COMMUNICATION, CREDIT PROVISION AND LOAN REPAYMENT: EVIDENCE FROM A PERSON-TO-PERSON LENDING EXPERIMENT

MARTIN BROWN
JAN SCHMITZ
CHRISTIAN ZEHNDER

WORKING PAPERS ON FINANCE NO. 2018/19

SWISS INSTITUTE OF BANKING AND FINANCE (S/BF – HSG)

AUGUST 2018
THIS VERSION: AUGUST 2020
Communication, Credit Provision and Loan Repayment: Evidence from a Person-to-Person Lending Experiment

Martin Brown* Jan Schmitz† Christian Zehnder‡

August 31, 2020

Abstract

We report the results of a laboratory experiment which examines the impact of pre-contractual communication in person-to-person lending. We show that potential hidden action undermines the positive effect of communication on repayment behavior and credit provision. When strategic defaults by borrowers are revealed to lenders, pre-contractual communication reduces strategic default and increases credit provision. When strategic defaults are hidden behind a veil of uncertainty, we find a substantially weaker impact of communication. Borrowers are more likely to renege on repayment promises when they can hide opportunistic behavior from lenders. These findings have important implications for the design of lending relationships and procedures: Pre-contractual communication and post-contractual monitoring go hand in hand.

Keywords: Strategic Default, Communication, Trust Game

JEL codes: G21, G41, C91

*University of St.Gallen, Unterer Graben 21, CH-9000 St.Gallen, Mail: martin.brown@unisg.ch.
†Radboud University, Heyendaalseweg 141, NL-6525AJ Nijmegen, j.schmitz@fm.ru.nl.
‡University of Lausanne, UNIL-Dorigny, Internef 612, CH-1015 Lausanne, Mail: christian.zehnder@unil.ch.
1 Introduction

In this paper we examine the impact of pre-contractual communication on credit provision. Managing credit risk is a key challenge for banks and non-bank lending institutions. Credit relationships are plagued by asymmetric information which give rise to potential opportunistic behavior. In consumer lending, moral incentives influence the willingness of borrowers to repay and thus the exposure of lenders to credit risk (Guiso et al., 2013). Recent studies document that post-contractual communication in the form of text messages emphasizing relational aspects (Karlan et al., 2016) or morality (Bursztyn et al., 2019) can reduce default rates. However, evidence in economics and psychology suggests that also ex-ante communication may mitigate opportunism and foster cooperation and ethical behavior (see, e.g., Balliet, 2009; Ellman & Pezanis-Christou, 2010; Brandts et al., 2015).

Causal effects of borrower-lender communication on credit provision and repayment behavior are hard to study with observational field data. First, the decision to communicate is endogenous and may depend on unobservable borrower characteristics that also affect behavior within the lending relationship. Second, repayment choices are hard to identify with field data as strategic defaults by solvent borrowers can rarely be perfectly disentangled from forced defaults by borrowers who do not have the means to repay. We therefore study the effect of pre-contractual borrower communication in the controlled environment of the laboratory. This allows us not only to exogenously vary a borrower’s ability to communicate, but also to perfectly disentangle strategic defaults from forced defaults.

Our laboratory experiment allows us to study (i) whether borrowers endogenously choose to make pre-contractual repayment promises to lenders, (ii) whether these repayment promises are kept or broken and (iii) how repayment promises affect the credit provision by lenders. Importantly, we also manipulate the potential for borrowers to conceal strategic defaults.

We study a variation of the trust game (Berg et al., 1995). In this game, the lender (first mover) can extend credit to the borrower (second mover) who decides whether to repay or
not. [Karlan (2005)] documents that second mover behavior in this game predicts repayment behavior in real credit markets. We add a “hidden action” condition in which the ability of the borrower to repay the lender is stochastic and strategic defaults are not revealed to the lender. We compare the hidden action condition to a baseline condition in which borrowers can always repay if they want to and thus strategic defaults are automatically revealed to the lender. In both conditions we compare a treatment with pre-contractual communication to a treatment without communication. In the communication treatments borrowers can send free form text messages to the paired lender before the lender makes his decision on credit provision. The borrower thus has the opportunity to promise that she will repay.

Our conjecture is that in the hidden action condition the impact of communication on credit provision and repayment behavior is undermined. If lenders anticipate that borrowers who can hide opportunistic behavior may be more likely to renege on promises to repay, they are less likely to extend large loans to borrowers. Our data supports this mechanism: We find that communication has a significantly positive effect on the average credit volume and repayment frequency in the baseline condition when opportunistic behavior is revealed to the lender. In this condition, communication leads to higher average payoffs for both lenders and borrowers. By contrast, in our hidden action condition the effect of communication is weak. In this environment, communication does not reduce strategic default, credit volumes are only slightly higher compared to the no-communication treatment, and borrower or lender payoffs do not increase. Difference-in-difference estimates confirm a weaker impact of communication on credit provision and payoffs in the hidden action condition compared to the baseline condition.

In the hidden action condition lender incomes are in expectation lower than in the baseline condition, because some borrowers are forced to default. To exclude that our main results are driven by a direct effect of uncertainty, we also conduct a third condition. In this “revealed action” condition the ability of a borrower to repay is stochastic (as in the hidden action condition) but borrower income and thus the repayment decision is revealed to the paired lender after each period (as in the baseline condition). We find that the positive impact of
communication on credit provision, repayment behavior and payoffs is restored in this condition.

Our paper contributes to the literature on credit provision and loan repayment in retail lending. A broad body of empirical studies documents that lender and borrower behavior are systematically influenced by bankruptcy laws (Ghent & Kudlyak 2011; Gropp et al. 1997), credit information sharing (Brown & Zehnder 2007; Liberman 2016; Pagano & Jappelli 1993), and collateral (Mian & Sufi 2011; Stroebel 2016). Recent evidence also suggests an important role for moral constraints and social norms in reducing loan default and fostering credit provision in retail markets (Karlan 2005; Guiso et al. 2013; Fisman et al. 2017). Most closely related to our paper, there is recent evidence suggesting that moral incentives induced by post-contractual lender-borrower communication can improve repayment in consumer lending. Bursztyn et al. (2019) report on a field experiment which randomly varied the content of text-message based reminders to a sample of already delinquent credit card borrowers. They show that text messages which emphasize the immorality of loan delinquencies are associated with higher subsequent repayment rates. Karlan et al. (2016) report on a similar experiment which randomized the content of text message reminders to microfinance clients prior to the due repayment date. They show that text messages which emphasize the personal relationship between the loan officer and the borrower are associated with higher repayment rates. From a management perspective, the findings of both papers inform on how to interact with borrowers in the post-contractual loan monitoring and loan recovery process.\footnote{Using observational data, Laudenbach et al. (2018) find support for the effectiveness of personal as opposed to impersonal communication. Delinquent borrowers who receive a phone call in addition to a reminder letter are more likely to make repayments compared with borrowers who only receive a reminder by mail. Ahlin & Townsend (2007) provide evidence that social sanctions encourage repayment of loans in rural Thailand. Breza (2012) shows that peer effects play an important role in fostering loan repayment.}

We build on the findings of Bursztyn et al. (2019) and Karlan et al. (2016) to examine how pre-contractual communication between lenders and borrowers impacts on repayment behavior and credit provision. Moreover, we explore how the impact of pre-contractual communication is influenced by information conditions of the lender. Our findings suggest that pre-contractual communication is more effective in reducing credit risk, when borrowers anticipate that strategic
defaults will be revealed to the lender. From a management perspective, our results thus inform on how to jointly design pre-contractual lender-borrower interaction with post-contractual loan monitoring.

We also contribute to the broad literature on communication and trust in behavioral economics (see, e.g., Cooper & Kühl 2014; Balliet 2009; Lei et al. 2014). Most experimental studies on the effect of communication focus on strategic interaction in deterministic economic environments (see, e.g., Ben-Ner & Putterman 2009). In these environments, observed outcomes perfectly reveal the behavior of the trading partner. In credit markets by contrast, borrowers are exposed to potential income or expenditure shocks. In such risky or uncertain economic environments, lenders have a hard time distinguishing between a borrower’s inability to repay a loan (forced default) and the unwillingness to repay a loan (strategic default). Borrowers may therefore hide behind the veil of economic uncertainty and pretend to be incapable of repayment while they are actually solvent. Stochastic economic environments may thus undermine the beneficial effects of communication as borrowers who renege on promises to repay are not exposed.

Charness & Dufwenberg (2006) provide first empirical evidence on the effect of communication in stochastic economic conditions. They find that communication increases trust and trustworthiness in situations with low levels of uncertainty and hidden action. Our experiment differs from Charness & Dufwenberg (2006) in two key dimensions. First, our hidden action condition features greater uncertainty about the ability of borrowers to repay. We conjecture that significant uncertainty about borrower income may undermine the beneficial effect of communication as it makes it easier for borrowers to conceal opportunistic behavior. Second, we benchmark the effect of communication in our hidden action condition to its effect in a baseline condition without uncertainty. This allows us to identify the differential impact of communication on trust and trustworthiness.

Literature exploring behavior in the absence of communication in environments where subjects can hide their behavior shows that pro-sociality may decrease (Brown et al. 2016; Dana et al. 2007; DellaVigna et al. 2012; Exley 2015; Guiso et al. 2013; Xiao & Kunreuther 2016). However, there are also exceptions where possibilities to hide opportunistic behavior do not increase selfishness (van der Weele et al. 2014).
of communication in an environment with/without hidden action. Our findings suggest that when opportunistic behavior can be well concealed, the effect of communication is significantly weakened. We thus support previous evidence that borrowers not only have a preference for promise-keeping (Ellingsen & Johannesson, 2004; Vanberg, 2008) but also have a preference for being seen as honest (Abeler et al., 2019).

The remainder of this paper is organized as follows: In Section 2 we present and discuss the experiment design. In Section 3 we provide theoretical predictions by treatment and derive testable hypothesis for our cross-treatment comparisons. In Section 4 we present our results and Section 5 discusses our findings.

2 Experimental Design

2.1 Trust Game

We implement a repeated trust game with a strangers matching protocol. Subjects are randomly assigned to be either a borrower (she) or a lender (he) in a matching group of 10 subjects (5 lenders and 5 borrowers) for 10 periods. In each period, one borrower and one lender out of a matching group interact with each other. In each period, lenders and borrowers have the same endowment of 150 points. Lenders can issue a credit of 10, 40, 70 or 100 points from their endowment to the paired borrower. Borrowers yield an investment return which is four times the credit size. Hence, if a borrower receives a credit of 10 (40, 70, 100) points, she yields a

3In Charness & Dufwenberg subjects further only make one decision while our experiment gathers more observations on the individual level when subjects decide on credit sizes and repayment in several periods. Lastly, the strategy set is broader in our experiment (lenders can decide on a credit size from a set of four credits and borrowers decide on repayment for each credit size). Charness & Dufwenberg limit the decision space to binary choices (trust/do not trust and be trustworthy/not being trustworthy) in presence and absence of communication.

4The results of our study also also add to the broader literature on lying aversion (see, e.g., Erat & Gneezy 2012, Fischbacher & Föllmi-Heusi 2013, Gneezy et al. 2013, Lópe-Pérez & Spiegelman 2013, Vanberg 2017) and truth telling (see, e.g., Ellingsen & Ostling 2010, Kartik et al. 2007, 2014; Matsushima 2008). Our findings are in line with recent experimental evidence by Gneezy et al. (2018) who show that people lie more often when their actions cannot be observed by an experimenter.
return of 40 (160, 280, 400) points, respectively.

Borrowers’ decisions are elicited with the strategy method: Each borrower decides to repay or not for each of the possible credit sizes before she is informed about the credit choice of the paired lender. We fix repayments to 2.5 times the credit size. Thus, a borrower’s repayment obligation for a credit of 10 (40, 70, 100) points is 25 (100, 175, 250) points. This parameter choice enables borrowers to implement an equal split of income between themselves and the paired lender for every credit size. The payoff of the lender is given by his endowment minus the credit size plus the repayment by the borrower. The payoff of the borrower is given by her endowment plus the investment return minus the repayment. Table 1 presents the lender and borrower payoffs for each credit size and repayment choice.

<table>
<thead>
<tr>
<th>Credit size</th>
<th>Investment Return</th>
<th>Investment Repayment due</th>
<th>Borrower’s Income with repayment</th>
<th>Borrower’s Income without repayment</th>
<th>Lender’s Income with repayment</th>
<th>Lender’s Income without repayment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>40</td>
<td>25</td>
<td>165</td>
<td>190</td>
<td>165</td>
<td>140</td>
</tr>
<tr>
<td>40</td>
<td>160</td>
<td>100</td>
<td>210</td>
<td>310</td>
<td>210</td>
<td>110</td>
</tr>
<tr>
<td>70</td>
<td>280</td>
<td>175</td>
<td>255</td>
<td>430</td>
<td>255</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
<td>250</td>
<td>300</td>
<td>550</td>
<td>300</td>
<td>50</td>
</tr>
</tbody>
</table>

Note: Trust game payoffs for borrowers and lenders for each credit size with repayment and without repayment.

After borrowers and lenders make their decisions, the period payoffs are realized. Borrowers and lenders are then randomly re-assigned to new pairs within their matching group for the next period. Borrowers and lenders only learn their own payoffs at the end of each period. However, given the deterministic nature of borrower income, both borrowers and lenders can calculate the payoff of their trading partner.

To facilitate learning, we provide lenders in period six with the information about the total number of issued credits by size, the total number of repaid credits by credit size and the average earnings of lenders by credit size in period 1-5. Furthermore, in period one, five and ten, lenders were asked to state their belief about how many borrowers in their matching group will repay their credits. Lender beliefs were not incentivized.

5Lenders and Borrowers were told in the instructions that they would receive this aggregate information.
6We discuss lender beliefs in Online Appendix B.3
2.2 Main Treatments

Our aim is to study how the ability of borrowers to hide opportunistic behavior affects the impact of communication in this person-to-person lending game. To this end we study four main treatments in a 2x2 design.

First, we vary the borrowers’ ability to hide opportunistic behavior. In our “baseline” condition described above, the borrower’s income is deterministic: She always yields a return which is four times the credit size. In this condition it is common knowledge that the borrower always has the ability to repay a loan. As a consequence any non-repayment of a loan is automatically identified as a strategic default. We compare this baseline condition to a “hidden action” condition in which the return of the borrower is stochastic. With probability $p = \frac{2}{3}$, the borrower’s return is four times the credit size. With the counter probability $1 - p = \frac{1}{3}$, the borrower’s return is zero and the borrower is forced to default. In this condition the income of a borrower is not revealed to the paired lender. As a consequence, lenders cannot disentangle whether the non-repayment of a loan is due to a strategic default or a forced default.

Second, we vary the ability of borrowers and lenders to communicate with each other. In the “no communication” condition borrowers cannot communicate with lenders. In the “communication” condition we allow for non-binding pre-play communication. Borrowers can send a text message with a maximum of 300 characters to the paired lender – before the lender makes his decision about the credit size. Lenders can read the message but cannot respond. Borrowers in the communication treatments thus have the possibility to promise that they will repay specific credit sizes (if they have the income to do so). Promises are, however, cheap talk because (i) they are non-binding for that period, and (ii) interaction is anonymous and lenders and borrowers are randomly rematched each period.

Our two main variations lead to four treatments (see Table 2 for a treatment overview): The Communication - Baseline (C-B) treatment, the No Communication - Baseline

\footnote{We assume that the borrower’s endowment is illiquid and cannot be used to repay a loan.}
(N-B) treatment, the Communication - Hidden Action (C-H) treatment, and the No Communication - Hidden Action (N-H) treatment. These four treatments allow us to compare the effect of communication on lender credit provision, borrower repayment behavior and payoffs under hidden action to that under the baseline condition. We are interested in the differential effect of communication between these two conditions.

Table 2: Treatment overview

<table>
<thead>
<tr>
<th>Borrower income:</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Revealed</td>
<td>Hidden</td>
</tr>
<tr>
<td>Communication</td>
<td>No Communication (N-B)</td>
<td>Hidden action (N-H)</td>
</tr>
<tr>
<td>Communication</td>
<td>Yes Communication (C-B)</td>
<td>Hidden action (C-H)</td>
</tr>
</tbody>
</table>

2.3 Additional Treatments

The hidden action condition allows borrowers to conceal strategic defaults because their income is stochastic and is not revealed to lenders. Our conjecture is that this condition undermines the effectiveness of communication as borrowers may be more likely to renege on promises to repay. However, compared to the baseline condition the hidden action condition is also characterized by stochastic borrower income and thus lower expected payoffs for borrowers and lenders. Thus any differential effect of communication between the two conditions could potentially be attributable to the greater uncertainty and/or an income effect, rather than to the ability of borrowers to hide opportunistic behavior.

In order to assess the role of hidden action as opposed to the effect of uncertainty and income effects, we study the effect of communication in a third condition. In the “revealed action” condition, borrower income is stochastic, however the realized borrower income and thus borrower repayment choice is revealed to the lender after each period. In this condition, it is common knowledge that lenders can disentangle whether a borrower defaulted strategically or was forced to do so due to lack of income. We again implement a treatment without
communication *No Communication - Revealed Action (N-R)*, and a treatment with communication *Communication - Revealed Action (C-R).*

2.4 Procedures

The experiment was conducted between March and May 2015 (main treatments) and between May and June 2017 (additional treatments) at the University of Hamburg Experimental Laboratory. The experiment was programmed in z-Tree (Fischbacher, 2007) and subjects were recruited using hroot (Bock et al., 2014). 600 subjects participated in 30 sessions of the experiment. There were 20 subjects in each session, so that we elicited 2 observations at the matching group level per session. At the end of each session, two periods (one period from period 1-5 and one period from period 6-10) were randomly chosen for payments. A session lasted about 80 minutes and subjects earned on average 13.66 Euro. Roughly half of the subjects were female (55%) and subjects were on average 25 years old. Online Appendix B.4 shows that these key socio-demographics of subjects are balanced across treatments.

Upon arrival, subjects had to pick a number from a shuffled deck of cards (numbers 1-20). The number determined their computer cubical and whether they were a borrower or a lender. Subjects then had to read a set of instructions. While borrowers and lenders had individual instructions, both were informed about the action set, information set, and payoff consequences for the respective other role. Before the experiment started, subjects had to answer a set of computerized control questions. The experiment only started after all subjects answered the control questions correctly. After the experiment, we asked subjects to fill in a questionnaire in which we elicited socio economic variables.

8Note: The data for the NR and CR treatments were collected in 2017. Therefore, we ran two additional sessions also in the NC and NH treatment to highlight the consistency of subject behavior across years. Table 14 in Online Appendix B.5 presents 2015 and 2017 summary statistics for these treatments.

9The average student salary in Germany is 10 Euro per hour.
2.5 Discussion of the Design

There are four design choices in our experiment which warrant particular discussion. The first relates to the type of uncertainty we implement in the “hidden action” condition. In our experiment, the borrower’s investment income is the only stochastic variable. Lenders must fear that a borrower may not be able to repay a loan, even if she wants to. Our choice of uncertainty reflects the potential solvency or liquidity risk of borrowers in credit markets. The stochastic nature of borrowers’ income is particularly interesting when studying the role of pre-play communication. In particular, borrowers may promise to repay loans, but then hide behind their potential solvency risk when breaking these promises and defaulting strategically.

