Information Frictions in Labor Markets: Cross-Country Evidence from Employment Durations

Charles Gottlieb1 & Jan Grobovšek2 & Markus Poschke 3

1University of St. Gallen \quad 2University of Edinburgh \quad 3McGill University

April 12, 2019
Motivation:

- A third of the world's population is aged 16 to 35 and lives in a less developed country.

- A large number are unemployed or, more often, underemployed in that they have fewer hours of work than they would like at prevailing wages (Behrman 1999; World Bank 2012).

- Tackling unemployment is among the highest priorities in developing countries (World Bank 2012).
Motivation: Economic Development and Labor Markets

- High self-employment (Gollin, 2002)

- Average hours worked are higher in low-income countries - Bick, Fuchs-Schündeln & Lagakos (2018)

- Unemployment does not vary systematically with income per capita - Caselli (2005)

- Ratio of unemployment to the labor force excluding self-employment is much higher in poorer countries - Poschke (2018)

 ▶ Exit rates 3 times higher, and

 ▶ Job finding rates 2 times higher.
Motivation:
Economic Development and Labor Market Flows

There are reasons to believe that high degree of labor market turnover is costly to an economy:

- High returns to tenure and low returns to experience (Lagakos et al., 2018)

- Encourages low-productivity own-account work & self-employment (Poschke, 2013 & 2016)

- Small firms are less productive (Hsieh & Klenow 2009)
Motivation: Labor Market Flows and Frictions

Credit friction

- Impedes entrepreneurship, formation of new firms, and thereby slows reallocation of labor to non-ag. (Blattman, Fiala & Martinez, 2014, Bianchi & Bobba, 2013)

Matching friction

- Job training / Skill certification RCT (Adebe et al. 2017)

- Provision of information improves allocation of jobs and employee welfare (Banerjee & Chiplunkar, 2018)
Motivation: Research question

- How does labor market turnover evolve with economic development?
- Can information frictions rationalize the observed patterns?
- Information friction:
 - speed and scope of learning about worker’s productivity in a particular job
 - symmetric for worker and employer.
Motivation: Contributions

1. Consolidate 211 household and labor force surveys for 32 countries.

2. New stylized facts on labor market turnover and development.
 - Using distribution of *ongoing* employment durations we document that:
 - Labor market turnover is higher in low income countries.
 - Job stability is lower in low income countries.
 - Estimate hazard function and distribution of *completed* durations.

3. Estimate a model of labor market turnover to match the distribution of *completed* durations.
 - Separation cost
 - Noise of signal.
 - Variance of match quality.
Motivation: Outline of talk

1. Empirical Evidence
 - Cross-country patterns of labor market turnover.
 - Based on *ongoing* employment durations.

2. Measurement
 - Link *ongoing* employment durations and hazard function
 - Link hazard functions to *completed* employment durations
 - Account for reporting biases.
 - Estimate hazard rates.

3. Model of Labor Market Turnover to disentangle potential channels:
 - Low skill dispersion
 - Information friction
A dataset of labor market turnover: Overview

Harmonized cross-country dataset of labor force and household surveys from 32 countries.

- Repeated cross-sections containing individual information on labor market outcomes and employment duration.

- Questionnaire question:
 - "When did you start this job?"
 - "How long have you been doing this job?"

- Range from Niger ($745) to US ($50'000)

