) n_z/z$, expand by $\frac{n_x}{vpx}$ and use $\theta c = vpx (1-c) - qz$ from (20), as evaluated at $k = 0$, which yields

$$\sigma_c = \left[q + \left(\frac{\theta c}{z} + (1-c) \frac{n_z}{vpx} - \eta q \right) \epsilon_{qc} \right] \frac{\gamma_s}{n_x} + \gamma \frac{\pi - \pi_x}{Y} \beta_c > 0.$$

(A.3)
The coefficient is positive if η is small and entry relatively inelastic.

To derive the effect of a higher premium θ, $\sigma_\theta \equiv \gamma_s \delta_\theta - \gamma \alpha_\theta$, substitute coefficients, isolate η, factor out γ_s/n'_x, substitute for γ_s and expand by $cq n_z/(vpx)$,

$$
\sigma_\theta = \left[\mu c + (1 - \gamma) \frac{cq n_z}{vpx} \frac{cq n_z}{vpx} \frac{\gamma_s}{n'_x} - \eta q c \gamma_s + \gamma \frac{\pi_x - \bar{\pi}_x}{Y} \beta_\theta. \right] (A.4)
$$

Next, substitute for μ, use again the liquidation decision (20), and factor out vpx to obtain

$$
\sigma_\theta = \frac{(1 - \gamma) cq n_z + \epsilon^2 \theta n_z/z - \eta q c \cdot vpx}{Y} + \gamma \frac{\pi_x - \bar{\pi}_x}{Y} \beta_\theta > 0, \quad (A.5)
$$

which is positive in our main scenario with a small or even negative entry elasticity.

B. World Economy

Bank Regulation: Capital standards k reduce the world price v^*, see (36). To obtain the effects on supply of the innovative sector, substitute for $\hat{v} = \hat{v}^* = -\omega \sigma_k / (\sigma_v^*) \cdot dk$ in (29) and use σ_k,

$$
\hat{X} = \left[\delta_k - \omega \cdot \delta_v \frac{\gamma_s \delta_k + \gamma \alpha_k}{\sigma_v^*} \right] \theta \cdot dk. \quad (B.1)
$$

Collecting terms and using $\sigma_v^* > \omega \gamma_s \delta_v$ from the definition of σ_v^* shows that the square bracket can be positive or negative:

$$
\delta_k \left(1 - \omega \frac{\gamma_s \delta_v}{\sigma_v^*} \right) - \omega \frac{\gamma \delta_v \alpha_k}{\sigma_v^*}. \quad (B.2)
$$

Aggregate income Y clearly decreases in capital requirements due to the negative direct effect and due to a lower world price, see (30). To get the effects on consumption C_x, we substitute for \hat{v}^* in (31):

$$
\hat{C}_x = - \left[\alpha_k - \omega \cdot (1 - \gamma_s - \alpha_v) \frac{\gamma_s \delta_k + \gamma \alpha_k}{\sigma_v^*} \right] \theta \cdot dk. \quad (B.3)
$$

Again, we note $\sigma_v^* > \omega \gamma (1 - \gamma_s - \alpha_v)$ such that $\omega \gamma (1 - \gamma_s - \alpha_v) / \sigma_v^* < 1$ and find that the sign of the expression in square brackets remains ambiguous:

$$
\alpha_k \left(1 - \omega \frac{\gamma (1 - \gamma_s - \alpha_v)}{\sigma_v^*} \right) - \omega \frac{\gamma \delta_k (1 - \gamma_s - \alpha_v)}{\sigma_v^*}. \quad (B.4)
$$
Substituting (B.1-B.4) into \(\hat{\zeta}_x = \gamma_s \cdot \hat{X} - \gamma \cdot \hat{C}_x \), collecting terms, factoring out the elasticity \(\sigma_k \equiv \gamma_s \delta_k + \gamma \alpha_k \), and finally using \(\sigma_v \equiv \gamma_s \delta_v + \gamma (1 - \gamma_s - \alpha_v) \) yields

\[
\hat{\zeta}_x = \left[1 - \omega \frac{\sigma_v}{\sigma_v^*} \right] \sigma_k \theta \cdot dk > 0. \tag{B.5}
\]

The definition of \(\sigma_v^* \) implies \(\sigma_v^* > \omega \sigma_v \) whence the square bracket is positive. Tighter capital requirements contribute to a higher trade surplus in innovative goods.

If the impact of the reforming country is not too large (\(\omega \to 0 \)), policy effects are qualitatively the same as in the small open economy, \(\hat{X} > 0 > \hat{C}_x \). Supply rises and demand falls, although to a smaller extent. When the country is large relative to the rest of the world, the adjustment in supply and demand become ambiguous. In view of (B.5), only two other cases are possible: either demand rises but supply even more, \(\gamma_s \cdot \hat{X} > \gamma \cdot \hat{C}_x > 0 \); or demand falls but supply shrinks even more, \(0 > \gamma \cdot \hat{C}_x > \gamma_s \cdot \hat{X} \).