A second major design choice is the type of communication we implement. We study pre-contractual communication by borrowers. We choose one-sided communication by borrowers only, as previous evidence has shown that second-mover communication can strongly influence the behavior of both second-mover and first-mover behavior in trust games (Charness & Dufwenberg, 2006; Ben-Ner & Putterman, 2009). Pre-play communication allows second-movers to signal their type and intentions to first-movers. Thus this direction of communication is particularly important in a strategic situation where the first movers cannot enforce second-mover behavior and have imperfect information about the type and behavior of second movers. Note that the borrower communication implemented in our experiment differs from that in recent field experiments which exogenously vary post-contractual lender communication (Bursztyn et al., 2019; Karlan et al., 2016). This reflects the difference in research questions between the studies. Karlan et al. (2016) and Bursztyn et al. (2019) are interested in how reminders and moral appeals from lenders affect the propensity of borrowers to repay outstanding loans. We are interested in how communication by borrowers about their intended repayment behavior can foster lending in the first place. We allow borrowers to communicate via (free-form) text messages only, rather than communicating face to face with lenders. We choose this type of communication in order to study the effect of communication in an anonymous,
one-shot interaction and to be able to rule out any dynamic incentives from potential repeated interaction.\footnote{\footnotetext{We are aware that face-to-face communication may enhance cooperation more than anonymous (see, e.g., \cite{Balliet2009} for a meta-analysis). However, assuming that treatment effects are constant across conditions, our results should hold.}}

A third design choice concerns the strategy space of the lenders. In our experiment, lenders could choose between a loan of 10, 40, 70 or 100. They were thus not able to abstain from lending at all. We forced lenders to make a loan of at least 10 in order to circumvent “certainty” effects. Previous research has demonstrated that agents have a strong preference for certain rather than risky (or ambiguous) prospects \cite{KahnemanTversky1979}. In our experiment, lenders were exposed to the risk of non-repayment no matter what loan size they chose. On the other hand we limited the number of non-minimum loan sizes to three, i.e., a small loan (40), a medium loan (70) and a large loan (100). We chose to limit the strategy space of lenders to simplify the elicitation of borrower repayment choices.

Our fourth major design choice was to elicit borrowers repayment decisions with the strategy method. In each period, a borrower had to state whether she would repay a loan size of 10, 40, 70 or 100 if (i) she received such a loan, and (ii) she was able to repay the loan (in the hidden action condition). We chose to elicit borrower choices with the strategy method in order to get a complete picture of intended repayment behavior, no matter which loan size was actually offered to the borrower. Also, in the hidden action condition (and revealed action condition) we can elicit intended repayment behavior even for those borrowers who are forced to default. In a survey of the literature \cite{BrandtsCharness2011} find no systematic difference in first-mover or second-mover behavior in trust / investment games which compare the strategy method to direct response elicitation.
3 Predictions and Hypotheses

In this section we derive predictions for our treatments and establish testable hypotheses for cross-treatment comparisons. Recent evidence suggests that repayment behavior in personal loan markets is influenced by social norms and moral constraints (Guiso et al., 2013; Bursztyn et al., 2019). Previous studies in the field and the lab have also documented that second mover behavior in the trust game is influenced by moral concerns and that first movers anticipate such prosocial behavior (Karlan, 2005; Johnson & Mislin, 2011). In the context of our experiment, we therefore expect that some lenders will offer loans which exceed the minimum credit size and some borrowers will choose to repay loans.

In the following we derive predictions for our treatments and establish testable hypotheses for cross-treatment effects. We build on a model in which borrowers differ in their personal (moral) costs of strategic default. Lenders cannot identify borrower types and have heterogeneous beliefs about the distribution of borrowers’ costs of strategic default.

3.1 Borrower and Lender Behavior

We assume that the utility of a borrower i can be modeled as

$$U_i = e_i + \theta \cdot c - r_i(c) \cdot \beta \cdot c - (1 - r_i(c)) \cdot k_i(c), \tag{1}$$

where c is the loan amount received and $r_i(c) = \{0; 1\}$ is the repayment decision of the borrower for a loan of size c. The parameter e_i is the borrowers endowment, θ is the investment return per unit of credit and β is the required repayment per unit of credit. Each borrower suffers a personal cost $k_i(c)$ if she defaults strategically on a loan of size c.

To simplify our analysis we assume that lenders can either offer no credit or a credit of size $c_{max} > 0$. From equation (1) it follows that a borrower who has received a loan c_{max} will repay this loan, i.e. $r(c_{max}) = 1$, if
\[k_i(c_{\text{max}}) \geq \beta \cdot c_{\text{max}}. \]

(2)

We impose three assumptions on borrowers’ personal costs of strategic default \(k_i(c_{\text{max}}) \). First, we assume that personal costs of strategic default are heterogeneous across borrowers. Second, we assume that for each borrower the cost of strategic default is higher if she had previously promised to repay that loan. Third, we assume that the personal cost due to a broken promise is higher if the strategic default is revealed to the lender than if it is hidden from the lender. To be specific, we assume that the personal cost of strategic default in the case of no prior promise to repay \(k_i \) is distributed uniformly across borrowers on the range \([0, k_{\text{max}}]\), where \(k_{\text{max}} > \beta \cdot c_{\text{max}} \) to ensure that some borrowers are always willing to repay. We further assume that for each borrower \(i \) the personal cost of default after promising to repay is \((1 + \alpha_H) \cdot k_i \) if the strategic default is not revealed to the lender and \((1 + \alpha_R) \cdot k_i \) if the strategic default is revealed to the lender, where \(\alpha_R > \alpha_H > 0 \).

In line with (Guiso et al., 2013) our behavioral assumptions for borrowers imply that moral constraints affect the decision to default strategically. Our specific assumptions are consistent with evidence which suggests that individuals have a preference for promise keeping (Ellingsen & Johannesson, 2004; Vanberg, 2008). They are also consistent with recent evidence suggesting that individuals have a preference for being seen as honest (Abeler et al., 2019).

Based on the assumptions above we can define four main types of borrowers (see Figure 1):

- **Type “A”** borrowers repay a loan of \(c_{\text{max}} \) even if they have not promised to do so. These are the borrowers for which: \(k_i \geq \beta \cdot c_{\text{max}} \).

- **Type “B”** borrowers always repay a loan of \(c_{\text{max}} \) if they have promised to repay that loan. However, they will not repay if they did not promise to do so. These are the borrowers for which: \((1 + \alpha_H) \cdot k_i \geq \beta \cdot c_{\text{max}} > k_i \).

- **Type “C”** borrowers repay a loan of \(c_{\text{max}} \) only if they have promised to repay that loan and...
strategic defaults are revealed to lenders. These are the borrowers for which: \((1+\alpha_R) \cdot k_i \geq \beta \cdot c_{max} > (1 + \alpha_H) \cdot k_i\).

- Type “D” borrowers never repay a loan of \(c_{max}\). These are the borrowers for which:
 \((1 + \alpha_R) \cdot k_i < \beta \cdot c_{max} \).

We define \(k^*\) as the threshold of moral costs above which borrowers will repay a loan of \(c_{max}\), i.e. all borrowers with \(k_i \geq k^*\) will choose to repay. From Figure 1 it follows that the threshold \(k^*\) depends on (i) whether borrowers promised to repay a loan, and (ii) whether strategic defaults will be revealed to lenders. If no borrower has promised to repay we have \(k^* = \beta \cdot c_{max}\). If borrowers have promised to repay and strategic defaults are revealed we have \(k^* = \frac{\beta \cdot c_{max}}{1 + \alpha_R}\). If borrowers have promised to repay and strategic defaults are not revealed we have \(k^* = \frac{\beta \cdot c_{max}}{1 + \alpha_H}\).

For each lender \(j\) the expected payoff \(L_j\) is given by

\[L_j = e_j - c + p \cdot \lambda_j(c) \cdot \beta \cdot c,\]

where \(p\) is the probability that the borrower can repay the loan and \(\lambda_j(c)\) is the belief of lender \(j\) about the repayment choice of the borrower.

From equation (3) it follows that a lender \(j\) will prefer to offer \(c_{max}\) rather than no credit if:

\[\lambda_j(c_{max}) \geq \frac{1}{\beta \cdot p},\]

We assume that lenders have heterogeneous beliefs about the repayment choice of borrowers \(\lambda_j(c_{max})\) arising from individual beliefs about the distribution of the personal costs of default \(k_i\). Each lender \(j\) believes that these costs are distributed uniformly across borrowers on the range \([0, k_j]\), with \(k_j = k_{max} \cdot b_j\). We assume that \(b_j\) is distributed uniformly across lenders with \(E[b_j] = 1\) so that some lenders are overoptimistic about the repayment behavior of borrowers \(b_j > 1\), while others are pessimistic \(b_j < 1\). On average, lenders’ beliefs are consistent with the
actual distribution of borrowers’ personal costs of strategic default.

Suppose a lender with belief b_j expects all borrowers with $k_i \geq k^*$ to repay a loan c_{max}. The lenders belief about the repayment choice of any borrower is thus:

$$\lambda_j(c_{max}) = 1 - \frac{k^*}{b_j \cdot k_{max}}.$$ \hspace{1cm} (5)

From equation (2) and (3) it follows that - conditional on k^* - all lenders will offer the loan c_{max} for which b_j is at least:

$$b^*(k^*) = \frac{\beta \cdot p \cdot k^*}{(\beta \cdot p - 1) \cdot k_{max}}.$$ \hspace{1cm} (6)
Figure 1: Borrower types

- **Type D**: Never repay c_{\max}
- **Type C**: Repay c_{\max} only if it promise to do so, and if strategic defaults are revealed to lender
- **Type B**: Repay c_{\max} only if promise to do so.
- **Type A**: Repay c_{\max} even if do not promise to do so.

Mathematical expressions:
- 0
- $\frac{\beta \cdot c_{\max}}{1 + \alpha_r}$
- $\frac{\beta \cdot c_{\max}}{1 + \alpha_h}$
- $\beta \cdot c_{\max}$
- k_{\max}
Table 3: Equilibrium Predictions

<table>
<thead>
<tr>
<th>Treatments</th>
<th>No Communication Equilibria</th>
<th>Communication Equilibria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-B</td>
<td>N-H</td>
</tr>
<tr>
<td>k^*</td>
<td>$\beta \cdot c_{\text{max}}$</td>
<td>$\beta \cdot c_{\text{max}}$</td>
</tr>
<tr>
<td>b^*</td>
<td>$\frac{\beta^2 \cdot c_{\text{max}}}{k_{\text{max}} (\beta-1)}$</td>
<td>$\frac{\frac{2}{3} \beta^2 \cdot c_{\text{max}}}{k_{\text{max}} (\frac{4}{3} \beta-1)}$</td>
</tr>
</tbody>
</table>

Note: Overview of equilibrium predictions without communication (Columns 1-3) and with communication (Columns 4-6). k^* defines the threshold of moral costs above which borrowers repay credits. b^* represents the threshold of beliefs about maximum moral costs of default above which lenders offer credits. Note that for all three communication treatments (C-B, C-H, C-R) an equilibrium without and with communication exist.
3.2 Predictions by Treatment

Propositions 1-4 provide equilibrium predictions by treatment. Table 3 summarizes the resulting equilibrium conditions for the threshold of moral costs k^* above which borrowers choose to repay and the threshold of beliefs b^* above which lenders will offer c_{max}.

 Proposition 1 presents our equilibrium predictions for the no communication treatments (N-B, N-H, N-R). As borrowers cannot make promises to lenders, the personal cost of strategic default for any borrower is identical in all three treatments. As a consequence, the prediction for borrower behavior (k^*) is identical in all three treatments: only Type A borrowers choose to repay. The difference in predictions between treatments arises from the fact that the probability that borrowers will be able to repay is higher in the N-B ($p = 1$) than in the N-H or N-R treatments ($p = 2/3$). As a consequence, the threshold belief b^* above which a lender will offer the maximum credit is lower in the N-B than in the N-H or N-R treatments.

Proposition 1 (Equilibria in N-B, N-H and N-R treatments).

- In the no communication treatments, only type A borrowers choose to repay the maximum loan size. The threshold of personal default costs above which loans are repaid is: $k^*_{N-B} = k^*_{N-H} = k^*_{N-R} = \beta \cdot c_{\text{max}}$.

- In the N-B treatment, the threshold belief above which lenders choose to offer c_{max} is: $b^*_{N-B} = \frac{\beta^2 \cdot c_{\text{max}}}{k_{\text{max}} (\beta - 1)}$.

- In the N-H and N-R treatments, the threshold belief above which lenders choose to offer c_{max} is: $b^*_{N-H} = b^*_{N-R} = \frac{\beta^2 \cdot \frac{2}{3} \cdot c_{\text{max}}}{k_{\text{max}} (\beta - \frac{2}{3} - 1)}$.

Proof: see Appendix.

In the treatments with communication (C-B, C-H, C-R) borrowers can send messages to lenders before the lenders make their decisions. In particular, borrowers can promise to repay loans. As borrowers are heterogeneous in their personal cost of strategic default k_i and lenders
cannot distinguish borrowers by type, the ability to send non-binding messages implies that interaction in the communication treatments resembles a signalling game. Proposition 2 shows that in this signalling game a pooling equilibrium without communication, i.e., an equilibrium in which no borrower promises to repay c_{max}, exists for all three treatments. In such an equilibrium the behavior of borrowers and lenders is identical to that in the corresponding no communication treatments.

Proposition 2 (No communication outcome equilibrium in the C-B, C-H and C-R treatments).

In each of the three communication treatments C-B, C-H, C-R there exists a pooling equilibrium with no communication. In such an equilibrium no borrower promises to repay a loan of c_{max} and behavior of borrowers and lenders is identical to that in the equilibrium of the corresponding no communication treatment (see Proposition 7).

Proof: see Appendix.

Proposition 3 shows that a pooling equilibrium with communication, i.e., an equilibrium in which all borrowers promise to repay c_{max}, also exists for all three communication treatments. In this equilibrium a higher share of borrowers repay loans than in the equilibrium without communication for the same treatment. The reason is that for each borrower i the personal cost of strategic default k_i is higher after promising to repay. The proposition further clarifies that in any equilibrium with communication some borrowers renege on their promises: Those borrowers with low personal costs of strategic default promise to repay, but choose to default.

Proposition 3 (Communication equilibria in the C-B, C-H and C-R treatments).

- In all communication treatments, a pooling equilibrium exists in which all borrowers promise to repay a loan of c_{max}.
- In the C-B and C-R treatments, all borrowers of Type A, B and C choose to repay the maximum loan size, while Type D borrowers choose to default. The threshold of personal default costs above which loans are repaid is: $k_{\text{C-B,com}}^* = k_{\text{C-R,com}}^* = \frac{\beta c_{\text{max}}}{1 + \alpha R}$.
• In the C-H treatment, borrowers of Type A and B choose to repay the maximum loan size, while Type C and D borrowers choose to default. The threshold of personal default costs above which loans are repaid is: $k^*_{C-H, com} = \frac{\beta c_{\text{max}}}{1 + \alpha_H}$.

• In the C-B treatment, the threshold belief above which lenders choose to offer c_{max} is:

 $b^*_{C-B, com} = \frac{\beta^2 c_{\text{max}}}{k_{\text{max}}(\beta - 1)(1 + \alpha_R)}$.

• In the C-H treatment, the threshold belief above which lenders choose to offer c_{max} is:

 $b^*_{C-H, com} = \frac{\frac{3}{2} \beta^2 c_{\text{max}}}{k_{\text{max}}(\frac{4}{3} \beta - 1)(1 + \alpha_H)}$.

• In the C-R treatment, the threshold belief above which lenders choose to offer c_{max} is:

 $b^*_{C-R, com} = \frac{\frac{2}{3} \beta^2 c_{\text{max}}}{k_{\text{max}}(\frac{4}{3} \beta - 1)(1 + \alpha_R)}$.

Proof: see Appendix.

Finally, Proposition 4 shows that none of our communication treatments features a separating equilibrium in which only some borrowers promise to repay c_{max} and lenders only offer a loan c_{max} to those borrowers.

Proposition 4 (Separating equilibria in the C-B, C-H and C-R treatments). In the three communication treatments C-B, C-H, C-R there is no separating equilibrium in which some borrowers promise to repay c_{max} while other borrowers remain silent and lenders only offer a loan c_{max} to those borrowers who promise to repay.

Proof: see Appendix.

3.3 Hypotheses

Our aim is to test whether the impact of pre-play communication on repayment behavior and credit provision is weakened when borrowers can hide strategic defaults. The effect of interest in our study is thus a difference-in-difference effect: We will measure the difference in borrower repayment choice and lender credit offers between the C-H and N-H treatment and compare
this to the difference in outcomes between the C-B and N-B treatment. Hypothesis 1 presents our hypotheses for this comparison based on our predictions by treatment as summarized in Table 3.

Hypothesis 1 (The effect of communication in the baseline and hidden action conditions).

1. A In the C-B treatment, borrowers are more likely to choose to repay large credits and lenders are more likely to offer large credits than in the N-B treatment.

1. B In the C-H treatment, borrowers are more likely to choose to repay large credits and lenders are more likely to offer large credits than in the N-H treatment.

1. C The impact of communication on borrower behavior is weaker in the hidden action condition (C-H vs. N-H) compared to the baseline condition (C-B vs. N-B). The impact of communication on lender behavior may be weaker or stronger in the hidden action condition (C-H vs. N-H) compared to the baseline condition (C-B vs. N-B).

Our predictions suggest that in the C-B treatment two possible equilibria may arise: There is a no-communication equilibrium in which borrower and lender behavior is identical to that in the N-B treatment. In addition, there is a communication equilibrium in which all borrowers promise to repay large loans. In the communication equilibrium of the C-B treatment more borrowers will choose to repay large loans compared to the N-B treatment: \(k_{C-B, \text{com}}^* > k_{N-B}^* \). As a consequence, lenders are more likely to offer large loans in the communication equilibrium of the C-B treatment compared to the N-B treatment: \(b_{C-B, \text{com}}^* < b_{N-B}^* \). Thus as long as some lender-borrower pairs play the communication equilibrium in the C-B treatment, we expect more repayment of large loans and more offers of large loans in the C-B compared to the N-B treatment.

The same reasoning as above applies to the hidden action condition (C-H vs. N-H): As long as some lender-borrower pairs play the communication equilibrium in the C-H treatment we expect more repayment of large loans and more frequent offering of large loans in the C-
H compared to the N-H treatment. However, our predictions suggest the treatment effect of communication on borrower behavior should be weaker in the hidden action condition (C-H vs. N-H) compared to the baseline condition (C-B vs. N-B). Proposition 1 suggests that borrower behavior should be identical in the N-H and N-B treatments. Likewise, Proposition 2 suggests that borrower behavior should be identical in the no communication equilibria of the C-H and C-B treatments. Thus the differential effect of communication relies solely on the predictions for the communication equilibria of the C-H and C-B treatments. As shown in Proposition 3, more borrowers will repay loans in the communication equilibrium of the C-B treatment than in the C-H treatment: \(k_{C-B,\text{com}}^* < k_{C-H,\text{com}}^* \). Thus as long as the frequency of communication equilibria (relative to no-communication equilibria) is similar in the C-H and C-B treatments we expect a stronger effect of communication on repayment behavior in the baseline compared to the hidden action treatment.

Our predictions suggest that the treatment effect of communication on lender behavior can be weaker or stronger in the hidden action condition (C-H vs. N-H) compared to the baseline condition (C-B vs. N-B). Assuming that communication equilibria are equally frequent in the C-H and C-B treatment the relevant comparison is the difference \(b_{C-H,\text{com}}^* - b_{N-H}^* \) compared to the difference \(b_{C-B,\text{com}}^* - b_{N-B}^* \). From Propositions 1 and 3 it follows that there are two countervailing effects at play: On the one hand communication has a weaker impact on borrower repayment choices in the hidden action condition (see above). On the other hand, due to stochastic borrower income the threshold belief \(b^*(k^*) \) required for lenders to offer credit is higher \(\text{cet. par.} \) in the hidden action condition compared to the baseline condition (see Equation (2)). This implies that for a given increase in the share of borrowers who repay (and thus reduction in \(k^* \)) the decrease in the threshold belief is larger in the hidden action than in the baseline condition.

As summarized by Hypothesis 1 our main prediction is that the impact of communication on borrowers’ repayment behavior is weaker in the hidden action than in the baseline condition. We conjecture that the mechanism driving this effect is that when strategic defaults are not
revealed to lenders, less borrowers feel compelled to honor their promises to repay. In our empirical analysis we will compare borrower promises and subsequent repayment behavior in the C-B and C-H treatment. Hypothesis 2 summarizes our predictions for this comparison.

Hypothesis 2 (Promises, repayment behavior and credit in the communication treatments).