ongoing rotating panels and administrative data.
<table>
<thead>
<tr>
<th>Name</th>
<th>Years</th>
<th>Sample size (in thds)</th>
<th>GDP per capita (PPP)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>2002–2012</td>
<td>59</td>
<td>5'076–10'002</td>
<td>LSMS</td>
</tr>
<tr>
<td>Armenia</td>
<td>2013–2013</td>
<td>3</td>
<td>8'382–8'382</td>
<td>STEP</td>
</tr>
<tr>
<td>Austria</td>
<td>2004–2013</td>
<td>1'304</td>
<td>37'829–47'443</td>
<td>LFS</td>
</tr>
<tr>
<td>Belgium</td>
<td>2004–2013</td>
<td>764</td>
<td>35'779–43'411</td>
<td>LFS</td>
</tr>
<tr>
<td>Benin</td>
<td>2001–2001</td>
<td>7</td>
<td>1'503–1'503</td>
<td>123</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>2001–2001</td>
<td>7</td>
<td>1'100–1'100</td>
<td>123</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1995–2013</td>
<td>524</td>
<td>7'842–16'809</td>
<td>LSMS, LFS</td>
</tr>
<tr>
<td>Bolivia</td>
<td>2012–2012</td>
<td>2</td>
<td>5'859–5'859</td>
<td>STEP</td>
</tr>
<tr>
<td>Brazil</td>
<td>1996–2006</td>
<td>1'320</td>
<td>8'350–10'086</td>
<td>LSMS, LFS</td>
</tr>
<tr>
<td>China</td>
<td>2012–2012</td>
<td>2</td>
<td>10'945–10'945</td>
<td>STEP</td>
</tr>
<tr>
<td>Cote d’Ivoire</td>
<td>1985–2002</td>
<td>32</td>
<td>2'410–2'742</td>
<td>LSMS, 123</td>
</tr>
<tr>
<td>Colombia</td>
<td>2012–2012</td>
<td>3</td>
<td>11'932–11'932</td>
<td>STEP</td>
</tr>
<tr>
<td>Cyprus</td>
<td>2004–2013</td>
<td>258</td>
<td>29'237–36'179</td>
<td>LFS</td>
</tr>
<tr>
<td>Germany</td>
<td>2013–2013</td>
<td>365</td>
<td>44'522–44'552</td>
<td>LFS</td>
</tr>
<tr>
<td>Denmark</td>
<td>2004–2013</td>
<td>649</td>
<td>36'823–44'585</td>
<td>LFS</td>
</tr>
<tr>
<td>Spain</td>
<td>2004–2013</td>
<td>1'038</td>
<td>29'515–35'178</td>
<td>LFS</td>
</tr>
<tr>
<td>Estonia</td>
<td>2004–2013</td>
<td>153</td>
<td>16'398–27'560</td>
<td>LFS</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>2013–2014</td>
<td>83</td>
<td>1'246–1'323</td>
<td>LFS, UES</td>
</tr>
<tr>
<td>France</td>
<td>2003–2017</td>
<td>1'729</td>
<td>32'188–39'374</td>
<td>LFS</td>
</tr>
<tr>
<td>Georgia</td>
<td>2013–2013</td>
<td>3</td>
<td>9'040–9'040</td>
<td>STEP</td>
</tr>
<tr>
<td>Ghana</td>
<td>2013–2013</td>
<td>13</td>
<td>3'716–3'716</td>
<td>STEP, LFS</td>
</tr>
<tr>
<td>Greece</td>
<td>2004–2013</td>
<td>1'257</td>
<td>25'632–32'072</td>
<td>LFS</td>
</tr>
<tr>
<td>Hungary</td>
<td>2004–2012</td>
<td>1'609</td>
<td>18'943–23'451</td>
<td>LFS</td>
</tr>
<tr>
<td>Ireland</td>
<td>2004–2013</td>
<td>1'489</td>
<td>40'824–49'726</td>
<td>LFS</td>
</tr>
<tr>
<td>Iraq</td>
<td>2006–2006</td>
<td>69</td>
<td>5'233–5'233</td>
<td>LSMS</td>
</tr>
<tr>
<td>Italy</td>
<td>2004–2013</td>
<td>4'557</td>
<td>32'516–36'437</td>
<td>LFS</td>
</tr>
<tr>
<td>Kenya</td>
<td>2013–2013</td>
<td>4</td>
<td>2'717–2'717</td>
<td>STEP</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>1998–1998</td>
<td>9</td>
<td>2'033–2'033</td>
<td>LSMS</td>
</tr>
<tr>
<td>Lao People’s Democratic Republic</td>
<td>2012–2012</td>
<td>3</td>
<td>4'828–4'828</td>
<td>STEP</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>2012–2012</td>
<td>3</td>
<td>8'807–8'807</td>
<td>STEP</td>
</tr>
<tr>
<td>Lithuania</td>
<td>2004–2013</td>
<td>441</td>
<td>15'367–26'730</td>
<td>LFS</td>
</tr>
<tr>
<td>Latvia</td>
<td>2004–2013</td>
<td>243</td>
<td>13'943–22'581</td>
<td>LFS</td>
</tr>
<tr>
<td>Mexico</td>
<td>2005–2005</td>
<td>316</td>
<td>13'328–13'328</td>
<td>LFS</td>
</tr>
<tr>
<td>Mali</td>
<td>2001–2001</td>
<td>7</td>
<td>1'135–1'135</td>
<td>123</td>
</tr>
<tr>
<td>Niger</td>
<td>2002–2002</td>
<td>8</td>
<td>745–745</td>
<td>123</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>2005–2005</td>
<td>20</td>
<td>3'554–3'554</td>
<td>LSMS</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2004–2013</td>
<td>1'022</td>
<td>39'897–47'092</td>
<td>LFS</td>
</tr>
<tr>
<td>Peru</td>
<td>2009–2009</td>
<td>25</td>
<td>8'552–8'552</td>
<td>LFS</td>
</tr>
<tr>
<td>Philippines</td>
<td>2015–2015</td>
<td>3</td>
<td>Inf—Inf</td>
<td>STEP</td>
</tr>
<tr>
<td>Portugal</td>
<td>2005–2013</td>
<td>1'160</td>
<td>24'139–27'658</td>
<td>LFS</td>
</tr>
<tr>
<td>Romania</td>
<td>2004–2013</td>
<td>1'814</td>
<td>9'918–19'954</td>
<td>LFS</td>
</tr>
<tr>
<td>Senegal</td>
<td>2002–2002</td>
<td>11</td>
<td>1'833–1'833</td>
<td>123</td>
</tr>
<tr>
<td>Slovakia</td>
<td>2004–2013</td>
<td>455</td>
<td>17'222–27'691</td>
<td>LFS</td>
</tr>
<tr>
<td>Slovenia</td>
<td>2013–2013</td>
<td>49</td>
<td>29'149–29'149</td>
<td>LFS</td>
</tr>
<tr>
<td>Togo</td>
<td>2001–2001</td>
<td>6</td>
<td>1'135–1'135</td>
<td>123</td>
</tr>
<tr>
<td>Uganda</td>
<td>2009–2013</td>
<td>32</td>
<td>1'619–1'798</td>
<td>LSMS</td>
</tr>
<tr>
<td>Ukraine</td>
<td>2012–2012</td>
<td>2</td>
<td>10'463–10'463</td>
<td>STEP</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>2012–2012</td>
<td>3</td>
<td>4'919–4'919</td>
<td>STEP</td>
</tr>
</tbody>
</table>