Institutional Reforms: Higher liquidation costs and an increased costs of bank equity (higher \(\varsigma \) and \(\vartheta \) correspond to an institutional deterioration) reduce net exports and raise the world price of innovative goods, see Lemma 1. Substituting the price reaction in (36) into (29) together with \(\sigma_c = \gamma_s \delta_c - \gamma q_Y \) and \(\sigma_\theta = \gamma_s \delta_\theta - \gamma e_Y \) gives

\[
\hat{X} = - \left[\delta_c - \omega \delta_v \frac{\gamma_s \delta_c - \gamma \alpha_c}{\sigma_v^*} \right] \cdot dc - \left[\delta_\theta - \omega \delta_v \frac{\gamma_s \delta_\theta - \gamma \alpha_\theta}{\sigma_v^*} \right] \cdot d\theta. \tag{B.6}
\]

The change in the world price weakens the adjustment to shocks that would obtain in a small open economy (\(\omega \to 0 \)). Using \(\sigma_c^* > \omega \sigma_v > \gamma_s \delta_v \) and collecting terms reveals that both expressions in square brackets are positive:

\[
\left[\delta_c \left(1 - \omega \frac{\delta_c \gamma_s}{\sigma_c^*} \right) + \omega \frac{\delta_s \gamma \alpha_c}{\sigma_c^*} \right] > 0, \quad \left[\delta_\theta \left(1 - \omega \frac{\delta_\theta \gamma_s}{\sigma_\theta^*} \right) + \omega \frac{\delta_s \gamma \alpha_\theta}{\sigma_\theta^*} \right] > 0. \tag{B.7}
\]

Domestic supply of \(x \)-goods decreases in liquidation cost and the cost of equity funding even when taking into account the world price effect. By (27), more firms directly enter into the \(x \)-sector. The rising world price works in the same direction. The reduction in aggregate supply thus results from a declining reallocation rate \((1 - c) q \).
Similarly, we get the effects on consumption demand by substituting for \(\hat{v}^\ast \) into (31):

\[
\hat{C}_x = \left[\alpha_c + \omega (1 - \gamma_s - \alpha_v) \frac{\gamma \delta_s - \gamma \alpha_v}{\sigma_v} \right] \cdot dc \\
- \left[\alpha_\theta + \omega (1 - \gamma_s - \alpha_v) \frac{\gamma \delta_\theta - \gamma \alpha_\theta}{\sigma_v} \right] \cdot d\theta.
\]

(B.8)

Noting \(\sigma_v^\ast > \omega \sigma_v > \omega \gamma (1 - \gamma_s - \alpha_v) \), we find that the square brackets are positive such that consumption of the \(x \)-good decreases in liquidation cost and equity premium:

\[
\left[\alpha_c \left(1 - \omega \frac{\gamma (1 - \gamma_s - \alpha_v)}{\sigma_v^\ast} \right) + \omega \frac{\gamma (1 - \gamma_s - \alpha_v) \delta_c}{\sigma_v^\ast} \right] > 0,
\]

\[
\left[\alpha_\theta \left(1 - \omega \frac{(1 - \gamma_s - \alpha_v) \gamma}{\sigma_v} \right) + \omega \frac{(1 - \gamma_s - \alpha_v) \gamma \delta_\theta}{\sigma_v^\ast} \right] > 0.
\]

(B.9)

The institutional shocks reduce both supply and demand of \(x \)-goods and thus have an offsetting effect on the trade balance. To assess the net effect, substitute (B.6-B.9) into \(\hat{\zeta}_x = \gamma_s \cdot \hat{X} - \gamma \cdot \hat{C}_x \), collect terms, factor out \(\sigma_c \equiv \gamma_s \delta_c - \gamma \alpha_c \) and \(\sigma_\theta \equiv \gamma_s \delta_\theta - \gamma \alpha_\theta \), and finally use \(\sigma_v \equiv \gamma_s \delta_v + \gamma (1 - \gamma_s - \alpha_v) \) to get

\[
\hat{\zeta}_x = - \left[1 - \omega \frac{\sigma_v}{\sigma_v^\ast} \right] (\sigma_c \cdot dc + \sigma_\theta \cdot d\theta).
\]

(B.10)

As before, \(\sigma_v^\ast > \omega \sigma_v \) so that the square bracket is positive. World market clearing requires a smaller domestic trade surplus. Recall that the world market price rises with \(c \) and \(\theta \) (see Lemma 1). As a result, other countries record smaller trade deficits or larger surpluses, \(\hat{\zeta}_x = \sigma_v^i \cdot \hat{v}^\ast \). Since the domestic economy is a net exporter, the rest of the world jointly runs a smaller trade deficit which requires a smaller export surplus of the home country.

References