- **Borrowers are equally likely to promise to repay (large) loans in the C-H and C-B treatments.**
- **In the C-H treatment, borrowers are more likely to break a promise to repay than in the C-B treatment.**
- **Lenders are less likely to offer large loans to borrowers who promise to repay in the C-H treatment than in the C-B treatment.**

Proposition 3 suggests that a communication equilibrium in which all borrowers promise to repay large credit is equally feasible in the C-H and C-B treatments. Thus there is no reason to expect that borrowers make less promises in one treatment than in the other. From Proposition 3 we see that the share of borrowers which keeps their promise is lower in the C-H than in the C-B treatment ($k_{C-H,com}^* > k_{C-B,com}^*$). Again from Proposition 3 we see that fewer lenders will offer large credit in communication equilibria of the C-H treatment compared to communication equilibria of the C-B treatment ($b_{C-H,com}^* > b_{C-B,com}^*$).

To disentangle the role of hidden action from the role of stochastic income per se, we examine the effect of communication in our revealed action condition. This condition is identical to the hidden action condition except that the realized borrower income is revealed ex-post to the lender. This allows the lender to distinguish strategic defaults from forced defaults. If the effect of communication in the hidden action condition is weakened due to the increased uncertainty and lower expected income of lenders then we would expect a similar weak effect of communication in the revealed action condition. By contrast, if the ability to hide opportunistic behavior is responsible for the weak effect of communication in the hidden action condition, then
we should see stronger effects of communication in the revealed action condition. Hypothesis 3 summarizes our conjecture that hidden action rather than uncertainty and income effects drive the weak effect of communication in the hidden action condition:

Hypothesis 3 (The effect of communication in the revealed action condition).

- *In the C-R treatment, borrowers are more likely to choose to repay large credits and lenders are more likely to offer large credits than in the N-R treatment.*

- *The differential impact of communication between the baseline condition (C-B vs. N-B) and the revealed action condition (C-R vs. N-R) is smaller than between the baseline condition and the hidden action condition (C-H vs. N-H)*

Our main hypotheses are based on two behavioral assumptions regarding borrowers’ moral costs of strategic defaults. First, we assume that borrowers incur higher moral costs if they default strategically after they have promised to repay a loan. Second, we assume that moral costs of strategic default are even higher if promise-breaking behavior is revealed to the lender. In our model these two assumptions are captured by the parameters $\alpha_R > \alpha_H > 0$. As mentioned above, these two assumptions are consistent with evidence that individuals have a preference for promise keeping ([Ellingsen & Johannesson, 2004; Vanberg, 2008](#)) as well as a preference for being seen as honest ([Abeler et al., 2019](#)). To derive alternative hypotheses for our cross-treatment comparisons we consider a relaxation of these assumptions.

Consider first that promise-breaking does not affect the moral costs of strategic default at all. In this case we have $\alpha_R = \alpha_H = 0$ in our model. From Table 3 it is apparent that under this assumption lender and borrower behavior is independent of the ability to communicate. We would thus predict no difference in strategic default (or lender credit provision) between the C-B and N-B treatments or the C-H and N-H treatments. Now consider that promise-breaking does affect the moral costs of strategic default, but these costs are independent of whether promise-breaking is revealed to the lender or not (\(\alpha_R = \alpha_H > 0\)). Under this assumption
we predict less strategic default in the C-B compared to the N-B treatment and in the C-H compared to the N-H treatment. However, in contrast to Hypothesis 1.C above, there should be no differential effect in the impact of communication on borrower behavior between the baseline and hidden action conditions. Moreover, under the assumption that $\alpha_R = \alpha_H > 0$, Table 3 suggests a stronger impact of communication on credit provision in the hidden action compared to the baseline condition.

4 Results

We report our findings in two subsections. In Section 4.1, we test Hypothesis 1 by comparing the effect of communication across our two main conditions: the hidden action condition and the baseline condition. We confirm a significant weaker treatment effect of communication on credit market outcomes in the hidden action condition. In Section 4.2, we examine the mechanism behind this differential treatment effect. Here, we first confirm Hypothesis 2 by documenting that borrowers are more likely to break promises to repay in the hidden action than in the baseline condition. We then confirm Hypothesis 3 by showing that in our revealed action treatment (as opposed to the hidden action treatment) communication has a significant impact on borrower and lender behavior.

Table 4: Realized Outcome Variables by Treatment

<table>
<thead>
<tr>
<th>Borrower income: Deterministic</th>
<th>Hidden</th>
<th>Stochastic</th>
<th>Revealed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borrower repayment choice:</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Communication</td>
<td>N-B</td>
<td>C-B</td>
<td>N-H</td>
</tr>
<tr>
<td>Credit Size</td>
<td>46.30</td>
<td>75.04</td>
<td>45.10</td>
</tr>
<tr>
<td>(cond. on repay ability)</td>
<td>[27.4; 75.4]</td>
<td>[67; 92.8]</td>
<td>[28.6; 68.2]</td>
</tr>
<tr>
<td>Strategic Default</td>
<td>0.650</td>
<td>0.442</td>
<td>0.547</td>
</tr>
<tr>
<td>(cond. on repay ability)</td>
<td>[0.26; 0.84]</td>
<td>[0.18; 0.78]</td>
<td>[0.26; 0.73]</td>
</tr>
<tr>
<td>Borrower Profit</td>
<td>290.5</td>
<td>329.4</td>
<td>233.7</td>
</tr>
<tr>
<td>(cond. on repay ability)</td>
<td>[245.1; 356.6]</td>
<td>[297.3; 370.2]</td>
<td>[193.1; 291]</td>
</tr>
<tr>
<td>Lender Profit</td>
<td>148.4</td>
<td>195.7</td>
<td>139.5</td>
</tr>
<tr>
<td>(cond. on repay ability)</td>
<td>[120.2; 202.9]</td>
<td>[136.2; 242.7]</td>
<td>[128.5; 154.2]</td>
</tr>
</tbody>
</table>

Note: The table reports the mean of matching group averages for each variable. The range of matching group averages is shown in brackets [min; max]. We implemented 10 matching groups for each treatment.
Table 4 presents descriptive statistics for realized outcome variables by treatment. We report the average credit size (Credit Size), the frequency of strategic default among those borrowers who can repay (Strategic Default) as well as the resulting profits for borrowers (Borrower Profit) and for lenders (Lender Profit) by treatment.

4.1 The Effect of Communication: Hidden action vs. Baseline condition

We first report the effect of communication in our baseline condition. Table 4 documents a 62% increase in the average credit size in the C-B treatment compared to the N-B treatment ((75.0 vs. 46.3). A two sided rank-sum test at the matching group level confirms that this increase is statistically significant (N=20, p<0.01). Panel A of Figure 2 confirms that communication impacts on lender behavior in the baseline condition. Lenders offer the maximum credit size (credit of size 100) more than three times as often in the C-B treatment compared to the N-B treatment (62% vs. 18.4%; N=20, p<0.01).

Communication also has an impact on repayment behavior in the baseline condition. Table 4 reveals a substantial and statistically significant decrease in the realized strategic default rate in the C-B treatment compared to the N-B treatment (44.2% vs. 65%; N=20, p=0.015). This improvement in loan repayment may be driven by two effects: First, borrowers may be less likely to default on a loan of a given size in the C-B compared to the N-B treatment. Second, borrowers in both treatments may be less likely to default on larger loans. As a result, the higher average credit size in the C-B compared to the N-B treatment would go hand in hand with a higher loan repayment rate. Our data reveals that both effects are at play. Panel B of Figure 2 shows that the intended strategic default (ISD) rate is decreasing in loan size in both treatments. But this decline is stronger in the C-B than in the N-B treatment. The figure shows that the ISD rate for credits of size 10 is similar in both treatments. By contrast, the

\[11\] If not explicitly stated, we always use two-sided tests with matching group averages as unique observations to determine statistically significant differences between our treatments.
ISD for credits of size 100 is significantly lower in the C-B treatment than in the N-B treatment (42 % vs. 60 %; N=20, p=0.044).

Figure 2: Credit Offers and Intended Strategic Default: Baseline Condition

In our baseline condition, communication leads to a substantial increase in the provision of credit and a substantial reduction in the strategic default rate. As a consequence, both lenders and borrowers yield higher payoffs in the treatment with communication. Borrowers earn on average 13% more in the C-B treatment compared to the N-B treatment (329 vs. 291 points; N=20, p=0.012). Lenders earn on average 32% more in the C-B treatment compared to the N-B treatment (196 vs. 148 points; N=20, p<0.01).

Result 1.A (The effect of communication in the baseline condition). In the C-B treatment, borrowers are more likely to repay large loans and lenders are more likely to offer large loans than in the N-B treatment. Communication leads to a pareto improvement: Borrowers and lenders yield higher average payoffs in the C-B compared to the N-B treatment.

We next examine the effect of communication in the hidden action condition. The summary statistics in Table 4 show that the average credit size offered by lenders is 30% higher in the C-H treatment compared to the N-H treatment (58.2 vs. 45.10; N=20, p=0.05). Figure 3 (Panel A) shows that the frequency of credits of size 100 is almost twice as high in the C-H treatment compared to the N-H treatment. We do not find a significant effect of communication on borrower repayment behavior for other credit sizes.
compared to the N-H treatment (35% vs. 19%; N=20, p=0.03). Note, however, that while communication does impact on credit volume in the hidden action condition, the magnitude of the effect is substantially smaller than in the baseline condition.

Table 4 reveals that there is no difference in the realized strategic default rate between the C-H and the N-H treatment (54.7% vs 51.5%; N=20, p=0.4). Figure 3 shows that borrowers’ repayment behavior is hardly related to loan size in the C-H treatment or the N-H treatment. Moreover, there is no statistically significant difference in borrower behavior between the C-H and N-H treatments for any loan size.

Table 4 shows that there is only a small, statistically insignificant increase in borrower profits from the N-H treatment to the C-H treatment (233.7 vs. 249.8; N=20, p=0.19). The average profit of lenders hardly differs between the two treatments (N=20, p=0.65).

Result 1.B (The effect of communication in the hidden action condition). Lenders offer larger credit volumes in the C-H compared to the N-H treatment but borrowers are not more likely to repay loans. Communication does not lead to a significant increase in average lender or borrower profits.

Our analysis so far suggests that communication has a significant positive effect on credit

13ISD 10: N=20, p=0.93; ISD 40: N=20, p=0.13; ISD 70: N=20, p=0.49; ISD 100: N=20, p=0.36
provision, repayment behavior, and payoffs in the baseline condition. By contrast, the effect of communication is much weaker in the hidden action condition. To formally test for differential treatment effects of communication across the two conditions, we present results from difference-in-difference regressions with matching group averages as observations. Table 5 presents results for six dependent variables: Average credit size (CS – Column 1), the realized strategic default rate contingent on repayment ability (Strategic Default – Column 2), borrower profit (Borrower Profit – Column 3) and lender profit (Lender Profit – Column 4), the frequency of credit size 100 (Credit Size 100 – Column 5) and the intended strategic default rate for credits of 100 (ISD 100 – Column 6). The explanatory variables are Hidden Action, a dummy variable indicating the hidden action condition, Communication which is a dummy variable indicating the communication treatments. The interaction between the two Hidden Action × Communication is our variable of interest.

Table 5: Difference in Difference Regressions: Hidden Action vs. Baseline

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Outcome</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Credit</td>
<td>Strategic Default</td>
</tr>
<tr>
<td>Hidden Action</td>
<td>-1.200</td>
<td>-0.103</td>
</tr>
<tr>
<td></td>
<td>(5.708)</td>
<td>(0.0697)</td>
</tr>
<tr>
<td>Communication</td>
<td>28.74***</td>
<td>-0.208***</td>
</tr>
<tr>
<td></td>
<td>(5.708)</td>
<td>(0.0697)</td>
</tr>
<tr>
<td>Hidden Action × Communication</td>
<td>-15.60*</td>
<td>0.176*</td>
</tr>
<tr>
<td></td>
<td>(8.073)</td>
<td>(0.0985)</td>
</tr>
<tr>
<td>Constant</td>
<td>46.30***</td>
<td>0.650***</td>
</tr>
<tr>
<td></td>
<td>(4.036)</td>
<td>(0.0493)</td>
</tr>
</tbody>
</table>

Observations 40 40 40 40 40 40
F 11.87 3.071 19.99 14.25 22.09 2.387
R² 0.497 0.204 0.625 0.543 0.648 0.166

Note: Difference-in-difference (OLS) regressions with matching group averages as observations. * p < 0.1, ** p < 0.05, *** p < 0.01. Columns (1-4) present regressions with market outcomes as dependent variables. Columns (5-6) present regressions with lender and borrower behavior as dependent variables. In all regressions, the no communication baseline treatment (N-B) is the benchmark condition. Hidden Action is a variable indicating the treatments with forced default. Communication is a dummy variable which is equal to one in the treatments with communication and zero otherwise. Hidden Action × Communication captures the interaction effect between the hidden action and communication treatment.

The results presented in Table 5 confirm that there is a significant weaker impact of com-
munication on realized outcome variables in the hidden action condition. The interaction term \textit{Hidden Action x Communication} is large and statistically significant for the average credit size (Column 1), the realized strategic default rate (Column 2) and lender profits (Column 4). The differential impact of communication across conditions is smaller and weaker for borrower profits (Column 3). The results in columns (5-6) of Table 5 suggest that the differential treatment effect of communication on the above outcome variables can be attributed more to lender rather borrower behavior. The column (5) estimates show a significant differential effect of communication on lender credit offers. By contrast, the column (6) estimates suggest a weaker differential impact of communication on borrower repayment behavior.

\textbf{Result 1.C} (Differential effect of communication in hidden action vs. baseline condition). \textit{The positive effect of communication on credit volume and lender profits is significantly weaker in the hidden action condition compared to the baseline condition.}

4.2 Mechanism: Hidden action and promise breaking

Our results in the previous section suggest that an economic condition in which uncertainty allows borrowers to conceal strategic default undermines the benefits of borrower-lender communication. In this section we provide evidence which supports our conjecture that the ability of borrowers to hide opportunistic behavior reduces the effectiveness of communication.

4.2.1 Borrower promises and behavior

We first report on borrower-lender communication in our C-H and C-B treatments as well as the subsequent behavior by borrowers and lenders. We show that borrowers are much more likely to break their promises to repay loans in the C-H compared to the C-B treatment. As a consequence lenders offer less credit to borrowers who promise repayment in the C-H than the C-B treatment.

First, we explore how borrowers communicate to their paired lender. Table 6 presents
summary statistics for coded chat variables. The table first reports the frequency of borrower-lender communication (Messaging). The table also reports the type of messages communicated by borrowers to the paired lender. Promise captures any promise by a borrower to repay a credit, i.e. any promise to repay a specific credit size or any promise unrelated to a specific credit size. Promise 100 captures specific promises to repay a credit of size 100. Request is a variable describing a request of a borrower for credit of any specific size as well as any request for a loan without mentioning a specific credit size. Request 100 captures the requests for credits of size 100. Threat is a variable which captures all threats to only repay a specific credit size. Threat 100 captures threats to only repay credits of 100.

Table 6 shows that borrowers send messages 71% of the time in the C-H treatment, compared to 66.4% of the time in the C-B treatment. This treatment difference is statistically insignificant (N= 20, p=0.47). Treatment conditions further do not influence the most common messages that borrowers send to the paired lender. The most common message in both treatments involves a repayment promise and a request for credits of any (unspecific) size (Promise+Request: 54.2% vs. 53%; N=20, p=0.62). The second most frequent message contains a repayment promise and a request for a credit size of 100 (Promise+Request 100: 48.4% vs. 41.6%; N=20, p=0.22).

Consistent with Hypothesis 2, treatment conditions have a strong effect on whether borrowers adhere to their promises. In Panel A of Figure 4, we report the intended strategic default

14Note: Borrowers could make multiple promises, requests or threats to lenders within one message. Messages (983) of borrowers were coded by three research assistants independently. Research assistants were unaware of the research question and at least two coders had to agree that a message falls into a certain category for a variable to be included in the analysis. We use Krippendorff’s α as a measure for inter-coder reliability (Hayes & Krippendorff, 2007). All categories included in the analysis are above (Threat=0.883; Threat 100=0.872; Request 100=0.753; Request=0.786; Promise=0.90; Promise 100=0.77) to the cut-off value proposed by Krippendorff (α = 0.667). Furthermore, our values are in and above the values reported in other economic experiments (see, e.g., Bartling et al. 2017; Brandts et al. 2014; Cason et al. 2017; Eisenkopf 2014; Leibbrandt & Saaksvuori 2012). Coder instructions are available in Online Appendix 3.B.6.

15Borrowers in the C-B treatment more often promise to repay credits of 100 compared with borrowers in the C-H treatment. The difference between treatments, although substantial is only marginally significant (Promise 100: 46.6% vs. 35.6%; N=20, p=0.10). Moreover, there is only a marginally significant difference in the frequency that borrowers send promises for any credit size between the C-B and the C-H treatment (Promise: 49.4% vs. 40.4%; N=20, p=0.09).
Table 6: Borrower Communication

<table>
<thead>
<tr>
<th></th>
<th>C-B</th>
<th>C-H</th>
<th>C-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messaging</td>
<td>0.664</td>
<td>0.710</td>
<td>0.592</td>
</tr>
<tr>
<td></td>
<td>[0.4; 0.88]</td>
<td>[0.4; 0.88]</td>
<td>[0.2; 0.94]</td>
</tr>
<tr>
<td>Promise</td>
<td>0.494</td>
<td>0.404</td>
<td>0.532</td>
</tr>
<tr>
<td></td>
<td>[0.12; 0.62]</td>
<td>[0.18; 0.78]</td>
<td>[0.12; 0.84]</td>
</tr>
<tr>
<td>Promise 100</td>
<td>0.466</td>
<td>0.356</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>[0.12; 0.6]</td>
<td>[0.12; 0.68]</td>
<td>[0.02; 0.82]</td>
</tr>
<tr>
<td>Promise+Request</td>
<td>0.542</td>
<td>0.53</td>
<td>0.556</td>
</tr>
<tr>
<td></td>
<td>[0.12; 0.7]</td>
<td>[0.18; 0.78]</td>
<td>[0.18; 0.9]</td>
</tr>
<tr>
<td>Promise+Request 100</td>
<td>0.484</td>
<td>0.416</td>
<td>0.498</td>
</tr>
<tr>
<td></td>
<td>[0.12; 0.7]</td>
<td>[0.18; 0.68]</td>
<td>[0.2; 0.82]</td>
</tr>
<tr>
<td>Threat</td>
<td>0.102</td>
<td>0.0240</td>
<td>0.0340</td>
</tr>
<tr>
<td></td>
<td>[0; 0.2]</td>
<td>[0; 0.16]</td>
<td>[0; 0.22]</td>
</tr>
<tr>
<td>Threat 100</td>
<td>0.0800</td>
<td>0.0220</td>
<td>0.0340</td>
</tr>
<tr>
<td></td>
<td>[0; 0.2]</td>
<td>[0; 0.16]</td>
<td>[0; 0.22]</td>
</tr>
</tbody>
</table>

Note: Summary statistics for coded chat variables. Variables describe mean of matching group averages. The range of matching group averages is shown in brackets [min; max]. Messaging captures any incidence of borrower communication with the paired lender. Promise captures specific (for a certain credit size) and unspecific (for any credit size or credits in general) promises to repay credit. Promise 100 captures promises to repay credits of 100. Promise+Request is a variables capturing any specific request or repayment promise (for a specific credit size) or unspecific request or repayment promise for credit. Promise + Request 100 captures requests or promises for credits of size 100. Threat is a variable describing a threat to only repay certain credit sizes. Threat 100 captures threats to only repay credits of size 100. Note that borrowers can make multiple threats, promises or requests within one message.

rate for loans of 100 (ISD 100) conditional on borrower communication. The first bar (light grey) reports ISD 100 for those borrowers who promise to repay such a loan (ISD 100 Promise 100). The second bar (dark grey) reports ISD 100 for those borrowers who promise to repay a credit of 100 or request such a credit (ISD Prom. + Requ. 100). The results show that borrowers are much more likely to break their repayment promises when their actual repayment behavior is hidden. In the C-B borrowers break their promises about 15.6% of the time compared to 32.2% in the C-H treatment (N=20, p=0.07). Likewise, borrowers who combine repayment promises and repayment requests for credit of 100 are much more likely to default in the C-H treatment (40.7%) compared with borrowers in the C-B treatment (17.6%), (N=20, p=0.01).