Sub-sample

Employment duration

Hours worked

Wage workers

Ind. characteristics
A dataset of labor market turnover: Employment Duration

1. **Turnover**: Share of workers with $t < 24$ months.
 - There is more labor market turnover in low income countries.

2. **Job stability**: Share of worker with less than $t < 120$ months.
 - There is less job stability in low income countries.

3. **Separation rate**: Hazard function
 - We estimate *hazard functions* and *completed durations* that are consistent with reported *ongoing* employment duration.

→ Measurement
Measurement: From ongoing durations to hazard function

Dataset: we observe a density f_d of ongoing employment durations based on 1 cross-section.

Model in steady state:

- At each duration t, there is a separation probability s_t.
 \[\dot{f}_t = -s_t f_t \]
- E_0 are (constant) per period employment inflows
 \[f_t = \exp(-\int_0^t s_t \, dt) E_0 \]
- Total employment is $E = \int_{0}^{\infty} f_t \, dt$

We observe:

\[f_{[t, \bar{t}]} = \frac{\int_{t}^{\bar{t}} f_t \, dt}{E} = \frac{\int_{t}^{\bar{t}} \exp(-\int_0^t s_t \, dt) \, dt}{\int_{0}^{\infty} \exp(-\int_0^t s_t \, dt) \, dt} \]

\[\rightarrow \text{We assume a functional form for } s_t \text{ and estimate its parameters using data on } f_{[t, \bar{t}]} \]
Measurement: From hazard function to completed durations

Let \bar{f}_t and \bar{F}_t be the pdf and cdf of completed durations. The hazard function is:

$$s_t = \frac{\bar{f}_t}{1 - \bar{F}_t}$$

Integrating s_t and reshuffling yields:

$$\bar{f}_t = s_t \exp\left(-\int_0^t s_t \, dt\right) = \frac{s_t f_t}{E_0}$$

Let s be the average hazard. In steady state, $\frac{E_0}{E} = s$ holds. Hence:

$$\bar{f}_t = \frac{s_t f_t}{s E}$$
Measurement: Duration Reporting

Reported durations feature:

1. Rounding

2. Right-censoring

3. Heaping
 - Annual/bi-annual heaping/no heaping
 - Diebold (1997)

4. Heterogenous reporting across surveys
Measurement: A model of duration reporting

We assume that f_t follows a log-logistic distribution and estimate following parameters by maximum likelihood:

1. Scale parameter (α)
2. Shape parameter (β)
3. Misreport weight (δ)
4. Distaste in over-reporting (λ)
5. Distaste in year-rounding relative to half-year rounding (γ)
Measurement: Estimated hazards

Estimated parameters shape parameter

GDP per capita ppp

USA
Measurement: Estimated hazards

Estimated parameters scale parameter

GDP per capita ppp

Estimated parameters scale parameter

0 1 2 3 4 5

GDP per capita ppp

10

4

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

USA
Measurement: Summary

- Documented stylized facts based on ongoing durations
- Linked ongoing durations to hazard rates and completed durations
- Estimated the scale and shape parameters
- We now turn to the off-the-shelf labor market turnover model
Distribution of completed employment durations are

1. hump-shaped and decrease with tenure
2.

- DMP model: (exogenous) constant separation rate.
- counterfactual distribution of employment duration
- Jovanovic learning model of labor market turnover: endogenous separation rate.
- in line with our empirical evidence
- Suggests two channels that drive labor market turnover:
 - \(s \) How much is there to learn from employer employer matches?
 - \(\sigma \) How long does it take to learn the match quality?
- We estimate the model to our datasets and disentangle the two mechanisms.
Model:

- Model of labor market turnover (Jovanovic, 1979a)
 - No unemployment / self-employment.
 - Focus on extensive margin.

- Firm worker match quality
 - $\mu \sim \mathcal{N}(m, s)$ is a measure of the quality of the match.
 - μ is unknown when match is formed.

- Output is observed with some noise σ
 - Identical for each firm-worker match.

- Separation rate varies with employment duration.
Model: Workers

- Risk neutral & infinitely lived.

- Let $X(t)$ be the output of worker
 \[X(t) = \mu t + \sigma z(t) \]
 where $z(t)$ is a Wiener Process.

- Draws of μ i.i.d. \rightarrow firm-specific capital.
Model: Firms

- Risk neutral & maximize profits.

- Constant returns to scale technology
 - Labor is the only factor of production.

- Demand conditions are stationary.

- Labor demand
 - Competes for workers by offering wage contracts.
 - Lays-off workers by lowering wages.
At tenure t, a worker has cumulative output $X(t) = x$.

Available information on μ at time t

$$E_{x,t}(\mu) = \frac{m/s + x/\sigma^2}{1/s + t/\sigma^2}$$

$$S(t) = \frac{1}{1/s + t/\sigma^2}$$

$E_{x,t}(\mu) \sim \mathcal{N}(m, s - S(t))$

As $t \to \infty$, $S(t) \to 0$

State variables are $\{x, t\}$.
Model: Workers

- Worker choice
 1. If stay, receives wage $w[X(t), t]$
 2. If quit, incurs job switching cost c

- Present value of:
 1. Quit: Q
 2. Job: $\alpha(Q, w[X(t), t])$

$$Q = \alpha(Q, w[X(t), t]) - c$$
Workers choose both f and h s.t.: Present value of a job with a firm that offers $w[X(t), t]$ when the value of quitting is Q:

$$\alpha(Q, [w]) = \int_{0}^{\infty} e^{-rt} \int_{-\infty}^{\infty} wh \, dx \, dt + Q \int_{0}^{\infty} e^{-rt} f \, dt$$

$h(x, t|w[X(t), t], Q) = \text{probability that the worker does not quit before } t$

$f(t|w[X(t), t], Q) = \text{the probability that the worker quits before tenure } t$

Firms maximize the discounted expected net revenue from employment of an employee with Q by setting wage contract $[w]$

$$\pi(Q, w[X(t), t]) = \int_{0}^{\infty} \int_{-\infty}^{\infty} E_{xt}(\mu) h \, dx \, dt - \alpha(Q, [w]) + Q \int_{0}^{\infty} e^{-rt} f \, dt$$
The equilibrium wage contract states that the worker will be paid his expected match productivity

\[w(t) = m + l(t) \]

\[w(t) \sim \mathcal{N}(m, s - S(t)) \]

The endogenous equilibrium object is \(Q(s, \sigma, c) \) the value of quitting.