Lenders anticipate that borrowers are more likely to renege on their promises in the hidden
Figure 4: Borrower and Lender behavior after communication

Notes: Panel A of the figure shows the mean intended strategic default rate for borrowers who promise to repay credits of 100 (light grey bars) and borrowers who also include requests for credits of 100 in their repayment promise (dark grey bars) in the C-B, C-H, and C-R treatment. Panel B of the figure presents the mean frequency with which lenders give credits of 100 in the C-B, C-H, and C-R treatment conditional on receiving a promise to repay a credit of 100 (light grey bars) or a repayment promise for a credit of 100 which also explicitly included a request for such a credit (dark grey bars). Error bars represent +/- one standard deviation of the mean.

action condition. Panel B of Figure 4 reveals that lenders give credits of 100 84.4% of the time after receiving a message containing a repayment promise for this credit size in the C-B treatment (light grey bar - Repayment Promise 100). If borrower include requests for such credits in the message, the credits are granted with equal frequency (83.6%) as the variable Promise + Request 100 (dark grey bar) shows. In the C-H treatment, lenders are less likely to respond to promises (47.1%; N=20, p<0.01) and promises combined with requests (45.9%; N=20, p<0.01) of borrowers.

Result 2 (Borrower promises, repayment and credit in the C-B and C-H treatments). In the C-H treatment, borrowers are more likely to break promises to repay than in the C-B treatment. Lenders are less likely to offer large loans to borrowers who request and promise to repay such loans in the C-H treatment than in the C-B treatment.

4.2.2 Hidden action vs. uncertainty

In this section we report on lender behavior, borrower behavior and payoffs in the revealed action condition. As discussed in Section 2.3 this condition is identical to the hidden action condition except that the borrowers income is revealed ex-post to the lender. This allows the
lender to distinguish strategic defaults from forced defaults. If the effect of communication in the hidden action condition was weakened due to the increased uncertainty and lower expected income of lenders then we would expect a similar weak effect of communication in the revealed action condition. By contrast, if the ability to hide opportunistic behavior is responsible for the weak effect of communication in the hidden action condition, then we should see stronger effects of communication in the revealed action condition.

Table 4 shows that the average credit size is 52% higher in the C-R treatment compared to the N-R treatment (63.1 vs. 41.3; N=20, p<0.01). Panel A of Figure 5 further shows that this increase in average credit size is driven by a higher frequency of maximum credit offers (100) in the C-R treatment compared to N-R treatment (45% vs. 15.4%; N=20, p<0.01).

Figure 5: Credit Offers and Intended Strategic Default: Revealed Action Condition

Panel A: Credit Size

Panel B: Intended Strategic Default Rate

Notes: Panel A shows the mean frequency with which lenders give credits of the different size (10, 40, 70, and 100) in the N-R and C-R treatment (Panel A). Panel B shows the mean intended strategic default rate for each credit size (10, 40, 70, and 100) in the N-R and C-R treatment.

Table 4 shows that the strategic default rate is significantly lower in the C-R treatment compared to the N-R treatment (46.2% vs. 60.4%; N=20, p<0.01). Panel B of Figure 5 reveals that, in particular, the intended strategic default rate for credits of 100 is higher in the N-R treatment compared to the C-R treatment (62.6% vs. 45.6%; N=20, p<0.01).

In the revealed action condition communication leads to a pareto improvement. Table 4 shows that lenders’ profits increase by 9.5% from 135 points in the N-R treatment to 148 points in the C-R treatment (N=20, p=0.04). Borrower profits increase by 10.5% from 227.5 in the N-R treatment to 251.9 in the C-R treatment (N=20, p=0.02).
Table 7 provides a formal test for differential treatment effects of communication between the revealed action condition and the baseline condition. Again, we present results from difference–in–difference regressions with matching group averages as observations. Table 5 presents results for six dependent variables: Average credit size (CS – Column 1), the realized strategic default rate contingent on repayment ability (Strategic Default – Column 2), borrower profit (Borrower Profit – Column 3) and lender profit (Lender Profit – Column 4), the frequency of credit size 100 (Credit Size 100 – Column 5) and the intended strategic default rate for credits of 100 (ISD 100 – Column 6). The explanatory variables are Revealed Action, a dummy variable indicating the revealed action condition, Communication which is a dummy variable indicating the communication treatments. The interaction between the two Revealed Action × Communication is our variable of interest.

The results presented in Table 7 suggest mostly small and statistically insignificant differences in the impact of communication on realized outcome variables in the hidden action condition compared to the baseline condition. Moreover, comparing the Table 7 results to those in Table 5 we find a much more similar impact of communication in the revealed action and the baseline conditions as when comparing the revealed action condition to the baseline condition. The magnitude and statistical significance of the difference-in-difference estimates is smaller in Table 7 than in Table 5. The only notable exception is the differential treatment effect on lender profits which is large and significant in both comparisons.

Result 3 (The effect of communication in the revealed action condition). In the revealed action condition, communication improves credit provision, repayment behavior and the average payoffs for both borrowers and lenders. The impact of communication in the revealed action condition is more similar to that in the baseline condition, than the impact of communication in the hidden action treatment.

To support our finding that the positive impact of communication is restored in the revealed action condition, we conclude with a discussion of communication behavior in this condition.
Table 7: Difference in Difference Regressions: Revealed Action vs. Baseline

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Outcome</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Credit</td>
<td>Strategic</td>
</tr>
<tr>
<td></td>
<td>Size</td>
<td>Default</td>
</tr>
<tr>
<td>Revealed Action</td>
<td>-4.980</td>
<td>-0.0464</td>
</tr>
<tr>
<td></td>
<td>(4.987)</td>
<td>(0.0647)</td>
</tr>
<tr>
<td>Communication</td>
<td>28.74***</td>
<td>-0.208***</td>
</tr>
<tr>
<td></td>
<td>(4.987)</td>
<td>(0.0647)</td>
</tr>
<tr>
<td>Revealed Action × Communication</td>
<td>-6.960</td>
<td>0.0665</td>
</tr>
<tr>
<td></td>
<td>(7.052)</td>
<td>(0.0914)</td>
</tr>
<tr>
<td>Constant</td>
<td>46.30***</td>
<td>0.650***</td>
</tr>
<tr>
<td></td>
<td>(3.526)</td>
<td>(0.0457)</td>
</tr>
<tr>
<td>Observations</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>F</td>
<td>19.35</td>
<td>5.074</td>
</tr>
<tr>
<td>R²</td>
<td>0.617</td>
<td>0.297</td>
</tr>
</tbody>
</table>

Note: Difference-in-difference (OLS) regressions with matching group averages as observations. * p < 0.1, ** p < 0.05, *** p < 0.01. Columns (1-4) present regressions with market outcomes as dependent variables. Columns (5-6) present regressions with lender and borrower behavior as dependent variables. In all regressions, the no communication baseline treatment (N-B) is the benchmark condition. Revealed Action is a variable indicating the treatments with forced default and revealed borrower behavior. Communication is a dummy variable which is equal to one in the treatments with communication and zero otherwise. Revealed Action × Communication captures the interaction effect between the hidden action and communication treatment.

Table 6 and Figure 4 document borrower communication and subsequent behavior by lenders and borrowers in the C-R treatment. The Figure 4 Panel A results show that borrowers break promises to repay credits of 100 only 14.8% of the time in the C-R treatment. This is significantly less often than the 32% in the C-H treatment (N=20, p=0.06). Similarly, the intended strategic default rate when including requests for credits of 100 in the message is significantly lower in the C-R than in the C-H (16.1% vs. 40.7%; N=20, p=0.01).

Panel B of Figure 4 shows that lenders, respond different to borrower communication in the C-R compared with the C-H treatment. Following a borrower repayment promise for credits of 100, lenders are more likely to provide this credit in the C-R treatment (55.8%) and in the C-H treatment (47.1%). Similarly, combinations of repayment promises with credit request for high credits of 100 are more likely to to trigger a corresponding loan in the C-R treatment (56.6%) than in the C-H treatment (45.9%). These substantial differences are, however, not
The results presented above support our conjecture that the ability to hide strategic defaults undermines the effectiveness of communication in our hidden action condition. Once borrower behavior is revealed to lenders - as in our revealed action condition - communication leads to a substantial increase in gains from trade - even if borrower income is stochastic.

5 Discussion and Conclusion

We implement a person-to-person lending experiment and vary (i) whether borrowers can communicate with lenders prior to contracting and (ii) whether strategic defaults are revealed to lenders. Our results show that borrowers are more likely to renege on promises to repay when their strategic default is not subsequently revealed to lenders. As a consequence, communication has a weaker impact on loan repayment and credit provision in an environment with hidden action compared to an environment without hidden action.

Our results are consistent with the findings of recent field experiments which document that lender-borrower communication can harness moral incentives and increase the willingness of borrowers to repay loans (Bursztyn et al., 2019; Karlan et al., 2016). The findings of these studies show that post-contractual loan reminders can mitigate credit default. However, the effectiveness of loan reminders hinges on harnessing the moral or personal obligation of borrowers to repay. Our results document that pre-contractual communication can also mitigate credit risk, especially if borrowers personally commit to repay loans. However, the effectiveness of pre-contractual promises in encouraging loan repayment depends strongly on whether promise-breaking by borrowers is revealed to lenders ex-post. This finding is consistent with evidence in behavioral economics suggesting that individuals not only have a preference for promise-keeping (Ellingsen & Johannesson, 2004) but also have a preference for being seen as honest (Abeler et al., 2019).

\[16^{16}\text{Repayment Promise 100: C-H vs. CR: N=20, } p=0.4; \text{ Promise+ Request 100: C-H vs. CR: N=20, } p=0.22.\]
Our findings suggest that lenders—be it traditionally brick and mortar banks or their novel online competitors—can employ pre-contractual communication as a tool of credit risk management. However, pre-contractual communication will be most effective in encouraging loan repayment, when borrowers anticipate that subsequent strategic defaults can be identified by the lender. Promise making reduces credit risk when promise breaking is likely to be revealed.

Our results suggest that lenders should combine pre-contractual communication with a credible post-contractual loan monitoring process. This seems natural to traditional retail banks whose loan officers interact with clients face-to-face throughout the loan cycle. For fintech lenders relying on online environments our results suggest that if communication with prospective borrowers is to be used as a credit risk management tool—rather than just as a sales instrument—then personal interaction needs to be followed up on consequently after the loan is disbursed.
References

Hayes, Andrew F, & Krippendorff, Klaus. 2007. Answering the call for a standard reliability measure for coding data. *Communication methods and measures*, 1(1), 77–89.

A Internal Appendix

A.1 Proof of Propositions

A.1.1 Proposition 1 (Equilibria in the N-B, N-H and N-R treatments)

Proof:

Borrower behavior: In the no communication treatments borrowers cannot make promises to lenders. Thus for each borrower we have \(k_i(c_{\text{max}}) = k_i \). From Equation (1) therefore only the borrowers for which \(k_i \geq \beta \cdot c_{\text{max}} \) will repay a loan \(c_{\text{max}} \). These are (by definition) the Type “A” borrowers. For the no communication treatments we therefore have \(k^*_N-B = k^*_N-H = k^*_N-R = \beta \cdot c_{\text{max}} \).

Lender behavior in the N-B Treatment: In the N-B treatment borrowers can always repay a loan \((p = 1) \). From Equation (4) we therefore have:

\[
b^*(k^*) = \frac{\beta \cdot k^*}{(\beta - 1) \cdot k_{\text{max}}}.
\] (7)

From above we know that \(k^*_N-B = \beta \cdot c_{\text{max}} \). Therefore we have \(b^*_N-B = \frac{\beta^2 c_{\text{max}}}{k_{\text{max}} (\beta - 1)} \).

Lender behavior in the N-H and N-R Treatments: In the N-H and N-R treatments we have \(p = \frac{2}{3} \). From Equation (4) we therefore have:

\[
b^*(k^*) = \frac{\beta \cdot \frac{2}{3} \cdot k^*}{(\beta \cdot \frac{2}{3} - 1) \cdot k_{\text{max}}}.
\] (8)

From above we know that \(k^*_N-H = k^*_N-R = \beta \cdot c_{\text{max}} \). Therefore we have: \(b^*_N-H = b^*_N-R = \frac{\beta^2 \frac{2}{3} c_{\text{max}}}{k_{\text{max}} (\beta \cdot \frac{2}{3} - 1)} \).
A.1.2 Proposition 2 (No communication outcome in the C-B, C-H and C-R treatments)

Proof:

Borrower behavior Consider a pooling equilibrium without communication in the C-B, C-H or C-R Treatment. If no borrower promises to repay then for each borrower we have \(k_i(c_{max}) = k_i \). Borrower behavior is identical to that in the no communication treatments (see proof of Proposition 1): \(k^*_{C-B,nocom} = k^*_{C-H,nocom} = k^*_{C-R,nocom} = \beta \cdot c_{max} \).

Lender behavior Borrower behavior in the no communication equilibrium of the C-B, C-H and C-R treatments is identical to that in the N-B, N-H and N-R treatments. Consequently lenders’ threshold beliefs in equilibrium must also be identical to those in the respective no communication treatment: In the no communication treatment of the C-B treatment we have \(b^*_{C-B,nocom} = \beta \cdot c_{max} \cdot k_{max} \cdot (\beta - 1) \). In the C-H and C-R treatments we have \(b^*_{C-H,nocom} = b^*_{C-R,nocom} = \beta \cdot \frac{2 \cdot c_{max}}{k_{max} \cdot (\beta - 1)} \).

For a pooling equilibrium without communication to exist, no borrower must have an incentive to deviate and promise to repay \(c_{max} \). This is the case if lenders have off-equilibrium beliefs that any borrower who does promise to repay \(c_{max} \) will actually default.

A.1.3 Proposition 3 (Communication outcome in the C-B, C-H and C-R treatments)

Proof:

Borrower behavior in the C-B and C-R treatments: Consider a pooling equilibrium with communication in the C-B and C-R treatments. In these treatments strategic defaults are revealed to lenders. Thus if a borrower promises to repay, her costs of strategic default are: \(k_i(c_{max}) = k_i \cdot (1 + \alpha_R) \). In communication equilibria where all borrowers promise to pay, all borrowers with \(k_i \cdot (1 + \alpha_R) \geq \beta \cdot c_{max} \) will thus choose to repay. These are (by definition) the Type “A”, Type “B” and Type “C” borrowers. We therefore have \(k^*_{C-B,com} = k^*_{C-R,com} = \frac{\beta \cdot c_{max}}{1 + \alpha_R} \).

45
Borrower behavior in the C-H treatment: In the C-H treatment strategic defaults are not revealed to lenders. Thus if a borrower promises to repay her costs of strategic default are:

\[k_i(c_{max}) = k_i \cdot (1 + \alpha_H) \]

In a communication equilibrium where all borrowers promise to pay, all borrowers with \(k_i \cdot (1 + \alpha_H) \geq \beta \cdot c_{max} \) will thus choose to repay. These are (by definition) the Type “A”, and Type “B” borrowers. We therefore have

\[k_{C-H,com}^* = \frac{\beta \cdot c_{max}}{1 + \alpha_H}. \]

Lender behavior in the C-B Treatment: In the C-B treatment borrowers can always repay a loan \((p = 1)\). From Equation (4) we therefore have:

\[b^*(k^*) = \frac{\beta \cdot k^*}{(\beta - 1) \cdot k_{max}}. \]

From above we know that:

\[k_{C-B,com}^* = \frac{\beta \cdot c_{max}}{1 + \alpha_R}. \]

Therefore we have

\[b_{C-B,com}^* = \frac{\beta^2 \cdot c_{max}}{k_{max} \cdot (\beta - 1)(1 + \alpha_R)}. \]

Lender behavior in the C-H Treatment: In the C-H treatments we have \(p = \frac{2}{3} \). From equation [4] we therefore have:

\[b^*(k^*) = \frac{\beta \cdot \frac{2}{3} \cdot k^*}{(\beta \cdot \frac{2}{3} - 1) \cdot k_{max}}. \]

From above we know that:

\[k_{C-H,com}^* = \frac{\beta \cdot c_{max}}{1 + \alpha_H}. \]

Therefore we have:

\[b_{C-H,com}^* = \frac{\beta^2 \cdot p \cdot c_{max}}{k_{max} \cdot (\beta \cdot p - 1)(1 + \alpha_H)}. \]

Lender behavior in the C-R Treatment: In the C-R treatments we have \(p = \frac{2}{3} \). From Equation (4) we therefore have:

\[b^*(k^*) = \frac{\beta \cdot \frac{2}{3} \cdot k^*}{(\beta \cdot \frac{2}{3} - 1) \cdot k_{max}}. \]

From above we know that:

\[k_{C-R,com}^* = \frac{\beta \cdot c_{max}}{1 + \alpha_R}. \]

Therefore we have:

\[b_{C-R,com}^* = \frac{\beta^2 \cdot p \cdot c_{max}}{k_{max} \cdot (\beta \cdot p - 1)(1 + \alpha_R)}. \]

For a pooling equilibrium with communication to be sustained, no borrower must have an incentive to deviate and remain silent. This is the case if lenders have off-equilibrium beliefs that any borrower who does not promise to repay \(c_{max} \) will actually default.

46
A.1.4 Proposition 4 (Separating equilibria in the C-B, C-H and C-R treatments)

Proof: In a separating equilibrium a silent borrower would receive a loan of \(c_{\text{min}} = 0 \) and thus yield a payoff of: \(e_i \). Now consider a borrower with \(k_i(c_{\text{max}}) = 0 \). This borrower would prefer to deviate and promise to repay \(c_{\text{max}} \). The borrower would receive \(c_{\text{max}} \) and default on that loan, yielding a payoff of \(e_i + \theta \cdot c_{\text{max}} \). Thus the presence of selfish borrowers for whom imitation is costless rules out a separating equilibrium in all treatments with communication.
B Online Appendix

B.1 Borrower behavior over time

Figure 6 depicts the average strategic default rate for each credit size over time. Panels A-D show strategic default rates in the N-B, C-B, N-H and C-H treatments, respectively. The figure shows that there is an upward trend in strategic default for all credit sizes over time in all treatments. The regressions presented in Table 8 and Table 9 confirm the graphical results presented in Figure 6. The tables present linear GLS regressions with individual borrower fixed effects. The dependent variables are a borrower’s decision to strategic default on the different credit sizes. In all regressions, standard errors are clustered at the matching group level and explanatory variables are period dummies to capture the time trends. From the tables it is apparent that the strategic default rate for all credit sizes increases over time in all treatments.
Figure 6: Intended Strategic Default Rate over Time by Treatment

Notes: The figure highlights the intended strategic default rate for each credit size (10, 40, 70, and 100) in all treatments over time. Panel A presents time trends in the N-B treatment. Panel B shows the intended strategic default rate in the C-B treatment. Panel C presents time trends in the N-H treatment and Panel D in the C-H.
Table 8: Linear GLS Regressions: Strategic Default over time (N-B and C-B treatment)

<table>
<thead>
<tr>
<th>Panel A: N-B</th>
<th>Credit Size</th>
<th>DV: Strategic Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Period 2</td>
<td>0.120*</td>
<td>-0.0200</td>
</tr>
<tr>
<td></td>
<td>(0.0617)</td>
<td>(0.0559)</td>
</tr>
<tr>
<td>Period 3</td>
<td>0.140</td>
<td>0.0400</td>
</tr>
<tr>
<td></td>
<td>(0.0854)</td>
<td>(0.0840)</td>
</tr>
<tr>
<td>Period 4</td>
<td>0.160*</td>
<td>0.0800</td>
</tr>
<tr>
<td></td>
<td>(0.0725)</td>
<td>(0.0862)</td>
</tr>
<tr>
<td>Period 5</td>
<td>0.200**</td>
<td>0.0800</td>
</tr>
<tr>
<td></td>
<td>(0.0851)</td>
<td>(0.0807)</td>
</tr>
<tr>
<td>Period 6</td>
<td>0.140**</td>
<td>0.0600</td>
</tr>
<tr>
<td></td>
<td>(0.0605)</td>
<td>(0.0905)</td>
</tr>
<tr>
<td>Period 7</td>
<td>0.200**</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>(0.0673)</td>
<td>(0.0864)</td>
</tr>
<tr>
<td>Period 8</td>
<td>0.280***</td>
<td>0.140</td>
</tr>
<tr>
<td></td>
<td>(0.0617)</td>
<td>(0.109)</td>
</tr>
<tr>
<td>Period 9</td>
<td>0.280***</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td>(0.0749)</td>
<td>(0.0913)</td>
</tr>
<tr>
<td>Period 10</td>
<td>0.320**</td>
<td>0.220**</td>
</tr>
<tr>
<td></td>
<td>(0.101)</td>
<td>(0.0925)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.500***</td>
<td>0.580***</td>
</tr>
<tr>
<td></td>
<td>(0.0538)</td>
<td>(0.0676)</td>
</tr>
<tr>
<td>Observations</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Cluster</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Individual FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>5.476</td>
<td>232.4</td>
</tr>
<tr>
<td>R²</td>
<td>0.0705</td>
<td>0.0391</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: C-B</th>
<th>Credit Size</th>
<th>DV: Strategic Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Period 2</td>
<td>0.0800</td>
<td>0.0800</td>
</tr>
<tr>
<td></td>
<td>(0.0862)</td>
<td>(0.0913)</td>
</tr>
<tr>
<td>Period 3</td>
<td>0.0800</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td>(0.0446)</td>
<td>(0.0749)</td>
</tr>
<tr>
<td>Period 4</td>
<td>0.0400</td>
<td>0.0400</td>
</tr>
<tr>
<td></td>
<td>(0.0840)</td>
<td>(0.0840)</td>
</tr>
<tr>
<td>Period 5</td>
<td>0.0800</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td>(0.0686)</td>
<td>(0.0862)</td>
</tr>
<tr>
<td>Period 6</td>
<td>0.120*</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>(0.0617)</td>
<td>(0.0810)</td>
</tr>
<tr>
<td>Period 7</td>
<td>0.120</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>(0.0749)</td>
<td>(0.0963)</td>
</tr>
<tr>
<td>Period 8</td>
<td>0.180**</td>
<td>0.180**</td>
</tr>
<tr>
<td></td>
<td>(0.0702)</td>
<td>(0.0635)</td>
</tr>
<tr>
<td>Period 9</td>
<td>0.180**</td>
<td>0.180**</td>
</tr>
<tr>
<td></td>
<td>(0.0702)</td>
<td>(0.0635)</td>
</tr>
<tr>
<td>Period 10</td>
<td>0.180**</td>
<td>0.160*</td>
</tr>
<tr>
<td></td>
<td>(0.0702)</td>
<td>(0.0785)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.600***</td>
<td>0.580***</td>
</tr>
<tr>
<td></td>
<td>(0.0591)</td>
<td>(0.0657)</td>
</tr>
<tr>
<td>Observations</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Cluster</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Individual FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>5.476</td>
<td>232.4</td>
</tr>
<tr>
<td>R²</td>
<td>0.0705</td>
<td>0.0391</td>
</tr>
</tbody>
</table>

Note: Cluster Robust Standard Errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors clustered at the unique matching group level. The DV in all regressions is a borrower’s decision to strategic default (Column 1: 10, Column 2: 40, Column 3: 70, Column 4: 100). All regressions include individual fixed effects. Explanatory variables are period dummies (Period 1- Period 10) to capture effects over time. Panel A: N-B treatment. Panel B: C-B treatment.
Table 9: Linear GLS Regressions: Strategic Default over time (N-H and C-H treatment)

<table>
<thead>
<tr>
<th>Panel A: N-H</th>
<th>Credit Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>DV: Strategic Default</td>
<td>10</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Period 2</td>
<td>0.120**</td>
</tr>
<tr>
<td>(0.0446)</td>
<td>(0.0451)</td>
</tr>
<tr>
<td>Period 3</td>
<td>0.0600</td>
</tr>
<tr>
<td>(0.0676)</td>
<td>(0.0654)</td>
</tr>
<tr>
<td>Period 4</td>
<td>0.260*</td>
</tr>
<tr>
<td>(0.0998)</td>
<td>(0.0866)</td>
</tr>
<tr>
<td>Period 5</td>
<td>0.300**</td>
</tr>
<tr>
<td>(0.114)</td>
<td>(0.108)</td>
</tr>
<tr>
<td>Period 6</td>
<td>0.360***</td>
</tr>
<tr>
<td>(0.0942)</td>
<td>(0.0963)</td>
</tr>
<tr>
<td>Period 7</td>
<td>0.280***</td>
</tr>
<tr>
<td>(0.0862)</td>
<td>(0.0840)</td>
</tr>
<tr>
<td>Period 8</td>
<td>0.340***</td>
</tr>
<tr>
<td>(0.0854)</td>
<td>(0.0799)</td>
</tr>
<tr>
<td>Period 9</td>
<td>0.360***</td>
</tr>
<tr>
<td>(0.0785)</td>
<td>(0.0862)</td>
</tr>
<tr>
<td>Period 10</td>
<td>0.380***</td>
</tr>
<tr>
<td>(0.0875)</td>
<td>(0.0431)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.320***</td>
</tr>
<tr>
<td>(0.0606)</td>
<td>(0.0608)</td>
</tr>
<tr>
<td>Observations</td>
<td>500</td>
</tr>
<tr>
<td>Cluster</td>
<td>10</td>
</tr>
<tr>
<td>Individual FE</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>144.9</td>
</tr>
<tr>
<td>R²</td>
<td>0.108</td>
</tr>
</tbody>
</table>

| Panel B: C-H |
|-------------|-------------|
| Period 2 | -0.0400 | -0.0200 | -0.0600 | -0.0200 |
| (0.0404) | (0.0635) | (0.0605) | (0.0362) |
| Period 3 | -0.0400 | -0.0200 | -0.0400 | -0.0400 |
| (0.0586) | (0.0764) | (0.0503) | (0.0503) |
| Period 4 | 0.0400 | 0.0400 | 3.53e-15 | -0.0200 |
| (0.0586) | (0.0840) | (0.0737) | (0.0635) |
| Period 5 | 0.0400 | 0.0200 | 0.0600 | -0.0200 |
| (0.0404) | (0.0559) | (0.0740) | (0.0559) |
| Period 6 | 0.200*** | 0.180** | 0.0600 | 1.95e-15 |
| (0.0602) | (0.0702) | (0.0676) | (0.0602) |
| Period 7 | 0.140 | 0.160* | 0.0200 | 0.0200 |
| (0.0799) | (0.0725) | (0.0821) | (0.0764) |
| Period 8 | 0.160** | 0.180*** | 0.0800 | 0.0400 |
| (0.0659) | (0.0471) | (0.0807) | (0.0586) |
| Period 9 | 0.180*** | 0.220*** | 0.100 | 0.0200 |
| (0.0471) | (0.0635) | (0.0689) | (0.0635) |
| Period 10 | 0.260*** | 0.240*** | 0.200** | 0.140** |
| (0.0605) | (0.0586) | (0.0673) | (0.0605) |
| Constant | 0.480*** | 0.520*** | 0.540*** | 0.540*** |
| (0.0414) | (0.0469) | (0.0503) | (0.0388) |
| Observations | 500 | 500 | 500 | 500 |
| Cluster | 10 | 10 | 10 | 10 |
| Individual FE | Yes | Yes | Yes | Yes |
| F | 1414.8 | 3150.3 | 68807.4 | 12.79 |
| R² | 0.109 | 0.0966 | 0.0529 | 0.0275 |

Note: Cluster Robust Standard Errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors clustered at the unique matching group level. The DV in all regressions is a borrower’s decision to strategic default (Column 1: 10, Column 2: 40, Column 3: 70, Column 4: 100). All regressions include individual fixed effects. Explanatory variables are period dummies (Period 1- Period 10) to capture effects over time. Panel A: N-H treatment. Panel B: C-H treatment.
B.2 Lender behavior over time

Figure 7 displays lender behavior over time. Panel A of the figure shows the average credit size over time in the N-B and the C-B treatment. Panel B highlights the average credit size over time in the N-H and the C-H treatment. The figure documents two important features of our communication effects: First, from the outset lenders issue higher credits in the communication treatments. Second, there is a decline in credit size over time in the treatments without communication. In the treatments with communication however, credit sizes are more stable over time.

Figure 7: Average Credit Size over Time

Notes: The figure highlights the average credit size in all treatments over time. Panel A presents time trends in the N-B and C-B treatment. Panel B shows the average credit size in the N-H and C-H treatments.

Table 10 complements Figure 7 by presenting linear fixed effect GLS regressions for lender behavior over all ten periods of the experiment. The dependent variable in all regression is a lender’s decision to issue a credit of different size. We include individual fixed effects and cluster standard errors at the unique matching group level in all regressions. The results confirm the time trends depicted in figure 7. Credit sizes significantly decline in the treatments without communication (N-B, N-H) but are stable over time in the respective communication treatments (C-B, C-H).
Table 10: Linear GLS Regressions: Credit size over time

<table>
<thead>
<tr>
<th>DV: Credit Size</th>
<th>N-B</th>
<th>C-B</th>
<th>N-H</th>
<th>C-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 2</td>
<td>-3.600</td>
<td>4.200</td>
<td>-4.200</td>
<td>0.600</td>
</tr>
<tr>
<td></td>
<td>(4.156)</td>
<td>(3.133)</td>
<td>(4.607)</td>
<td>(3.548)</td>
</tr>
<tr>
<td>Period 3</td>
<td>-10.80**</td>
<td>4.800</td>
<td>-10.20***</td>
<td>7.800*</td>
</tr>
<tr>
<td></td>
<td>(3.700)</td>
<td>(5.401)</td>
<td>(3.133)</td>
<td>(3.727)</td>
</tr>
<tr>
<td>Period 4</td>
<td>-15.60**</td>
<td>0.600</td>
<td>-5.400</td>
<td>-1.800</td>
</tr>
<tr>
<td></td>
<td>(5.355)</td>
<td>(3.431)</td>
<td>(3.185)</td>
<td>(5.712)</td>
</tr>
<tr>
<td>Period 5</td>
<td>-9.600</td>
<td>6.000</td>
<td>-6.000*</td>
<td>1.800</td>
</tr>
<tr>
<td></td>
<td>(7.775)</td>
<td>(4.944)</td>
<td>(3.254)</td>
<td>(5.712)</td>
</tr>
<tr>
<td>Period 6</td>
<td>-9.000</td>
<td>2.400</td>
<td>-4.49e-13</td>
<td>6.000</td>
</tr>
<tr>
<td></td>
<td>(7.565)</td>
<td>(6.201)</td>
<td>(4.329)</td>
<td>(6.122)</td>
</tr>
<tr>
<td>Period 7</td>
<td>-16.20**</td>
<td>4.800</td>
<td>-9.600*</td>
<td>10.20</td>
</tr>
<tr>
<td></td>
<td>(5.853)</td>
<td>(7.210)</td>
<td>(4.960)</td>
<td>(6.257)</td>
</tr>
<tr>
<td>Period 8</td>
<td>-15.60*</td>
<td>-3.000</td>
<td>-16.20***</td>
<td>-1.200</td>
</tr>
<tr>
<td></td>
<td>(7.288)</td>
<td>(6.524)</td>
<td>(3.727)</td>
<td>(6.980)</td>
</tr>
<tr>
<td>Period 9</td>
<td>-14.40</td>
<td>1.200</td>
<td>-12.00***</td>
<td>-3.600</td>
</tr>
<tr>
<td></td>
<td>(7.879)</td>
<td>(7.648)</td>
<td>(2.854)</td>
<td>(7.616)</td>
</tr>
<tr>
<td>Period 10</td>
<td>-22.20***</td>
<td>-6.600</td>
<td>-11.40**</td>
<td>0.600</td>
</tr>
<tr>
<td></td>
<td>(4.694)</td>
<td>(7.190)</td>
<td>(4.642)</td>
<td>(6.599)</td>
</tr>
<tr>
<td>Constant</td>
<td>58.00***</td>
<td>73.60***</td>
<td>52.60***</td>
<td>56.20***</td>
</tr>
<tr>
<td></td>
<td>(4.595)</td>
<td>(3.773)</td>
<td>(2.268)</td>
<td>(3.979)</td>
</tr>
</tbody>
</table>

Observations	500	500	500	500
Cluster	10	10	10	10
Individual FE	Yes	Yes	Yes	Yes
F	22.37	9.991	393.5	300.6
R²	0.0578	0.0146	0.0472	0.0247

Note: Cluster Robust Standard Errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors clustered at the unique matching group level. The dependent variable in all regressions is the lenders decision about the credit size (10, 40, 70, 100). All regressions include individual fixed effects. Explanatory variables are period dummies (Period 1- Period 10) to capture effects over time. Column 1: Regressions restricted to lenders in the N-B treatment. Column 2: Regressions restricted to lenders in the C-B treatment. Column 3: Regressions restricted to lenders in the N-H treatment. Column 4: Regressions restricted to lenders in the C-H treatment.
B.3 Lender beliefs

In period 1, 6, and 10 we elicited lenders’ beliefs concerning the share of borrowers who would repay a loan of each loan size in that period. Prior to this elicitation in periods 6 and 10 we presented the lenders with information on aggregate repayment behavior of the five borrowers in their matching group for all previous periods. In this appendix we provide evidence that lenders update their beliefs correctly over time.

Table 10, Panel A presents lender beliefs in period one of the experiment. Before borrowers make their first repayment decision and before lenders first decide which credit to give to the paired borrower beliefs about strategic default for high credits are very similar across all treatments. Panel B and Panel C demonstrate a shift in beliefs in the C-B treatment. By period six, lenders expect that 48% of the borrowers strategic default on their credits in the C-B treatment. By contrast, the beliefs about borrower defaults in the other treatments increase over time.

Table 12 provides statistical evidence for the differences in lender beliefs over time. The table presents within treatment GLS regressions with individual fixed effects for lender beliefs over time. In all regressions, standard errors are clustered at the matching group level. The table confirms the descriptive statistic results from table 11. The regressions highlight that within all treatments lenders adjust their beliefs about the strategic default rate in their matching group upwards. An exception are the beliefs about strategic defaults of credits 100 in the C-B treatment (Column 4 in Panel B). In this treatments, lenders adjust their beliefs downwards.

We present Figure 8 as an example of how well lenders adjust their beliefs (and lending decisions) to the borrowers repayment behavior. The figure graphically highlights a lenders’ belief about borrower strategic default rate for credits of 100 (light grey bar), the average percentage of credits 100 issued by the lenders (dark grey bar) and the average strategic default rate of credits 100 (black bar). Panel A-D describes the behavior in the N-B, C-B, N-H and C-H treatments respectively. The figure shows that lenders initially overestimate the strategic
default rate within their matching group but adjust their beliefs over time. Beliefs about strategic default and actual strategic default rates become more and more aligned as the experiment proceeds. The figure also shows that high beliefs about strategic default also directly translate into low credit volumes. It is apparent form Figure 8 that communication only impacts on beliefs and credit sizes in the communication treatments where borrower behavior is revealed (C-B treatment). In fact, it is in these treatment where lenders adjust their overestimated beliefs about strategic default rates downwards and increase the frequency with which they give credits of 100.
Table 11: Summary of Lender Beliefs over Time by Treatment

<table>
<thead>
<tr>
<th>Borrower behavior:</th>
<th>p = 0</th>
<th>p = 1/3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Revealed</td>
<td>Hidden</td>
</tr>
<tr>
<td>Panel A: Period 1 Beliefs</td>
<td>N-B (1)</td>
<td>N-H (3)</td>
</tr>
<tr>
<td>Strategic Default 10</td>
<td>0.320 (0.212)</td>
<td>0.384 (0.171)</td>
</tr>
<tr>
<td>Strategic Default 40</td>
<td>0.468 (0.166)</td>
<td>0.464 (0.140)</td>
</tr>
<tr>
<td>Strategic Default 70</td>
<td>0.640 (0.116)</td>
<td>0.604 (0.111)</td>
</tr>
<tr>
<td>Strategic Default 100</td>
<td>0.736 (0.155)</td>
<td>0.704 (0.107)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borrower behavior:</th>
<th>p = 0</th>
<th>p = 1/3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Revealed</td>
<td>Hidden</td>
</tr>
<tr>
<td>Panel B: Period 5 Beliefs</td>
<td>N-B (1)</td>
<td>N-H (3)</td>
</tr>
<tr>
<td>Strategic Default 10</td>
<td>0.468 (0.213)</td>
<td>0.560 (0.0980)</td>
</tr>
<tr>
<td>Strategic Default 40</td>
<td>0.576 (0.214)</td>
<td>0.600 (0.112)</td>
</tr>
<tr>
<td>Strategic Default 70</td>
<td>0.720 (0.208)</td>
<td>0.668 (0.113)</td>
</tr>
<tr>
<td>Strategic Default 100</td>
<td>0.864 (0.0888)</td>
<td>0.752 (0.141)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borrower behavior:</th>
<th>p = 0</th>
<th>p = 1/3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Revealed</td>
<td>Hidden</td>
</tr>
<tr>
<td>Panel C: Period 10 Beliefs</td>
<td>N-B (1)</td>
<td>N-H (3)</td>
</tr>
<tr>
<td>Strategic Default 10</td>
<td>0.636 (0.228)</td>
<td>0.636 (0.101)</td>
</tr>
<tr>
<td>Strategic Default 40</td>
<td>0.700 (0.200)</td>
<td>0.716 (0.0832)</td>
</tr>
<tr>
<td>Strategic Default 70</td>
<td>0.752 (0.218)</td>
<td>0.704 (0.174)</td>
</tr>
<tr>
<td>Strategic Default 100</td>
<td>0.876 (0.124)</td>
<td>0.732 (0.218)</td>
</tr>
</tbody>
</table>

Note: Mean of matching group averages with standard deviation in parentheses. Panel A: Mean beliefs about strategic default rates for all credit sizes in the first round of belief elicitation (Period 1). Panel B: Mean beliefs about strategic default rates for all credit sizes in the second round of belief elicitation (Period 5). Panel C: Mean beliefs about strategic default rates for all credit sizes in the third round of belief elicitation (Period 10). Strategic Default 10, Strategic Default 40, Strategic Default 70 and, Strategic Default 100 indicate the belief that borrowers strategic default on the different credit sizes.
Table 12: Linear GLS Regressions: Lender Beliefs over time

Panel A: N-B

<table>
<thead>
<tr>
<th>DV: Beliefs</th>
<th>Credit Size</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
<th>Period 5</th>
<th>Period 10</th>
<th>Constant</th>
<th>Observations</th>
<th>Cluster</th>
<th>F</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.148</td>
<td>0.316 **</td>
<td>0.320 ***</td>
<td>150</td>
<td>10</td>
<td>7.695</td>
<td>0.209</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0962)</td>
<td>(0.113)</td>
<td>(0.0685)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.108</td>
<td>0.232 **</td>
<td>0.468 ***</td>
<td>0.15</td>
<td>10</td>
<td>5.877</td>
<td>0.181</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0810)</td>
<td>(0.0844)</td>
<td>(0.0532)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0800</td>
<td>0.112</td>
<td>0.640 ***</td>
<td>0.271</td>
<td>10</td>
<td>1.605</td>
<td>0.0657</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0630)</td>
<td>(0.0679)</td>
<td>(0.0428)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.128</td>
<td>0.140 **</td>
<td>0.736 ***</td>
<td>0.736</td>
<td>10</td>
<td>4.770</td>
<td>0.140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0415)</td>
<td>(0.0541)</td>
<td>(0.0308)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Cluster Robust Standard Errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors clustered at the unique matching group level. The dependent variable in all regressions is the lenders belief about strategic default (10, 40, 70, 100). All regressions include individual fixed effects. Explanatory variables are period dummies (Period 5 and Period 10) to capture effects over time.
Figure 8: Lender Beliefs for Strategic Default 100, Mean frequency of Credits of 100, Strategic Default Rate for Credits of 100

Notes: The figure shows the lender beliefs about borrower strategic default for credits of 100, the frequency with which lenders give credits of 100 and the strategic default rate for credits of 100. Panel A: N-B treatment. Panel B: C-B treatment. Panel C: N-H treatment. Panel D: C-H treatment.
B.4 Socio demographic characteristics by treatment

Table 13: Socio Demographics by Treatment

<table>
<thead>
<tr>
<th>Treatment:</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>N-B</td>
<td>Age</td>
<td>24.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.914)</td>
</tr>
<tr>
<td>C-B</td>
<td>Female</td>
<td>0.560</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.499)</td>
</tr>
<tr>
<td>N-H</td>
<td>Student</td>
<td>0.930</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.256)</td>
</tr>
<tr>
<td>C-H</td>
<td>Income after expenses</td>
<td>328.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(239.0)</td>
</tr>
</tbody>
</table>

Note: The table reports averages of socio demographic variables by treatment. Standard deviations are shown in parentheses. Age Female is a variable which is equal to one if a subject is female and zero if a subject is male. Student is a variable which is equal to one if a subject is enrolled as a student and zero otherwise (note that occasionally none students may participate in experiments). Income after expenses shows self reported income after all expenses (e.g., housing cost etc.).