\[Q^* = Q(w^*(x, t)) \]

Comparative statics \(Q(s, \sigma, c) \):

- Higher variance in match quality *increases* the value of quitting (option value).
- Higher noise *increases* the value of quitting.
- Higher separation cost *reduces* the value of quitting.
Model: Implications for employment duration

- Given Q and wage policy w, the distribution of completed employment duration is

$$f(t) = \phi \left(\frac{rQ - m}{p(t)^{1/2}} \right) (m - rQ)p(t)^{-3/2} \frac{S(t)^2}{\sigma^2}$$

where $p(t) = s - S(t)$ is the precision of the signal at time t, and ϕ is the normal pdf.

- It is non-monotonic, with a peak in t^*.

- Comparative statics of t^*
 - Higher variance in match quality *reduces* the peak of employment duration.
 - Higher variance of noise *increases* the peak of employment duration - it takes longer to learn.
 - Higher separation cost *increases* the peak of employment duration - outside option is less attractive.
Model: Implications for returns to tenure

- Given Q and wage policy w, the pdf of wage tenure profile $w(t)$ is:

$$w(t) = \frac{1}{\sqrt{p(t)}} \left[\phi \left(\frac{y - m}{\sqrt{p(t)}} \right) - \phi \left(\frac{2rQ - m - y}{\sqrt{p(t)}} \right) \right]$$

where ϕ is the normal pdf.

- Probability of absorption decreases in y.

- Comparative statics of \bar{w} w.r.t.
 - s: Higher variance increase returns to tenure
 - σ: Higher variance of noise increases returns to tenure
 - c: Higher separation cost lowers returns to tenure.
Calibration:

- We calibrate the model to monthly frequency.

- Use s to hit return to tenure

- Use σ and c to hit distribution of employment duration

- We estimate (s, c, σ) for each country by SMM s.t. we match the distribution of completed employment durations:

$$\min_{s,c,\sigma}(f(t|w, Q) - \bar{f}_t)1(f(t|w, Q) - \bar{f}_t)'$$
Conclusion:

- We document that labor market turnover is higher and job stability lower in low income countries for permanent wage workers in urban labor markets.

- We estimate hazard function and completed employment durations for 31 countries.

- Lean on the standard model of labor market turnover to analyze cross-country pattern of employment durations.

- Work in progress.
 - Heterogeneity: Estimate hazards controlling for individual characteristics.
 - Estimate s, c, σ for each country.
Appendix: A Model of Duration Reporting

- The employment durations of individual i follows a log-logistic distribution with scale α and shape parameter β:

$$D_i^* \sim F(\alpha, \beta)$$

- Each individual has some preference for reporting captured by U_i.

$$U_i \sim U[0, 1]$$

- An individual $i \in I$ is characterized by (D_i^*, U_i) where $\{(D_i^*, U_i)\}_{i \in I}$ is i.i.d.
Appendix: A Model of Duration Reporting

Given D_i^*, an agent i has the following choice set:

$$
C(D_i^*) = \{D_0(D_i^*), D_s,+(D_i^*), D_s,-(D_i^*), D_b,+(D_i^*), D_b,-(D_i^*)\}
$$

1. **Mere-Rounding (MR)**

2. **Small-Over-Reporting (SOR)**

3. **Small-Under-Reporting (SUR)**

4. **Big-Over-Reporting (BOR)**

5. **Big-Under-Reporting (BUR)**
Appendix: A Model of Duration Reporting

Given D^*_i, an agent i has the following choice set:

$$
C(D^*_i) = \{ D_0(D^*_i), D_{s,+}(D^*_i), D_{s,-}(D^*_i), D_{b,+}(D^*_i), D_{b,-}(D^*_i) \}
$$

1. **Mere-Rounding (MR)** $D_0(D^*_i) = \lfloor D^*_i \rfloor$

2. **Small-Over-Reporting (SOR)**

3. **Small-Under-Reporting (SUR)**

4. **Big-Over-Reporting (BOR)**

5. **Big-Under-Reporting (BUR)**
Appendix: A Model of Duration Reporting

Given D_i^*, an agent i has the following choice set:

$$C(D_i^*) = \{ D_0(D_i^*), D_{s,+}(D_i^*), D_{s,-}(D_i^*), D_{b,+}(D_i^*), D_{b,-}(D_i^*) \}$$

1. **Mere-Rounding (MR)**

2. **Small-Over-Reporting (SOR)**

 $$D_{s,+}(D_i^*) = \begin{cases} \min_{m \in \mathbb{N}} \{ c_s \cdot m : c_s \cdot m - D_i^* \geq 0, 1 \leq m \leq \bar{m} \} & \text{if } D_i^* \leq c_s \bar{m} \\ \infty & \text{otherwise} \end{cases}$$

3. **Small-Under-Reporting (SUR)**

4. **Big-Over-Reporting (BOR)**

5. **Big-Under-Reporting (BUR)**
Appendix: A Model of Duration Reporting

Given \(D_i^* \), an agent \(i \) has the following choice set:

\[
C(D_i^*) = \{ D_0(D_i^*), D_s,(D_i^*), D_s,-(D_i^*), D_b,+(D_i^*), D_b,-(D_i^*) \}
\]

1. **Mere-Rounding (MR)**

2. **Small-Over-Reporting (SOR)**

3. **Small-Under-Reporting (SUR)**

\[
D_{s,-}(D_i^*) = \begin{cases}
\min_{m \in \mathbb{N}} \{ c_s \cdot m : D_i^* - c_s \cdot m \geq 0, 1 \leq m \leq \bar{m} \} & \text{if } D_i^* \leq c_s \bar{m} \\
\infty & \text{otherwise}
\end{cases}
\]

4. **Big-Over-Reporting (BOR)**

5. **Big-Under-Reporting (BUR)**
Appendix: A Model of Duration Reporting

Given D_i^*, an agent i has the following choice set:

$$
C(D_i^*) = \{ D_0(D_i^*) , D_{s,+}(D_i^*) , D_{s,-}(D_i^*) , D_{b,+}(D_i^*) , D_{b,-}(D_i^*) \}
$$

1. Mere-Rounding (MR)
2. Small-Over-Reporting (SOR)
3. Small-Under-Reporting (SUR)
4. Big-Over-Reporting (BOR)

 \[D_{b,+}(D_i^*) = \min_{m \in \mathbb{N}} \{ c_b \cdot m : c_b \cdot m - D_i^* \geq 0 \} \]
5. Big-Under-Reporting (BUR)
Appendix: A Model of Duration Reporting

Given D_i^*, an agent i has the following choice set:

$$C(D_i^*) = \{D_0(D_i^*), D_s,+(D_i^*), D_s,-(D_i^*), D_b,+(D_i^*), D_b,-(D_i^*)\}$$

1. **Mere-Rounding (MR)**
2. **Small-Over-Reporting (SOR)**
3. **Small-Under-Reporting (SUR)**
4. **Big-Over-Reporting (BOR)**
5. **Big-Under-Reporting (BUR)**

$$D_{b,-}(D_i^*) = \min_{m \in \mathbb{N}} \{c_b \cdot m : D_i^* - c_b \cdot m \geq 0\}$$

Ex: parameter choice - EU LFS $c_b = 12$ - ETH

$c_s = 6, c_b = 12, \bar{m} = 6$
Appendix: A Model of Duration Reporting

Define a distance function $\rho (D^*_i, D_k)$

$$\rho (D^*_i, D_k) = \begin{cases} |D^*_i - D_0| & \text{if } D_k = D_0 (D^*_i) \\ \lambda |D^*_i - D_k| / (\delta D^2_i) & \text{if } D_k = D_{s,+} (D^*_i) \\ |D^*_i - D_k| / (\delta D^2_i) & \text{if } D_k = D_{s,-} (D^*_i) \\ \lambda \gamma |D^*_i - D_k| / (\delta D^2_i) & \text{if } D_k = D_{b,+} (D^*_i) \\ \gamma |D^*_i - D_k| / (\delta D^2_i) & \text{if } D_k = D_{b,-} (D^*_i) \end{cases}$$

The conditional probability of reporting the duration $D^*_k \in C$ given D^*_i is

$$\Pr (D_k | D^*_i) = \frac{1/\rho (D^*_i, d_k)}{\sum_{k'} 1/\rho (D^*_i, d_{k'})}.$$

The choice is deterministic for i, i.e. the location of U_i determines which of D_k is reported.
<table>
<thead>
<tr>
<th></th>
<th>Mean employment duration</th>
<th></th>
<th>Var of employment duration, log</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>GDP per capita, log</td>
<td>13.51***</td>
<td>−13.67***</td>
<td>−21.29***</td>
</tr>
<tr>
<td></td>
<td>(1.40)</td>
<td>(5.02)</td>
<td>(6.66)</td>
</tr>
<tr>
<td>EPLEX</td>
<td></td>
<td></td>
<td>−75.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(51.10)</td>
</tr>
<tr>
<td>Sample average</td>
<td>108.5</td>
<td>108.5</td>
<td>108.5</td>
</tr>
<tr>
<td>Country FE</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year FE</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>218</td>
<td>218</td>
<td>218</td>
</tr>
<tr>
<td>R^2</td>
<td>0.30</td>
<td>0.92</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Note: *p<0.1; **p<0.05; ***p<0.01
Appendix: Regressions

<table>
<thead>
<tr>
<th>Employment duration</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>-8.08^{***}</td>
<td>-7.88^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>Age 26-36</td>
<td>45.33^{***}</td>
<td>43.20^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>Age 36-46</td>
<td>87.02^{***}</td>
<td>84.34^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.23)</td>
</tr>
<tr>
<td>Age 46-56</td>
<td>138.93^{***}</td>
<td>136.54^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>Age 56-66</td>
<td>204.04^{***}</td>
<td>204.30^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>Secondary</td>
<td>15.56^{***}</td>
<td>24.50^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>Tertiary</td>
<td>17.04^{***}</td>
<td>29.57^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.28)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country-Year FE</th>
<th>N</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>5,938,434</td>
<td>5,938,434</td>
</tr>
<tr>
<td>R^2</td>
<td>0.28</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Note:
* $p < 0.1$; ** $p < 0.05$; *** $p < 0.01$
Appendix: Dataset

Mean employment duration

Definition of dependent variable: Duration in months

Sample restriction(s): Age: 15−55, wage workers, private sector, permanent jobs, urban
Appendix: Dataset

Sample restriction(s): Age: 15–55
Appendix: Dataset

Share of wage workers

Definition of dependent variable: Wage workers / (Working Population + Unemployed)

Sample restriction(s): Age: 15–55
<table>
<thead>
<tr>
<th>Name</th>
<th>Years</th>
<th>Sample size (in thds)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>2002–2012</td>
<td>8</td>
<td>LSMS</td>
</tr>
<tr>
<td>Armenia</td>
<td>2013–2013</td>
<td>1</td>
<td>STEP</td>
</tr>
<tr>
<td>Austria</td>
<td>2004–2013</td>
<td>367</td>
<td>LFS</td>
</tr>
<tr>
<td>Belgium</td>
<td>2004–2013</td>
<td>281</td>
<td>LFS</td>
</tr>
<tr>
<td>Benin</td>
<td>2001–2001</td>
<td>2</td>
<td>123</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>2001–2001</td>
<td>2</td>
<td>123</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1995–2013</td>
<td>84</td>
<td>LSMS, LFS</td>
</tr>
<tr>
<td>Bolivia</td>
<td>2012–2012</td>
<td>1</td>
<td>STEP</td>
</tr>
<tr>
<td>Brazil</td>
<td>1996–2006</td>
<td>428</td>
<td>LSMS, LFS</td>
</tr>
<tr>
<td>China</td>
<td>2012–2012</td>
<td>1</td>
<td>STEP</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>1985–2002</td>
<td>4</td>
<td>LSMS, 123</td>
</tr>
<tr>
<td>Colombia</td>
<td>2012–2012</td>
<td>1</td>
<td>STEP</td>
</tr>
<tr>
<td>Cyprus</td>
<td>2004–2013</td>
<td>82</td>
<td>LFS</td>
</tr>
<tr>
<td>Germany</td>
<td>2013–2013</td>
<td>139</td>
<td>LFS</td>
</tr>
<tr>
<td>Denmark</td>
<td>2004–2013</td>
<td>229</td>
<td>LFS</td>
</tr>
<tr>
<td>Spain</td>
<td>2004–2013</td>
<td>229</td>
<td>LFS</td>
</tr>
<tr>
<td>Estonia</td>
<td>2005–2013</td>
<td>29</td>
<td>LFS</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>2013–2014</td>
<td>10</td>
<td>LFS, UES</td>
</tr>
<tr>
<td>France</td>
<td>2003–2017</td>
<td>368</td>
<td>LFS</td>
</tr>
<tr>
<td>Georgia</td>
<td>2013–2013</td>
<td>1</td>
<td>STEP</td>
</tr>
<tr>
<td>Ghana</td>
<td>2013–2015</td>
<td>1</td>
<td>STEP, LFS</td>
</tr>
<tr>
<td>Greece</td>
<td>2004–2013</td>
<td>237</td>
<td>LFS</td>
</tr>
<tr>
<td>Hungary</td>
<td>2004–2012</td>
<td>271</td>
<td>LFS</td>
</tr>
<tr>
<td>Ireland</td>
<td>2004–2013</td>
<td>239</td>
<td>LFS</td>
</tr>
<tr>
<td>Iraq</td>
<td>2006–2006</td>
<td>7</td>
<td>LSMS</td>
</tr>
<tr>
<td>Italy</td>
<td>2004–2013</td>
<td>1'041</td>
<td>LFS</td>
</tr>
<tr>
<td>Kenya</td>
<td>2013–2013</td>
<td>1</td>
<td>STEP</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>1998–1998</td>
<td>1</td>
<td>LSMS</td>
</tr>
<tr>
<td>Lao People’s Democratic Republic</td>
<td>2012–2012</td>
<td>0</td>
<td>STEP</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>2012–2012</td>
<td>0</td>
<td>STEP</td>
</tr>
<tr>
<td>Lithuania</td>
<td>2004–2013</td>
<td>97</td>
<td>LFS</td>
</tr>
<tr>
<td>Latvia</td>
<td>2004–2013</td>
<td>48</td>
<td>LFS</td>
</tr>
<tr>
<td>Mexico</td>
<td>2005–2005</td>
<td>48</td>
<td>LFS</td>
</tr>
<tr>
<td>Macedonia, The Former Yugoslav Republic of</td>
<td>2013–2013</td>
<td>1</td>
<td>STEP</td>
</tr>
<tr>
<td>Mali</td>
<td>2001–2001</td>
<td>1</td>
<td>123</td>
</tr>
<tr>
<td>Niger</td>
<td>2002–2002</td>
<td>1</td>
<td>123</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>2005–2005</td>
<td>3</td>
<td>LSMS</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2004–2012</td>
<td>451</td>
<td>LFS</td>
</tr>
<tr>
<td>Philippines</td>
<td>2015–2015</td>
<td>0</td>
<td>STEP</td>
</tr>
<tr>
<td>Portugal</td>
<td>2005–2013</td>
<td>281</td>
<td>LFS</td>
</tr>
<tr>
<td>Romania</td>
<td>2009–2013</td>
<td>191</td>
<td>LFS</td>
</tr>
<tr>
<td>Senegal</td>
<td>2002–2002</td>
<td>2</td>
<td>123</td>
</tr>
<tr>
<td>Slovakia</td>
<td>2007–2013</td>
<td>56</td>
<td>LFS</td>
</tr>
<tr>
<td>Slovenia</td>
<td>2013–2013</td>
<td>14</td>
<td>LFS</td>
</tr>
<tr>
<td>Togo</td>
<td>2001–2001</td>
<td>1</td>
<td>123</td>
</tr>
<tr>
<td>Uganda</td>
<td>2009–2013</td>
<td>1</td>
<td>LSMS</td>
</tr>
<tr>
<td>Ukraine</td>
<td>2012–2012</td>
<td>1</td>
<td>STEP</td>
</tr>
<tr>
<td>United States</td>
<td>1998–2004</td>
<td>150</td>
<td>CEPR</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>2012–2012</td>
<td>1</td>
<td>STEP</td>
</tr>
</tbody>
</table>

Sample restriction: individuals aged 20-65, urban, permanent wage workers.
Appendix: Dataset

Percentage share with employment duration less or equal 24 months

Log[GDP per capita (PPP), Country–Mean]

Sample restriction(s): Age: 15–55, wage workers, private sector, permanent jobs, urban
Appendix: Descriptives

Percentage share with employment duration less or equal 120 months

Log[GDP per capita (PPP), Country-Mean]

Sample restriction(s): Age: 15–55, wage workers, private sector, permanent jobs, urban
Appendix: Cross-Country Dataset

Harmonize following information:

- Individual characteristics: age, education, gender.
- Employment status
- Hours worked
- Labor income
- Employment duration
- Contract type
- Industry, occupation
- Location identifiers
Appendix: Empirical model fit: ETH