B.5 Summary statistics N-B and N-H 2015 and 2017

Table 14: Summary Statistics by Treatment - N-B and N-H: 2015 and 2017

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit</td>
<td>46.30</td>
<td>37.75</td>
<td>45.10</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>(15.23)</td>
<td>(10.15)</td>
<td>(14.26)</td>
<td>(9.749)</td>
</tr>
<tr>
<td>ISD</td>
<td>0.650</td>
<td>0.62</td>
<td>0.587</td>
<td>0.615</td>
</tr>
<tr>
<td></td>
<td>(0.157)</td>
<td>(0.078)</td>
<td>(0.112)</td>
<td>(0.113)</td>
</tr>
<tr>
<td>Borrower Profit</td>
<td>290.5</td>
<td>270.0</td>
<td>233.7</td>
<td>206.0</td>
</tr>
<tr>
<td></td>
<td>(37.56)</td>
<td>(22.52)</td>
<td>(32.16)</td>
<td>(20.62)</td>
</tr>
<tr>
<td>Lender Profit</td>
<td>148.4</td>
<td>143.3</td>
<td>139.5</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>(24.31)</td>
<td>(8.007)</td>
<td>(8.379)</td>
<td>(5.860)</td>
</tr>
</tbody>
</table>

Note: Mean of matching group averages with standard deviation in parentheses. Mean credit size (Credit Size, mean of realized strategic defaults over all credits (RSD), the mean of borrower profits (Borrower Profit) and the mean of lender profits (Lender Profit).
B.6 Instructions for Coder and Participants

Coding Instructions for classification of borrower communication in the C-B, C-H and C-R treatments:

Coding:

While coding, please mark all corresponding categories as 1. If a statement does not fall into a certain category, either please mark this with 0 or leave the category empty. More than one category may apply for the same statement.

What you see is the chat message of a borrower to a lender. Borrowers were able to send a free form message to a lender and lenders were able to decide to give a credit of size 10, 40, 70 or 100.

“uid” represents an individual identifier variable in the dataset which allows sorting of messages.

Multiple categories apply in which a message may fall. These categories are: promise, request, lie, threat, personal info weird/crazy, fuzzy (unclear), promise 10 (promise to repay a credit of 10), promise 40 (promise to repay a credit of 40), promise 70 (promise to repay a credit of 70), promise 100 (promise to repay a credit of 100), request 10 (request a credit of 10), request 40 (request a credit of 40), request 70 (request a credit of 70), request 100 (request a credit of 100), threat 10 (threat to only repay credits of 10), threat 40 (threat to only repay credits of 40), threat 70 (threat to only repay credits of 70), threat 100 (threat to only repay credits of 100), and message with personal info (name etc.), language_neutral_language_friendly_language_aggressive

Every coder has a personalized ending of variable names. Either _1, _2, or _3. This allows us to identify consensus and disagreements.

If the message field is empty, you do not need to code anything.

Here are a few examples of messages:

Promise: “I promise to pay my credit”

Request: “I request a credit of 100. Thank you!”

Promise and request and promise 100: “if I get a credit of 100, I will repay the credit”

Promise/promise 100/threat:

“If you give me the highest credit, I will repay. Then we both have 11€ and I will be happy with it. For any credit below that, it does not pay for me to repay because I get less than 300 anyway.”

“Hello, for credits of 10 or 40, I will keep the money. I will happily repay credits of 70 or 100”

Weird: “I believe Birdman was actually better than Boyhood and rightfully deserved the best Picture Oscar”

Personal/promise/request: “Hello lender! I am Vivien and am in cabin 12. I want a credit of 100 points. I guarantee to repay my credit. This way, we will both have 300 points. Thanks”
Welcome to the experimental laboratory!

Today, you will participate in an economics experiment. By participating, you can earn money. The amount of money you make depends on your own decisions and the decisions of other participants. Therefore, it is important that you carefully read the following instructions.

The instructions you have received from us are for your private information. **During the experiment, communication is absolutely prohibited.** If you have any questions, please contact us by raising your hands. An experimenter will come to you and answer your questions. Failure to comply with the rules will result in exclusion from the experiment and all payments. The decisions you make during the experiment are **anonymous.** Only the experimenter knows your identity but your decisions cannot be assigned to your identity.

For your participation in the experiment, you will receive a show up fee of **5 Euros.** The additional payment depends on your decisions and the decisions of other participants.

The experiment is divided into different periods. In each period, you have to make decisions that you enter in the computer. In total, there are 10 periods. At the end of the experiment, 2 periods are randomly selected for your payment. For that, one period from period 1 to 5 and one period from period 6 to 10 will be randomly selected. Your payment during the experiment will be calculated in **points.** The total number of points obtained in the two selected periods will be converted into Euros and then paid to you in cash. For the conversion, the following exchange rate applies:

100 Points = 2 Euro.

In total, you receive your earnings from the 2 payment periods plus the show up fee of 5 Euros in cash.

Please wait in your cabin during the payout phase until you are summoned by us to collect your payment. Please bring all the documents you have received from us when you receive your payment.

Before the experiment, all 20 participants were divided into two groups of 10 who independently participate in the experiment. In each group, there are 5 borrowers and 5 lenders.

Throughout the experiment, you are a lender in your group of 10.
Brief overview about the experimental procedure

Throughout the experiment, your group consists of the same 10 persons: you (as a lender), 4 other lenders and 5 borrowers.

The experiment consists of 10 periods. In each period, you will be randomly paired with one of the 5 borrowers of your group of 10.

At the beginning of each period, each borrower and lender has an endowment of 150 points.

Treatment Communication: In each period, there is a communication phase, in which borrowers can decide to write a message to the lender they were paired with. Only borrowers can write a message and lenders can read it.

In each period, you have to decide on the amount of the loan for the borrower you have been paired with. The granted loan has to be between 10 points and 100 points and can be either 10, 40, 70 or 100 points. The loan will be automatically invested in a project.

By granting a loan to a borrower, the borrower will incur a loan debt, which will be two and a half times larger than the granted loan.

The borrower will get a project revenue, which will be four times larger than the granted loan. The borrower has to decide whether he wants to settle the outstanding loan debt.

At the end of each period, your income and the income of the borrower are calculated. You and the borrower will be informed about your income.

After five periods, you will receive a one-time summary on the amount of granted loans for the different loan amounts, how many of these loans have been repaid and the average income for the respective loan amount.

The experiment consists of 10 periods. At the end of the experiment, your income from each period is calculated and converted in Euros and 2 periods are randomly selected for payment. For that, one period from period 1 to 5 and one period from period 6 to 10 will be randomly selected. The points of these two periods will be converted into Euros and paid out in cash together with the 5 Euros show up fee.
Detailed information about the experimental procedure

Throughout the experiment, you are in a group of 10 people. The 9 others in your group are the same people during the whole experiment. Your group of 10 consists of 5 borrowers and 5 lenders. You are a lender during the entire experiment.

In each period, you will be paired with a borrower from your group of 10. In each period, a new pairing will be randomly selected. Thus, in course of the experiment you will be paired with different borrowers from your group of 10.

0. Communication (only for communication treatment)

Borrowers can decide in each period whether they want to send a message to the lender they were paired with. This message can contain up to 300 signs. Borrowers can also decide not to write a message to the lender. Only borrowers can send a message. You as a lender can read it but you cannot reply to it.

If the borrower you were paired with decides to write you a message, you will see the following screen:

Example: Message from borrower to lender

Nachricht vom mit Ihnen gepaarten Kreditnehmer aus Ihrer Gruppe:

Hallo Kreditgeber!

Translation:
Line 1: Message from borrower of your group you were paired with.
Line 2: Hello lender!

In the example above, the borrower has written «Hello lender!». After you have read the message, you can proceed with the experiment by clicking the “next”-button.

1. Granting of loan

At the beginning of each period, you and all the other lenders have an endowment of 150 points. Each borrower has also an endowment of 150 points.

You have to decide on the size of the loan for the borrower you have been paired with. You can grant a loan between 10 points and 100 points. There are 4 different loan amounts that can be granted. The amount of the loan is either 10, 40, 70 or 100 points.

You can only grant one loan and you see the following screen:

Example: Granting of loan to borrower

Translation
Line 1, 2, 3 and 4: You have to decide on the size of the loan for the borrower you have been paired with. You can grant a loan between 10 points and 100 points. There are 4 different loan amounts that can be granted. The amount of the loan is either 10, 40, 70 or 100 points. The loan is automatically invested in a project. The borrower will get a project revenue, which is four times as large as the granted loan. The borrower can decide whether he wants to settle the loan debt. Please indicate the corresponding loan amount and then click next.

Line 5: I grant a loan of 10
Line 6: I grant a loan of 40
Line 7: I grant a loan of 70
Line 8: I grant a loan of 100
2. Project revenue and loan debt

The loan is automatically invested in a project. The borrower will get a project revenue, which is four times as high as the granted loan (e.g. 280 in case of a loan amount of 70). The loan debt owed to you as the lender is two and a half times as large as the loan amount (e.g. 175 in case of a loan amount of 70).

<table>
<thead>
<tr>
<th>Loan amount</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project revenue</td>
<td>40</td>
<td>160</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Loan debt</td>
<td>25</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
</tbody>
</table>

3. Repayment of loan debt

The borrower has to decide whether he wants to settle the loan debt. If the borrower decides to repay the loan debt, the repayment is equal the loan debt amount, otherwise the repayment is 0.

4. Your income

In each period, your income will depend on:
- the size of the loan to the borrower,
- the repayment decision of the borrower.

Your income is determined by your endowment from the beginning of a period minus the loan plus the repayment of the borrower.

\[
\text{Your income} = 150 - \text{loan} + \text{repayment}
\]

Thus, your income depends largely on the repayment of the borrower. If the borrower decides to settle his loan debt, your income is higher if you grant a large loan (because the repayment is larger than the loan in case of a project success). If the borrower does not repay his loan debt, your income is higher if you grant the smallest possible loan amount.

In the following table, you can see your income as lender for each possible loan amount:

<table>
<thead>
<tr>
<th>Loan amount</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project revenue</td>
<td>40</td>
<td>160</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Loan debt</td>
<td>25</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loan amount</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project revenue</td>
<td>40</td>
<td>160</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Loan debt</td>
<td>25</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Your income</th>
<th>165</th>
<th>210</th>
<th>255</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>in case of repayment</td>
<td>140</td>
<td>110</td>
<td>80</td>
<td>50</td>
</tr>
</tbody>
</table>
5. Information about your income

At the end of each period, you will get information about your income on your screen, which will look as follows:

Translation
Line 1: Your decision and the resulting payment in this period:
Line 2: You have granted a loan amount of 40
Line 3: The borrower has settled the loan debt
Line 4: Your income in this period:
Line 5: Your endowment: 150
Line 6: - Loan: 40
Line 7: + Repayment of the borrower: 100
Line 8: = Your income: 210

You will see your chosen loan amount, whether you get a repayment and your income.

6. Income of the borrower

In each period, the income of the borrower depends on:
- the size of the loan to the borrower,
- and whether the borrower settles his loan debt.

The income of the borrower is determined by the endowment at the beginning of a period plus the project revenue minus the repayment.

\[
\text{Income} = 150 + \text{project revenue} - \text{repayment}
\]

The income of the borrower is therefore the higher the larger the loan you granted. Additionally, borrowers can increase their income by deciding not to settle their loan debt and not making a repayment.
In the following table, you can see the possible incomes of a borrower for each loan amount.

<table>
<thead>
<tr>
<th>Loan amount</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project revenue</td>
<td>40</td>
<td>160</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Loan debt</td>
<td>25</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
</tbody>
</table>

In case of repayment

| In case of repayment | 165 | 210 | 255 | 300 |

In case of no repayment

| In case of no repayment | 190 | 310 | 430 | 550 |

7. Your beliefs about the repayment behavior of the borrower

In period 1, 5 and 10, you as a borrower will be asked to indicate your belief about how many borrowers in your group will repay their loan debt for the different loan amounts.

For that, you will see the following screen in period 1, 5 and 10:

Translation:

Line 1 and 2: Borrowers can decide to settle their loan debt. Please mark in the corresponding box, how many of the 5 borrowers you believe to settle their debt for the different loan amounts. Subsequently, click next.

Line 3: What do you think? If you grant a loan of the following amount, how many of the 5 borrowers in your group will settle their loan debt?

Left column: Loan amount
Right column: Number of borrowers

Instructions for lenders, Page 7
8. Information about the loan granting in the periods 1-5

In period five, you will receive a one-time summary about the loan granting in the periods one to five. In total, there are 25 granted loans in the first five periods in your group. You learn how many of the 25 loans in your group were granted of the different loan sizes (10, 40, 70, and 100). Besides that, you receive the information how many of the granted loans of the different sizes have been repaid by the borrowers. Finally, you will learn the average incomes, which have been earned with the granting of loans of the different loan sizes (10, 40, 70, and 100).

You will see the following screen:

Translation:
Line 1 and 2: In this period, you receive a one-time information about the past loan granting in your group of 5 lenders. For each of the four possible loan amounts you will get the following information:
Line 3: - How many loans of the respective site have been granted in periods 1-5.
Line 4: - How many of the granted loans of the respective size were repaid.
Line 5: - How high was the average income of a lender in your group, who granted a loan of the respective size.
First column: Loan amount.
Second column: Number of granted loans
Third column: Number of repaid loans
Fourth column: Average income per granted loan

Please not that this figure is an example in which all loan amounts, repayments and incomes have been replaced by the letters AAA, BBB and CCC! During the experiment you see the actual values depending on your loan granting behavior and the behavior of your group members.
9. Examples for possible incomes

Example 1: You decide to grant a loan of 100 points. The borrower decides to settle the loan debt of 250 points for a loan size of 100 points.
- Your income: $150 - 100 + 250 = 300$ Points
- The income of the borrower: $150 + 400 - 250 = 300$ Points

Example 2: You decide to grant a loan of 100 points. The borrower decides not to repay the loan debt of 250 points for a loan size of 100 points.
- Your income: $150 - 100 = 50$ Points
- The income of the borrower: $150 + 400 = 550$ Points

Example 3: You decide to grant a loan of 10 points. The borrower decides to settle the loan debt of 25 points for a loan size of 10 points.
- Your income: $150 - 10 + 25 = 165$ Points
- The income of the borrower: $150 + 40 - 25 = 165$ Points

Example 4: You decide to grant a loan of 10 points. The borrower decides not to repay the loan debt of 25 points for a loan size of 10 points.
- Your income: $150 - 10 = 140$ Points
- The income of the borrower: $150 + 40 = 190$ Points
Payment:

After the 10 periods, a participant is selected at random to come to the experimenter and draw 2 distinct numbers, one between 1 and 5 and one between 6 and 10. The numbers will be publicly announced and will determine the payment periods for all participants. Therefore, 2 different periods will be randomly selected for payment, one from the first 5 periods and one from the second 5 periods. The selected periods will be entered into the computer program by the experimenter. Your earnings will then be reported on the screen.

Your payoff is computed as follows:

Your payoff for pay period 1 in points
+ Your payoff for pay period 2 in points
= Your overall payoff in points

Your final payoff in Euro (100 points = 2 Euro)
+ The show up fee = 5 Euro
= Your payoff in Euro

After completion of the experiment and before we start with the payouts, please fill in the questionnaire that follows the experiment. When you have completed the questionnaire, please remain seated at your place before we start paying the participants. Please wait in your cabin until you are called by us to collect your payment. Please bring all documents you have received from us when you receive your payment.

The experiment begins when all participants are fully familiar with the procedure of the experiment and understand the consequences of their decisions and the decisions of others for their earnings. To ensure this, we ask you to solve some control questions. Your solutions to the control questions have no effect on the income you can earn in the experiment.

You receive the control questions below in paper form and on the computer screen. Please solve them on paper first. In order to verify the accuracy of your answers you are asked to answer the questions again on the computer screen.

The experiment begins once you have correctly solved all the control questions. After completion of the experiment, please fill in a questionnaire on the screen. Then the payout commences.

If you have any questions, please raise your hand. An experimenter will come to you and answer your question.
Lender Instructions: N-B and C-B

Control Questions

Question:
a) What is your endowment at the beginning of each period?
Answer:
b) What is the endowment of a borrower at the beginning of each period?
Answer:
c) What is the maximum loan amount?
Answer:
d) What is the minimum loan amount?
Answer:
e) Do borrowers have to settle the loan debt?
Answer:
f) You decide to grant a loan of 40. The borrower has decided to repay the loan debt for a loan amount of 40.
 • What is your income?
 • What is the income of the borrower?
Answer:
g) You decide to grant a loan of 40. The borrower has decided not to repay the loan debt for a loan amount of 40.
 • What is your income?
 • What is the income of the borrower?
Answer:
Welcome to the experimental laboratory!

Today, you will participate in an economics experiment. By participating, you can earn money. The amount of money you make depends on your own decisions and the decisions of other participants. Therefore, it is important that you carefully read the following instructions.

The instructions you have received from us are for your private information. During the experiment, communication is absolutely prohibited. If you have any questions, please contact us by raising your hands. An experimenter will come to you and answer your questions. Failure to comply with the rules will result in exclusion from the experiment and all payments. The decisions you make during the experiment are anonymous. Only the experimenter knows your identity but your decisions cannot be assigned to your identity.

For your participation in the experiment, you will receive a show up fee of 5 Euros. The additional payment depends on your decisions and the decisions of other participants.

The experiment is divided into different periods. In each period, you have to make decisions that you enter in the computer. In total, there are 10 periods. At the end of the experiment, 2 periods are randomly selected for your payment. For that, one period from period 1 to 5 and one period from period 6 to 10 will be randomly selected. Your payment during the experiment will be calculated in points. The total number of points obtained in the two selected periods will be converted into Euros and then paid to you in cash. For the conversion, the following exchange rate applies:

\[100 \text{ Points} = 2 \text{ Euro}.
\]

In total, you receive your earnings from the 2 payment periods plus the show up fee of 5 Euros in cash.

Please wait in your cabin during the payout phase until you are summoned by us to collect your payment. Please bring all the documents you have received from us when you receive your payment.

Before the experiment, all 20 participants were divided into two groups of 10 who independently participate in the experiment. In each group, there are 5 borrowers and 5 lenders.

Throughout the experiment, you are a borrower in your group of 10.
Brief overview about the experimental procedure

Throughout the experiment, your group consists of the same 10 persons: you (as a borrower), 4 other borrowers and 5 lenders.

The experiment consists of 10 periods. In each period, you will be randomly paired with one of the 5 lenders of your group of 10.

At the beginning of each period, each borrower and lender has an endowment of 150 point.

[Treatment Communication:] In each period, there is a communication phase, in which you as a borrower can decide to write a message to the lender you were paired with. Only borrowers can write a message and lenders can read it.

In each period, the lender you have been paired with has to decide on the loan amount he wants to grant. The granted loan has to be between 10 points and 100 points and can be either 10, 40, 70 or 100 points. The loan will be automatically invested in a project.

You will earn a project revenue, which is 4 times as high as the granted loan. Your loan debt is always two and a half times as high as the granted loan.

As a borrower, you have to decide whether you want to repay the loan debt or not.

At the end of each period, your income and the income of the lender are calculated. You and the lender will be informed about your income.

The experiment consists of 10 periods. At the end of the experiment, your income from each period is calculated and converted in Euros and 2 periods are randomly selected for payment. For that, one period from period 1 to 5 and one period from period 6 to 10 will be randomly selected. The points of these two periods will be converted into Euros and paid out in cash together with the 5 Euros show up fee.
Throughout the experiment, you are in a group of 10 people. The 9 others in your group are the same people during the whole experiment. Your group of 10 consists of 5 borrowers and 5 lenders. You are a borrower during the entire experiment.

In each period, you will be paired with a lender from your group of 10. In each period, a new pairing will be randomly selected. Thus, in course of the experiment you will be paired with different lenders from your group of 10.

0. Communication (only for communication treatment)

At the beginning of each period, you can decide whether you want to send a message to the lender you were paired with. This message can contain up to 300 signs and you have to enter the message into the system. You can also decide not to write a message to the lender. Only you as a borrower can send a message. The lender can read it but he cannot reply to it.

You will see the following screen and can decide whether you want to write a message or not. If you decide not to send a message, go directly to the decision phase of the corresponding period:

Example: Decision about sending a message

Wollen Sie dem mit Ihnen gepaarten Kreditgeber aus Ihrer Gruppe eine Nachricht schreiben?

Ja

Nein

Translation:
Line 1: Do you want to send a message to the lender you were paired with?
Line 2: Yes No

Click “yes”, if you decide to write a message to the lender you were paired with and then click next. After that, you will see the following screen:
Example: Decision about sending a message

Translation
Line 1: Message to the lender you were paired with:
Line 2: (Please confirm the transmission of the message by clicking “Enter”)

Enter your message in the field highlighted in blue and confirm your entry by clicking “Enter”. Following, click “next”. Please note that you have to type the complete message and only click “Enter” at the end of the message. Please use the “Enter”-key only to send your message and not to make a line break.

1. Loan, project revenue and loan debt

At the beginning of each period, you and all the other borrowers have an endowment of 150 points. Each lender has also an endowment of 150 points.

The lender you have been paired with has to decide on the amount of the loan he grants you. There are 4 different loan amounts that can be granted. The amount of the loan is either 10, 40, 70 or 100 points.

The loan is automatically invested in a project. You will get a project revenue, which is four times as large as the granted loan (e.g. 280 in case of a loan amount of 70). Your loan debt is two and a half times as large as the loan amount (e.g. 175 in case of a loan amount of 70).

Table: Project revenue and loan debt

<table>
<thead>
<tr>
<th>Loan amount</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project revenue</td>
<td>40</td>
<td>160</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Loan debt</td>
<td>25</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
</tbody>
</table>
Borrower Instructions: N-B and C-B

2. Repayment of loan debt

You have to decide whether you want to settle the loan debt. You make your repayment decision in each period, before you get to know which loan amount the lender has granted you. Therefore, you have to decide for each of the four loan amounts whether you repay your loan debt.

Below, you can see the corresponding decision screen:

Example: Decision about repayment of loan debt

Translation
Line 1, 2 and 3: You can get a loan between 10 points and 100 points. There are 4 different loan amounts that can be granted to you. The amount of the loan is either 10, 40, 70 or 100 points. The loan is automatically invested in a project. The project revenue is four times as large as the granted loan. You can now decide whether you settle your loan debt and make a repayment. Please indicate the corresponding repayment, which you want to make and then click next.
1. Column: Loan
2. Column: Project revenue
3. Column: Loan debt
4. Column: Repayment

If you decide to settle your loan debt, the repayment will be equal to the loan debt.

3. Your income

In each period, your income will depend on:
- the size of the loan of the lender,
- your repayment decision.
Your income is determined by your endowment from the beginning of a period plus the project revenue minus the repayment.

Your income = 150 + project revenue - repayment

Thus, your income depends largely on the loan the lender grants you. Further, you can increase your income by deciding not to settle your loan debt and not to make a repayment.

In the following table, you can see your income for each possible loan amount:

<table>
<thead>
<tr>
<th>Loan amount</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project revenue</td>
<td>40</td>
<td>160</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Loan debt</td>
<td>25</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
<tr>
<td>Your income in case of repayment</td>
<td>165</td>
<td>210</td>
<td>255</td>
<td>300</td>
</tr>
<tr>
<td>Your income in case of no repayment</td>
<td>190</td>
<td>310</td>
<td>430</td>
<td>550</td>
</tr>
</tbody>
</table>

4. Income of lender

In each period, the income of the lender will depend on:
- the size of the loan of the lender,
- your repayment decision.

The income of the lender is determined by the endowment at the beginning of a period minus the loan plus your repayment.

Income = 150 - loan + repayment

Thus, the income of the lender depends largely on your repayment. If you decide to settle your loan debt, the income of the lender is higher in case of a larger loan (because the repayment is larger than the loan in case of a project success). If you do not repay your loan debt, the income of the lender is higher if he grants the smallest possible loan amount.

In the following table, you can see the income of the lender for each possible loan amount:

<table>
<thead>
<tr>
<th>Loan amount</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project revenue</td>
<td>40</td>
<td>160</td>
<td>280</td>
<td>400</td>
</tr>
</tbody>
</table>
5. Information about your income

At the end of each period, you will get information about your income on your screen, which will look as follows:

Translation
Line 1: Your decision and the resulting payment in this period:
Line 2: You got a loan of 40
Line 3: You have decided to settle the loan debt
Line 4: The investment project yields a revenue of 160
Line 5: Your income in this period:
Line 6: Your endowment: 150
Line 7: + Project revenue 160
Line 8: - Your repayment 100
Line 9: = Your income: 210

At the end of each period, the lender will get information about his income on his screen, which will look as follows:

Instructions for borrowers, Page 7
Translation

Line 1: Your decision and the resulting payment in this period:

Line 2: You have granted a loan amount of 40

Line 3: The borrower has settled the loan debt

Line 4: Your income in this period:

Line 5: Your endowment: 150

Line 6: - Loan: 40

Line 7: + Repayment of the borrower: 100

Line 8: = Your income: 210

The lender will see his chosen loan amount, whether he gets a repayment and his income.

6. Examples for possible incomes

Example 1: The lender decides to grant a loan of 100 points. You decide to settle the loan debt of 250 points for a loan size of 100 points.
- The income of the lender: 150 - 100 + 250 = 300 Points
- Your income: 150 + 400 - 250 = 300 Points

Example 2: The lender decides to grant a loan of 100 points. You decide not to repay the loan debt of 250 points for a loan size of 100 points.
- The income of the lender: 150 - 100 = 50 Points
- Your income: 150 + 400 = 550 Points

Example 3: The lender decides to grant a loan of 10 points. You decide to settle the loan debt of 25 points for a loan size of 10 points.
- The income of the lender: 150 - 10 + 25 = 165 Points
- Your income: 150 + 40 - 25 = 165 Points

Instructions for borrowers, Page 8
Example 4: The lender decides to grant a loan of 10 points. You decide not to repay the loan debt of 25 points for a loan size of 10 points.

- The income of the lender: 150 - 10 = 140 Points
- Your income: 150 + 40 = 190 Points

Payment:

After the 10 periods, a participant is selected at random to come to the experimenter and draw 2 distinct numbers, one between 1 and 5 and one between 6 and 10. The numbers will be publicly announced and will determine the payment periods for all participants. Therefore, 2 different periods will be randomly selected for payment, one from the first 5 periods and one from the second 5 periods. The selected periods will be entered into the computer program by the experimenter. Your earnings will then be reported on the screen.

Your payoff is computed as follows:

Your payoff for pay period 1 in points
+ Your payoff for pay period 2 in points
= Your overall payoff in points

Your final payoff in Euro (100 points = 2 Euro)
+ The show up fee = 5 Euro
= Your payoff in Euro

After completion of the experiment and before we start with the payouts, please fill in the questionnaire that follows the experiment. When you have completed the questionnaire, please remain seated at your place before we start paying the participants. Please wait in your cabin until you are called by us to collect your payment. Please bring all documents you have received from us when you receive your payment.

The experiment begins when all participants are fully familiar with the procedure of the experiment and understand the consequences of their decisions and the decisions of others for their earnings. To ensure this, we ask you to solve some control questions. Your solutions to the control questions have no effect on the income you can earn in the experiment.

You receive the control questions below in paper form and on the computer screen. Please solve them on paper first. In order to verify the accuracy of your answers you are asked to answer the questions again on the computer screen.

The experiment begins once you have correctly solved all the control questions. After completion of the experiment, please fill in a questionnaire on the screen. Then the payout commences.

If you have any questions, please raise your hand. An experimenter will come to you and answer your question.
Control Questions

Question:

a) What is your endowment at the beginning of each period?
 Answer:

b) What is the endowment of a lender at the beginning of each period?
 Answer:

c) What is the maximum loan amount?
 Answer:

d) What is the minimum loan amount?
 Answer:

e) Do you have to settle the loan debt?
 Answer:

f) The lender has decided to grant a loan of 40. You have decided to repay the loan debt for a loan amount of 40.
 - What is your income?
 - What is the income of the lender?
 Answer:

g) The lender has decided to grant a loan of 40. You have decided not to repay the loan debt for a loan amount of 40.
 - What is your income?
 - What is the income of the lender?
 Answer:
Welcome to the experimental laboratory!

Today, you will participate in an economics experiment. By participating, you can earn money. The amount of money you make depends on your own decisions and the decisions of other participants. Therefore, it is important that you carefully read the following instructions.

The instructions you have received from us are for your private information. During the experiment, communication is absolutely prohibited. If you have any questions, please contact us by raising your hands. An experimenter will come to you and answer your questions. Failure to comply with the rules will result in exclusion from the experiment and all payments. The decisions you make during the experiment are anonymous. Only the experimenter knows your identity but your decisions cannot be assigned to your identity.

For your participation in the experiment, you will receive a show up fee of 5 Euros. The additional payment depends on your decisions and the decisions of other participants.

The experiment is divided into different periods. In each period, you have to make decisions that you enter in the computer. In total there are 10 periods. At the end of the experiment, 2 periods are randomly selected for your payment. For that, one period from period 1 to 5 and one period from period 6 to 10 will be randomly selected. Your payment during the experiment will be calculated in points. The total number of points obtained in the two selected periods will be converted into Euros and then paid to you in cash. For the conversion, the following exchange rate applies:

100 Points = 2 Euro.

In total, you receive your earnings from the 2 payment periods plus the show up fee of 5 Euros in cash.

Please wait in your cabin during the payout phase until you are summoned by us to collect your payment. Please bring all the documents you have received from us when you receive your payment.

Before the experiment, all 20 participants were divided into two groups of 10 who independently participate in the experiment. In each group, there are 5 borrowers and 5 lenders.

Throughout the experiment, you are a lender in your group of 10.
Brief overview about the experimental procedure

Throughout the experiment, your group consists of the same 10 persons: you (as a lender), 4 other lenders and 5 borrowers.

The experiment consists of 10 periods. In each period, you will be randomly paired with one of the 5 borrowers of your group of 10.

At the beginning of each period, each borrower and lender has an endowment of 150 points.

[Treatments with communication:] In each period, there is a communication phase, in which borrowers can decide to write a message to the lender they were paired with. Only borrowers can write a message and lenders can read it.

In each period, you have to decide on the amount of the loan for the borrower you have been paired with. The granted loan has to be between 10 points and 100 points and can be either 10, 40, 70 or 100 points. The loan will be automatically invested in a project. Whether the project is a success is determined randomly.

By granting a loan to a borrower, the borrower will incur a loan debt, which will be two and a half times larger than the granted loan.

The probability that a project is a success is 66%. Therefore, a project is on average in two out of three cases a success. In case of a project success the borrower earns a project revenue, which is four times larger than the granted loan. After the project success, the borrower has to decide whether he wants to settle the outstanding loan debt.

The probability that the project is not a success is 33%. Therefore, a project is on average in one out of three cases not successful. In case of an unsuccessful project, the borrower does not get a project revenue and cannot settle his loan debt.

[Treatment N-R and C-R:] At the end of each period, you will get information on whether the project was a success and you will learn the repayment decision of the borrower.

[Not displayed in N-R and C-R (N-H and C-H only):] You do not get instantaneous information about whether the project was a success or not and you do not get to know the repayment decision of the borrower. If you do not get a repayment, you therefore do not know whether the project was not a success and the borrower could not make a repayment or whether the project was a success but the borrower did not want to make a repayment. After five periods, you will receive a one-time summary on the amount of granted loans for the different loan amounts, how many of these loans have been repaid and the average income for the respective loan amount.

At the end of each period, your income and the income of the borrower are calculated. You and the borrower will be informed about your income.
The experiment consists of 10 periods. At the end of the experiment, your income from each period is calculated and converted in Euros and 2 periods are randomly selected for payment. For that, one period from period 1 to 5 and one period from period 6 to 10 will be randomly selected. The points of these two periods will be converted into Euros and paid out in cash together with the 5 Euros show up fee.

Detailed information about the experimental procedure

Throughout the experiment, you are in a group of 10 people. The 9 others in your group are the same people during the whole experiment. Your group of 10 consists of 5 borrowers and 5 lenders. You are a lender during the entire experiment.

In each period, you will be paired with a borrower from your group of 10. In each period, a new pairing will be randomly selected. Thus, in course of the experiment you will be paired with different borrowers from your group of 10.

0. **Communication** (only for communication treatment)

Borrowers can decide in each period whether they want to send a message to the lender they were paired with. This message can contain up to 300 signs. Borrowers can also decide not to write a message to the lender. Only borrowers can send a message. You as a lender can read it but you cannot reply to it.

If the borrower you were paired with decides to write you a message, you will see the following screen:
Example: Message from borrower to lender

Translation:
Line 1: Message from borrower of your group you were paired with.
Line 2: Hello lender!

In the example above, the borrower has written «Hello lender!». After you have read the message, you can proceed with the experiment by clicking the “next”-button.

1. Granting of loan

At the beginning of each period, you and all the other lenders have an endowment of 150 points. Each borrower has also an endowment of 150 points.

You have to decide on the size of the loan for the borrower you have been paired with. You can grant a loan between 10 points and 100 points. There are 4 different loan amounts that can be granted. The amount of the loan is either 10, 40, 70 or 100 points.

You can only grant one loan and you see the following screen:

Example: Granting of loan to borrower
Line 1, 2, 3, 4 and 5: You can now decide to grant a loan to the borrower you were paired with. There are 4 different loan amounts that can be granted. The amount of the loan is either 10, 40, 70 or 100 points. The loan is automatically invested in a project. The project yields a revenue, which is four times as large as the granted loan and will be successful with a probability of 66%. In case of a project success, the borrower can decide whether he wants to settle the loan debt. In case of an unsuccessful project, the borrower is not able to repay the loan debt. Please indicate the corresponding loan amount and then click next.

Line 6: I grant a loan of 10
Line 7: I grant a loan of 40
Line 8: I grant a loan of 70
Line 9: I grant a loan of 100

2. Project revenue and loan debt

The loan is automatically invested in a project. The project is a success with a probability of 66%, with a probability of 33% the project is no success. Thus, a project is on average successful in two out of three cases and unsuccessful in one out of three cases. Whether the project is a success is randomly determined by a computer program. The probability that a project is a success is the same for all borrowers in your group.

If the project is a success, borrowers earn a project revenue, which is four times as high as the granted loan (e.g. 280 in case of a loan amount of 70). The loan debt owed to you as the lender is two and a half times as large as the loan amount (e.g. 175 in case of a loan amount of 70).

<table>
<thead>
<tr>
<th>Loan amount</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project revenue</td>
<td>40</td>
<td>160</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Loan debt</td>
<td>25</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
</tbody>
</table>

If the project is not a success, borrowers earn a project revenue of 0.
3. Repayment of loan debt

In case of a project success, the borrower has to decide whether he wants to settle the loan debt. If the borrower decides to repay the loan debt, the repayment is equal the loan debt amount, otherwise the repayment is 0.

If the project is not a success, the borrower cannot repay is loan debt and the repayment is 0.

4. Your income

In each period, your income will depend on:

- the size of the loan to the borrower,
- whether the project is a success,
- the repayment decision of the borrower.

Your income is determined by your endowment from the beginning of a period minus the loan plus the repayment of the borrower.

\[
\text{Your income} = 150 - \text{loan} + \text{repayment}
\]

In case of a project success, your income thus depends largely on the repayment of the borrower. If the borrower decides to settle his loan debt, your income is higher if you grant a large loan (because the repayment is larger than the loan in case of a project success). If the borrower does not repay his loan debt, your income is higher if you grant the smallest possible loan amount.

If the project is not a success, borrowers cannot repay the loan debt. Your income as lender is determined by your endowment from the beginning of a period minus the loan.

\[
\text{Your income} = 150 - \text{loan}
\]

In the following table, you can see your income as lender for each possible loan amount:

<table>
<thead>
<tr>
<th>Loan amount</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project revenue in case of success</td>
<td>40</td>
<td>160</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Loan debt</td>
<td>25</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
<tr>
<td>Your income</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In case of success and repayment</td>
<td>165</td>
<td>210</td>
<td>255</td>
<td>300</td>
</tr>
<tr>
<td>In case of success and no repayment</td>
<td>140</td>
<td>110</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>In case of no success</td>
<td>140</td>
<td>110</td>
<td>80</td>
<td>50</td>
</tr>
</tbody>
</table>

Table: Income of the lender
Lender Instructions: N-H and C-H; N-R and C-R

[Not displayed in N-R and C-R (N-H and C-H only):] As you can see in the table above, you cannot distinguish whether a loan debt is not settled because the repayment was not made even if the project was a success or because the project was not a success and the repayment could not be made.

5. Information about your income

At the end of each period, you will get information about your income on your screen, which will look as follows:

Translation
Line 1: Your decision and the resulting payment in this period:
Line 2: You have granted a loan amount of 40
Line 3: The borrower has settled the loan debt
Line 4: Your income in this period:
Line 5: Your endowment: 150
Line 6: - Loan: 40
Line 7: + Repayment of the borrower: 100
Line 8: = Your income: 210

Note the following: You [only] get to know your chosen loan amount, whether you receive a repayment and your income. [Not displayed in N-R and C-R (N-H and C-H only):] If a loan debt is not settled you will not know whether the project was not a success or whether the borrower has decided not to repay his loan debt.

[N-R and C-R]: If a loan debt is not settled you will learn whether this is because the project was not a success or because a borrower decided not to repay his loan.
6. Income of the borrower

In each period, the income of the borrower depends on:

- the size of the loan to the borrower,
- whether the project is a success,
- and whether the borrower settles his loan debt.

In case of a project success, the income of the borrower is determined by the endowment at the beginning of a period plus the project revenue minus the repayment.

\[
\text{Income} = 150 + \text{project revenue} - \text{repayment}
\]

In case of a project success, the income of the borrower is therefore the higher the larger the loan you granted. Additionally, borrowers can increase their income by deciding not to settle their loan debt and not making a repayment.

In case the project is not a success, the income of the borrower is determined by the endowment at the beginning of a period.

\[
\text{Income} = 150
\]

In the following table, you can see the possible incomes of a borrower for each loan amount.

<table>
<thead>
<tr>
<th>Loan amount</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project revenue</td>
<td>40</td>
<td>160</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Loan debt</td>
<td>25</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
<tr>
<td>Income of borrower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In case of success and repayment</td>
<td>165</td>
<td>210</td>
<td>255</td>
<td>300</td>
</tr>
<tr>
<td>In case of success and no repayment</td>
<td>190</td>
<td>310</td>
<td>430</td>
<td>550</td>
</tr>
<tr>
<td>In case of no success</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

7. Your beliefs about the repayment behavior of the borrower

In period 1, 5 and 10, you as a borrower will be asked to indicate your belief about how many borrowers in your group will repay their loan debt for the different loan amounts.

For that, you will see the following screen in period 1, 5 and 10:
Lender Instructions: N-H and C-H; N-R and C-R

Translation:
Line 1 and 2: Borrowers can decide to settle their loan debt. Please mark in the corresponding box, how many of the 5 borrowers you believe to settle their debt for the different loan amounts. Subsequently, click next.

Line 3: What do you think? If you grant a loan of the following amount, how many of the 5 borrowers in your group will settle their loan debt?

Left column: Loan amount
Right column: Number of borrowers

8. Information about the loan granting in the periods 1-5

In period five, you will receive a one-time summary about the loan granting in the periods one to five. In total, there are 25 granted loans in the first five periods in your group. You learn how many of the 25 loans in your group were granted of the different loan sizes (10, 40, 70, and 100). Besides that, you receive the information how many of the granted loans of the different sizes have been repaid by the borrowers. Finally, you will learn the average incomes, which have been earned with the granting of loans of the different loan sizes (10, 40, 70, and 100).
You will see the following screen:

Translation:
Line 1 and 2: In this period, you receive a one-time information about the past loan granting in your group of 5 lenders. For each of the four possible loan amounts you will get the following information:
- Line 3: - How many loans of the respective site have been granted in periods 1-5.
- Line 4: - How many of the granted loans of the respective size were repaid.
- Line 5: - How high was the average income of a lender in your group, who granted a loan of the respective size.
First column: Loan amount.
Second column: Number of granted loans
Third column: Number of repaid loans
Fourth column: Average income per granted loan

Please note that this figure is an example in which all loan amounts, repayments and incomes have been replaced by the letters AAA, BBB and CCC! During the experiment, you see the actual values depending on your loan granting behavior and the behavior of your group members.
9. Examples for possible incomes

Example 1: You decide to grant a loan of 100 points. The project is a success. The borrower decides to settle the loan debt of 250 points for a loan size of 100 points.
- Your income: 150 - 100 + 250 = 300 Points
- The income of the borrower: 150 + 400 - 250 = 300 Points

Example 2: You decide to grant a loan of 100 points. The project is a success. The borrower decides not to repay the loan debt of 250 points for a loan size of 100 points.
- Your income: 150 - 100 = 50 Points
- The income of the borrower: 150 + 400 = 550 Points

Example 3: You decide to grant a loan of 100 points. The project is not a success.
- Your income: 150 - 100 = 50 Points
- The income of the borrower: 150 Points

Example 4: You decide to grant a loan of 10 points. The project is a success. The borrower decides to settle the loan debt of 25 points for a loan size of 10 points.
- Your income: 150 - 10 + 25 = 165 Points
- The income of the borrower: 150 + 40 - 25 = 165 Points

Example 5: You decide to grant a loan of 10 points. The project is a success. The borrower decides not to repay the loan debt of 25 points for a loan size of 10 points.
- Your income: 150 - 10 = 140 Points
- The income of the borrower: 150 + 40 = 190 Points

Example 6: You decide to grant a loan of 10 points. The project is not a success.
- Your income: 150 - 10 = 140 Points
- The income of the borrower: 150 Points
Payment:

After the 10 periods, a participant is selected at random to come to the experimenter and draw 2 distinct numbers, one between 1 and 5 and one between 6 and 10. The numbers will be publicly announced and will determine the payment periods for all participants. Therefore, 2 different periods will be randomly selected for payment, one from the first 5 periods and one from the second 5 periods. The selected periods will be entered into the computer program by the experimenter. Your earnings will then be reported on the screen.

Your payoff is computed as follows:

- Your payoff for pay period 1 in points
- + Your payoff for pay period 2 in points
- = Your overall payoff in points

Your final payoff in Euro (100 points = 2 Euro)

- + The show up fee = 5 Euro
- = Your payoff in Euro

After completion of the experiment and before we start with the payouts, please fill in the questionnaire that follows the experiment. When you have completed the questionnaire, please remain seated at your place before we start paying the participants. Please wait in your cabin until you are called by us to collect your payment. Please bring all documents you have received from us when you receive your payment.

The experiment begins when all participants are fully familiar with the procedure of the experiment and understand the consequences of their decisions and the decisions of others for their earnings. To ensure this, we ask you to solve some control questions. Your solutions to the control questions have no effect on the income you can earn in the experiment.

You receive the control questions below in paper form and on the computer screen. Please solve them on paper first. In order to verify the accuracy of your answers you are asked to answer the questions again on the computer screen.

The experiment begins once you have correctly solved all the control questions. After completion of the experiment, please fill in a questionnaire on the screen. Then the payout commences.

If you have any questions, please raise your hand. An experimenter will come to you and answer your question.
Control Questions

Question:

a) What is your endowment at the beginning of each period?

 Answer:

 b) What is the endowment of a borrower at the beginning of each period?

 Answer:

 c) What is the maximum loan amount?

 Answer:

 d) What is the minimum loan amount?

 Answer:

 e) What is the probability of a project success?

 Answer:

 f) Do borrowers have to settle the loan debt?

 Answer:

 g) You decide to grant a loan of 40. The project is a success. The borrower has decided to repay the loan debt for a loan amount of 40.

 • What is your income?

 • What is the income of the borrower?

 Answer:

 h) You decide to grant a loan of 40. The project is a success. The borrower has decided not to repay the loan debt for a loan amount of 40.

 • What is your income?

 • What is the income of the borrower?

 Answer:

 i) You decide to grant a loan of 40. The project is not a success.

 • What is your income?

 • What is the income of the borrower?

 Answer:
Welcome to the experimental laboratory!

Today, you will participate in an economics experiment. By participating, you can earn money. The amount of money you make depends on your own decisions and the decisions of other participants. Therefore, it is important that you carefully read the following instructions.

The instructions you have received from us are for your private information. During the experiment, communication is absolutely prohibited. If you have any questions, please contact us by raising your hands. An experimenter will come to you and answer your questions. Failure to comply with the rules will result in exclusion from the experiment and all payments. The decisions you make during the experiment are anonymous. Only the experimenter knows your identity but your decisions cannot be assigned to your identity.

For your participation in the experiment, you will receive a show up fee of 5 Euros. The additional payment depends on your decisions and the decisions of other participants.

The experiment is divided into different periods. In each period, you have to make decisions that you enter in the computer. In total, there are 10 periods. At the end of the experiment, 2 periods are randomly selected for your payment. For that, one period from period 1 to 5 and one period from period 6 to 10 will be randomly selected. Your payment during the experiment will be calculated in points. The total number of points obtained in the two selected periods will be converted into Euros and then paid to you in cash. For the conversion, the following exchange rate applies:

100 Points = 2 Euro.

In total, you receive your earnings from the 2 payment periods plus the show up fee of 5 Euros in cash.

Please wait in your cabin during the payout phase until you are summoned by us to collect your payment. Please bring all the documents you have received from us when you receive your payment.

Before the experiment, all 20 participants were divided into two groups of 10 who independently participate in the experiment. In each group, there are 5 borrowers and 5 lenders.

Throughout the experiment, you are a lender in your group of 10.
Brief overview about the experimental procedure

Throughout the experiment, your group consists of the same 10 persons: you (as a borrower), 4 other borrowers and 5 lenders.

The experiment consists of 10 periods. In each period, you will be randomly paired with one of the 5 lenders of your group of 10.

At the beginning of each period, each borrower and lender has an endowment of 150 points.

[Treatment Communication:] In each period, there is a communication phase, in which you as a borrower can decide to write a message to the lender you were paired with. Only borrowers can write a message and lenders can read it.

In each period, the lender you have been paired with has to decide on the loan amount he wants to grant. The granted loan has to be between 10 points and 100 points and can be either 10, 40, 70 or 100 points. The loan will be automatically invested in a project. Whether the project is a success is determined randomly.

Your loan debt is always two and a half times as high as the granted loan.

The probability that a project is a success is 66%. Therefore, a project is on average in two out of three cases a success. In case of a project success, you earn a project revenue, which is four times larger than the granted loan. After the project success, you have to decide whether you want to settle the outstanding loan debt.

The probability that the project is not a success is 33%. Therefore, a project is on average in one out of three cases not successful. In case of an unsuccessful project, you do not get a project revenue and cannot settle your loan debt.

[Treatment N-R and C-R:] At the end of each period, your lender will get information on whether the project was a success and he will learn your repayment decision.

[Not displayed in N-R and C-R (N-H and C-H only):] Your lender does not get information about whether the project was a success or not and he also does not learn your repayment decision. If the lender does not get a repayment, he therefore does not know whether the project was not a success and you could not make a repayment or whether the project was a success but you did not want to make a repayment.

At the end of each period, your income and the income of the lender are calculated. You and the lender will be informed about your income.

The experiment consists of 10 periods. At the end of the experiment, your income from each period is calculated and converted in Euros and 2 periods are randomly selected for payment. For that, one period from period 1 to 5 and one period from period 6 to 10 will be randomly selected. The points of these two periods will be converted into Euros and paid out in cash together with the 5 Euros show up fee.
Throughout the experiment, you are in a group of 10 people. The 9 others in your group are the same people during the whole experiment. Your group of 10 consists of 5 borrowers and 5 lenders. You are a borrower during the entire experiment.

In each period, you will be paired with a lender from your group of 10. In each period, a new pairing will be randomly selected. Thus, in course of the experiment you will be paired with different lenders from your group of 10.

0. Communication (only for communication treatments)

At the beginning of each period, you can decide whether you want to send a message to the lender you were paired with. This message can contain up to 300 signs and you have to enter the message into the system. You can also decide not to write a message to the lender. Only you as a borrower can send a message. The lender can read it but he cannot reply to it.

You will see the following screen and can decide whether you want to write a message or not. If you decide not to send a message, go directly to the decision phase of the corresponding period.

Example: Decision about sending a message

![Example screenshot]

Translation:

Line 1: Do you want to send a message to the lender you were paired with?
Line 2: Yes No

Click “yes”, if you decide to write a message to the lender you were paired with and then click next. After that, you will see the following screen:
Example: Decision about sending a message

Enter your message in the field highlighted in blue and confirm your entry by clicking “Enter”. Following, click “next”. Please note that you have to type the complete message and only click “Enter” at the end of the message. Please use the “Enter”-key only to send your message and not to make a line break.

1. Loan, project revenue and loan debt

At the beginning of each period, you and all the other borrowers have an endowment of 150 points. Each lender has also an endowment of 150 points.

The lender you have been paired with has to decide on the amount of the loan he grants you. There are 4 different loan amounts that can be granted. The amount of the loan is either 10, 40, 70 or 100 points.

The loan is automatically invested in a project. The project is a success with a probability of 66%, with a probability of 33% the project is no success. Thus, a project is on average successful in two out of three cases and unsuccessful in one out of three cases. Whether the project is a success is randomly determined by a computer program. The probability that a project is a success is the same for all borrowers in your group and public information to all the lenders.

If the project is a success, you earn a project revenue, which is four times as high as the granted loan (e.g. 280 in case of a loan amount of 70). Your loan debt owed to the lender is two and a half times as large as the loan amount (e.g. 175 in case of a loan amount of 70).

Table: Project revenue and loan debt
Borrower Instructions: N-H and C-H; N-R and C-R

<table>
<thead>
<tr>
<th>Loan amount</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project revenue</td>
<td>40</td>
<td>160</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Loan debt</td>
<td>25</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
</tbody>
</table>

If the project is not a success, you earn a project revenue of 0.

2. Repayment of loan debt

In case of a project success, you have to decide whether you want to settle your loan debt.

You have to decide whether or not you want to settle the loan debt. You make your repayment decision in each period, before you get to know which loan amount the lender has granted you. Therefore, you have to decide for each of the four loan amounts whether you repay your loan debt.

Below, you can see the corresponding decision screen:

Example: Decision about repayment of loan debt

<table>
<thead>
<tr>
<th>Period 1 of 10</th>
<th></th>
</tr>
</thead>
</table>

Translation

Line 1, 2 and 3: You can get a loan between 10 points and 100 points. There are 4 different loan amounts that can be granted to you. The amount of the loan is either 10, 40, 70 or 100 points. The loan is automatically invested in a project. The project revenue is four times as large as the granted loan. You can now decide whether you settle your loan debt and make a repayment. Please indicate the corresponding repayment, which you want to make and then click next.

1. Column: Loan
2. Column: Project revenue
3. Column: Loan debt
4. Column: Repayment

Instructions for borrowers, Page 5
If you decide to settle your loan debt, the repayment will be equal to the loan debt.

3. Your income

In each period, your income will depend on:
- the size of the loan of the lender,
- whether the project was a success,
- your repayment decision.

If the project is a success, your income is determined by your endowment from the beginning of a period plus the project revenue minus the repayment.

\[\text{Your income} = 150 + \text{project revenue} - \text{repayment} \]

If the project is not a success, your income is determined by your endowment from the beginning of a period.

\[\text{Your income} = 150 \]

In the following table, you can see your income for each possible loan amount:

<table>
<thead>
<tr>
<th>Table: Income of the borrower</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loan amount</td>
</tr>
<tr>
<td>Project revenue in case of success</td>
</tr>
<tr>
<td>Loan debt</td>
</tr>
<tr>
<td>Your income</td>
</tr>
<tr>
<td>In case of success and repayment</td>
</tr>
<tr>
<td>In case of success and no repayment</td>
</tr>
<tr>
<td>In case of no success</td>
</tr>
</tbody>
</table>

4. Income of lender

In each period, the income of the lender will depend on:
- the size of the loan of the lender,
- whether the project is a success
• your repayment decision.

If the project is a success, the income of the lender is determined by the endowment at the beginning of a period minus the loan plus your repayment.

\[\text{Income} = 150 - \text{loan} + \text{repayment} \]

Thus, the income of the lender depends largely on your repayment. If you decide to settle your loan debt, the income of the lender is higher in case of a larger loan (because the repayment is larger than the loan in case of a project success). If you do not repay your loan debt, the income of the lender is higher if he grants the smallest possible loan amount.

If the project is not a success, the income of the lender is determined by his endowment from the beginning of a period minus the loan.

\[\text{Your income} = 150 - \text{loan} \]

In the following table, you can see the income of the lender for each possible loan amount:

<table>
<thead>
<tr>
<th>Loan amount</th>
<th>10</th>
<th>40</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project revenue in case of success</td>
<td>40</td>
<td>160</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Loan debt</td>
<td>25</td>
<td>100</td>
<td>175</td>
<td>250</td>
</tr>
<tr>
<td>Income of lender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In case of success and repayment</td>
<td>165</td>
<td>210</td>
<td>255</td>
<td>300</td>
</tr>
<tr>
<td>In case of success and no repayment</td>
<td>140</td>
<td>110</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>In case of no success</td>
<td>140</td>
<td>110</td>
<td>80</td>
<td>50</td>
</tr>
</tbody>
</table>

[Not displayed in N-R and C-R (only N-H and C-H):] As you can see in the table above, the lender cannot distinguish whether a loan debt is not settled because the repayment was not made even if the project was a success or because the project was not a success and the repayment could not be made.

5. Information about your income

At the end of each period, you will get information about your income on your screen, which will look as follows:
Borrower Instructions: N-H and C-H; N-R and C-R

Translation
Line 1: Your decision and the resulting payment in this period:
Line 2: You got a loan of 40
Line 3: You have decided to settle the loan debt
Line 4: The investment project yields a revenue of 160
Line 5: Your income in this period:
Line 6: Your endowment: 150
Line 7: + Project revenue 160
Line 8: - Your repayment 100
Line 9: = Your income: 210

At the end of each period, the lender will get information about his income on his screen, which will look as follows:
Borrower Instructions: N-H and C-H; N-R and C-R

Translation

Line 1: Your decision and the resulting payment in this period:
Line 2: You have granted a loan amount of 40
Line 3: The borrower has settled the loan debt
Line 4: Your income in this period:
Line 5: Your endowment: 150
Line 6: - Loan: 40
Line 7: + Repayment of the borrower: 100
Line 8: = Your income: 210

Note the following: The lender [only] gets to know his chosen loan amount and his income.
[Not displayed in N-R and C-R (only N-H and C-H):] If a loan debt is not settled the lender will not know whether the project was not a success or whether you have decided not to repay your loan debt.

[N-R and C-R]: If a loan debt is not settled the lender will learn whether this is because the project was not a success or because you decided not to repay your loan.

6. Examples of possible incomes

Example 1: The lender decides to grant a loan of 100 points. The project is a success. You decide to settle the loan debt of 250 points for a loan size of 100 points.
- The income of the lender: 150 - 100 + 250 = 300 Points
- Your income: 150 + 400 - 250= 300 Points

Example 2: The lender decides to grant a loan of 100 points. The project is a success. You decide not to repay the loan debt of 250 points for a loan size of 100 points.
- The income of the lender: 150 - 100 = 50 Points
- Your income: 150 + 400 = 550 Points

Example 3: The lender decides to grant a loan of 100 points. The project is not a success.

Instructions for borrowers, Page 9
Borrower Instructions: N-H and C-H; N-R and C-R

- Your income: 150 Points
- The income of the lender: 150 - 100 = 50 Points

Example 4: The lender decides to grant a loan of 10 points. The project is a success. You decide to settle the loan debt of 25 points for a loan size of 10 points.
 - The income of the lender: 150 - 10 + 25 = 165 Points
 - Your income: 150 + 40 - 25 = 165 Points

Example 5: The lender decides to grant a loan of 10 points. You decide not to repay the loan debt of 25 points for a loan size of 10 points.
 - Income of the lender: 150 - 10 = 140 Points
 - Your income: 150 + 40 = 190 Points

Example 6: The lender decides to grant a loan of 10 points. The project is not a success.
 - The income of the lender: 150 - 10 = 140 Points
 - Your income: 150 Points
Payment:

After the 10 periods, a participant is selected at random to come to the experimenter and draw 2 distinct numbers, one between 1 and 5 and one between 6 and 10. The numbers will be publicly announced and will determine the payment periods for all participants. Therefore, 2 different periods will be randomly selected for payment, one from the first 5 periods and one from the second 5 periods. The selected periods will be entered into the computer program by the experimenter. Your earnings will then be reported on the screen.

Your payoff is computed as follows:

Your payoff for pay period 1 in points
+ Your payoff for pay period 2 in points
= Your overall payoff in points

Your final payoff in Euro (100 points = 2 Euro)
+ The show up fee = 5 Euro
= Your payoff in Euro

After completion of the experiment and before we start with the payouts, please fill in the questionnaire that follows the experiment. When you have completed the questionnaire, please remain seated at your place before we start paying the participants. Please wait in your cabin until you are called by us to collect your payment. Please bring all documents you have received from us when you receive your payment.

The experiment begins when all participants are fully familiar with the procedure of the experiment and understand the consequences of their decisions and the decisions of others for their earnings. To ensure this, we ask you to solve some control questions. Your solutions to the control questions have no effect on the income you can earn in the experiment.

You receive the control questions below in paper form and on the computer screen. Please solve them on paper first. In order to verify the accuracy of your answers you are asked to answer the questions again on the computer screen.

The experiment begins once you have correctly solved all the control questions. After completion of the experiment, please fill in a questionnaire on the screen. Then the payout commences.

If you have any questions, please raise your hand. An experimenter will come to you and answer your question.
Control Questions

Question:

a) What is your endowment at the beginning of each period?

Answer:

b) What is the endowment of a lender at the beginning of each period?

Answer:

c) What is the maximum loan amount?

Answer:

d) What is the minimum loan amount?

Answer:

e) What is the probability of a project success?

Answer:

f) Do you have to settle your loan debt?

Answer:

g) The lender decides to grant a loan of 40. The project is a success. You have decided to repay the loan debt for a loan amount of 40.

- What is your income?
- What is the income of the lender?

Answer:

h) The lender decides to grant a loan of 40. The project is a success. You have decided not to repay the loan debt for a loan amount of 40.

- What is your income?
- What is the income of the lender?

Answer:

i) The lender decides to grant a loan of 40. The project is not a success.

- What is your income?
- What is the income of the lender?

Answer: