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Abstract Recent W3C recommendations for the Web

of Things (WoT) and the Social Web are turning hy-

permedia into a homogeneous information fabric that

interconnects heterogeneous resources: devices, people,

information resources, abstract concepts, etc. The in-

tegration of multi-agent systems with such hypermedia

environments now provides a means to distribute au-

tonomous behavior in world-wide pervasive systems. A

central problem then is to enable autonomous agents

to discover heterogeneous resources in world-wide and

dynamic hypermedia environments. This is a problem

in particular in WoT environments that rely on open

standards and evolve rapidly – thus requiring agents

to adapt their behavior at run time in pursuit of their

design objectives. To this end, we developed a hyperme-

dia search engine for the WoT that allows autonomous
agents to perform approximate search queries in order

to retrieve relevant resources in their environment in

(weak) real time. The search engine crawls dynamic

WoT environments to discover and index device meta-

data described with the W3C WoT Thing Description,

and exposes a SPARQL endpoint that agents can use

for approximate search. To demonstrate the feasibility

* This article is an extended version of our publication at
the 9th International Conference on the Internet of Things
(IoT 2019) [2] and positions our search engine for the Web
of Things in the broader context of a social and ubiquitous
Web, which is presented in Section 3.
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of our approach, we implemented a prototype applica-

tion for the maintenance of industrial robots in world-

wide manufacturing systems. The prototype demon-

strates that our semantic hypermedia search engine en-

hances the flexibility and agility of autonomous agents

in a social and ubiquitous Web.

Keywords Autonomous Agents · Hypermedia Search
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1 Introduction

The Web of Things (WoT) fosters innovation and rapid

prototyping in the Internet of Things (IoT): develop-

ers can use standard Web technologies to create and

execute mashups of devices and digital services – so-

called physical mashups [20]. WoT systems are often

required to evolve rapidly as the availability of devices –

and their services – fluctuates. This is particularly true

for constrained devices that are often duty-cycled, and

for mobile devices (as well as people) that physically

move between spatial domains together with the (lo-

calized) services they provide. These inherent dynam-

ics can make a WoT system evolve every few seconds or

even faster. In such settings, the manual definition and

maintenance of static physical mashups (e.g., via tools

such as Node-RED1 and IFTTT2) becomes impractical:

(i) once deployed, they cannot adapt to dynamic envi-

ronments, and (ii) manually “wiring” the WoT cannot

scale well to large numbers of heterogeneous devices

(see also [6,33]). The W3C WoT Thing Description

(TD) helps mitigate these limitations through interac-

tion affordances and hypermedia controls [25]: it allows

1 http://nodered.org/, accessed: 15.04.2020.
2 http://www.ifttt.com/, accessed: 15.04.2020.

http://nodered.org/
http://www.ifttt.com/
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physical mashups to be defined in terms of abstract

interaction patterns rather than specific protocols and

device APIs. The resulting physical mashups are then

more flexible as they are loosely coupled to the under-

lying device APIs, but they still have to be defined and

maintained manually. Ideally, WoT systems would be

able to adapt to large and dynamic settings in an au-

tonomous manner – with minimal human intervention.

Such autonomous systems have been studied to large

extent in the scientific literature on distributed arti-

ficial intelligence (AI) and, in particular, multi-agent

systems (MAS) [50]. In the past, we have shown that

MAS research already provides models, programming

paradigms, languages, and tooling that can be used

to engineer more adaptive WoT systems (e.g., see [9]).

However, autonomous agents operating in such systems

need to make decisions based on the systems’ current

state: they need to find and use available resources in

real time and with minimal out-of-band information in

order to achieve their goals in an autonomous and flexi-

ble manner. We hypothesize that, similarly to how peo-

ple need hypermedia search engines to find resources on

the Web required to achieve their everyday goals (online

shopping, travel planning, etc.), autonomous agents will

also require hypermedia search engines to help them

achieve their goals in the WoT. This analogy is partic-

ularly relevant in the context of the W3C WoT [28],

which relies on interaction affordances as fundamental

building blocks.

Hypermedia search is still insufficiently investigated

in the WoT. A common solution for resource discovery

in the WoT is the use of directories, such as the CoRE

Resource Directory [42] or the Thing Directory3. Au-

tonomous agents could then query directories individu-

ally or as a federation. However, existing approaches for

federated query processing assume that the complete

federation is known beforehand [1] – an assumption that

fails in an open and dynamic WoT. Hypermedia search,

on the other hand, facilitates the flexible discovery of

resources on the Web – an important property for sus-

taining large-scale, open, and long-lived systems.

We developed a hypermedia search engine for the

WoT that allows autonomous agents to perform ap-

proximate search queries in (weak) real time in order

to find resources in their environment that are required

to achieve their goals. The search engine crawls hy-

permedia environments and keeps track of their evo-

lution in order to discover device metadata described

with the W3C WoT TD. The discovered descriptions

are indexed and exposed to clients via a SPARQL end-

point that can process approximate queries. The search

3 https://github.com/thingweb/thingweb-directory/,
accessed: 15.04.2020.

engine is based on Corese [13], an open-source infer-

ence and query engine for Linked Data4, together with

our own implementation of a hypermedia crawler for

dynamic WoT environments. To demonstrate the feasi-

bility of our approach, we implemented a demonstrator

based on a concrete scenario for the maintenance of in-

dustrial robots in world-wide manufacturing systems.

The demonstrator shows that our search engine allows

agents to cope better with dynamic WoT environments

and to pursue their goals in a more flexible and agile

manner – therefore enhancing their autonomous behav-

ior in WoT environments.

This paper is structured as follows. We discuss re-

lated work on searching the WoT in Section 2. In Sec-

tion 3, we then present our approach for creating a

hypermedia-driven Social Ubiquitous Web and define

the search problem in this context. We give an overview

of the design and implementation of our system in Sec-

tion 4. We present our application scenario and the

demonstrator deployment in Section 5, and discuss the

benefits and limitations of our approach in Section 6.

2 Background and Related Work

In this section, we first introduce several concepts from

MAS research that we use throughout the rest of this

paper – with a focus on defining a conceptual bridge be-

tween MAS and WoT systems. We then discuss related

work on searching the WoT.

2.1 From Multi-Agent Systems to Autonomous WoT

Systems

In AI research, an agent is commonly defined as an

entity “situated in some environment, that is capable

of flexible autonomous action in order to meet its de-

sign objectives” [24]. Autonomy is central to this def-

inition and refers to the agent’s ability to operate on

its own, without the need of direct intervention from

people or other agents. The agent is situated in an ex-

ternal environment that it can perceive via sensors and

influence via actuators. A distinctive feature of an au-

tonomous agent is its flexibility in the pursuit of some

design objectives [24]: the agent is reactive by respond-

ing to changes in the environment in a timely fashion,

proactive by exhibiting goal-directed behavior and tak-

ing the initiative when appropriate, and social by inter-

acting with humans or other agents in order to achieve

complex tasks that would surpass its individual capa-

bilities. In distributed AI, a multi-agent system is then

4 https://project.inria.fr/corese/

https://github.com/thingweb/thingweb-directory/
https://project.inria.fr/corese/
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a system conceptualized in terms of agents that are sit-

uated in a shared environment and interact with one

another to achieve their design objectives [24,50].

Agent-oriented programming was first articulated as

a paradigm in [43], but its origins can be traced back

to the mid 1980’s [19]. A well-known meta-model for

designing and programming MAS – that we use in our

approach – is Agents & Artifacts (A&A) [40]. In A&A,

the agents’ environment is considered a first-class ab-

straction in the MAS: a component designed and pro-

grammed with clear-cut responsibilities, such as medi-

ating interaction among agents or access to the deploy-

ment context (devices, digital services, etc.). The en-

vironment is modeled as a dynamic set of workspaces,

where a workspace is a dynamic set of artifacts. An

artifact is a computational object that exposes:

– observable properties: state variables that can be

perceived by the agent;

– observable events: non-persistent, fire-and-forget sig-

nals that carry information and can be perceived by

the agent;

– operations: environment actions provided to the agent;

operations can change the values of observable prop-

erties or they can trigger events.

The set of all interactions an agent can have with its

environment is determined by the artifacts available at

run time. Agents use artifacts in pursuit of their goals,

and they can create and destroy artifacts at run time.

It is worth to note the similarity between the arti-

fact model defined by A&A and the Web Thing model

defined by the W3C WoT TD [25]. Both models define

three types of interaction affordances, namely observ-

able properties, observable events, and operations or ac-

tions, with the Web Thing model being slightly more

generic: a W3C WoT TD can expose writable prop-

erties, whereas artifact properties are read-only. Ap-

plying the W3C WoT TD to decouple artifacts from

devices is thus straightforward and provides a concep-

tual bridge for deploying autonomous agents in WoT

environments [9]. A central problem then is to provide

agents with the search facility that would allow them

to find relevant resources in an efficient manner [8].

The Web has already raised a lot of interest in MAS

research, in particular in the context of service-oriented

computing [45]. Although related, this work is outside

of the scope of this paper, which focuses on the more

specific problem of autonomous search in a social and

ubiquitous Web. A concise overview of the last decade

of research on Web-based MAS is available in [8].

2.2 Searching the Web of Things

There is already a considerable body of research on

searching the IoT/WoT and several surveys are avail-

able, such as [41] and the more recent [53]. The latter, in

particular, provides an extensive review of search tech-

niques for the WoT.

Keyword-based search techniques for the WoT (e.g.,

[49,47,52]) typically target human users – given that

choosing meaningful keywords is then of central impor-

tance. These techniques are thus less suitable for ma-

chines (or autonomous agents), which would rather ben-

efit from approaches that support approximate search.

Other search techniques rely on location-based cluster-

ing – often in combination with keyword- or tag-based

search – and follow the assumption that in the WoT

there is a high degree of locality of interactions among

human users and devices (e.g. [32,27]). In another ap-

proach, Dyser [35] focuses on real-time search given dy-

namic sensor readings in WoT environments and uses

statistical models to predict the state of registered re-

sources: these models induce a ranking on known re-

sources that determines which are contacted first by

the engine to find out whether their actual current state

matches the query.

More recent approaches include directory-based dis-

covery mechanisms, such as the CoRE Resource Di-

rectory [42] and the Thing Directory5, which can be

queried individually or as a federation. Most interest-

ingly, Thing Directories store device metadata described

using the W3C WoT TD [25] and can expose SPARQL

endpoints. Nevertheless, existing approaches for feder-

ated SPARQL query processing assume that the com-

plete federation is known beforehand [1] – an assump-

tion that fails in an open and dynamic WoT.

Hypermedia-based discovery via crawling, on the

other hand, has proven practical for coping with an

open Web. A crawling-based mechanism for WoT de-

vices was proposed in DiscoWoT [31], which allows WoT

devices to be crawled in order to discover their prop-

erties and any exposed interfaces. However, DiscoWoT

assumes that an entry point for the WoT device to be

crawled (e.g., its IRI) is known beforehand. To discover

devices and other resources, the SPITFIRE architec-

ture [38] suggested crawling the (semantic) WoT peri-

odically, but the crawling process is not discussed in

detail – and given the dynamicity of WoT systems, pe-

riodical crawling seems impractical.

Another approach aiming to crawl the WoT at Web-

scale was proposed in WOTS2E [26], which uses meta-

crawling (i.e., it relies on popular search engines such

5 https://github.com/thingweb/thingweb-directory/,
accessed: 15.04.2020.

https://github.com/thingweb/thingweb-directory/
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Fig. 1: Hypermedia MAS: Agents are situated in a shared en-
vironment designed as a distributed hypermedia application
(sourced from [8]).

as Google or Bing) to discover SPARQL endpoints that

contain WoT-related datasets and ontologies. WOTS2E

focuses on the global discovery of relevant SPARQL

endpoints (rather than individual devices), which is com-

plementary to our proposal (see also Section 6).

To the best of our knowledge, a search engine for

dynamic WoT environments that would allow machines

to perform approximate queries in real time is not yet

available.

3 Searching a Social Ubiquitous Web

Hypermedia is emerging as a homogeneous informa-

tion fabric that interconnects everything: not only doc-

uments, but also people, autonomous agents, devices,

data, organizations, etc. [30]. This evolution enables the

engineering of a new generation of socio-technical sys-

tems for the Web: systems in which both people and

autonomous agents are first-class citizens situated in a

world-wide hypermedia environment that spans across

the physical-digital space. We refer to such systems as

Hypermedia Multi-Agent Systems [7,8].

In this section, we motivate and position our contri-

bution in the broader research context of a social and

ubiquitous Web. We first present Hypermedia MAS in

Section 3.1. In Section 3.2, we then present a specific

type of Hypermedia MAS, namely socio-technical net-

works [10], which define a least common denominator

for the Web of Things and the Web of People – and

thus enable the seamless integration of these two facets

of the Web. This seamless integration defines the search

space for our autonomous agents: a hypermedia-driven

Social Ubiquitous Web. Within this context, in Sec-

tion 3.3 we then motivate and define in more detail the

search problem we tackle.

3.1 Hypermedia Multi-Agent Systems

Hypermedia MAS have been introduced as an emerg-

ing class of MAS that are designed for the Web and

are aligned with the Web architecture [7,8]. In a Hy-

permedia MAS, such as the one depicted in Figure 1,

agents are situated in a distributed hypermedia environ-

ment that they can navigate and use in pursuit of their

goals – much like we, as human agents, achieve most of

our everyday goals (e.g., shopping, travel planning) by

browsing and acting on Web resources. The agents’ hy-

permedia environment is weaved into the fabric of the

Web, which enables its seamless distribution across the

Web. The Web thus provides the underpinning that in-

terconnects all entities within and across Hypermedia

MAS.

3.1.1 The Hypermedia Environment as a First-class

Abstraction

In Hypermedia MAS, we conceive of the agents’ envi-

ronment as a first-class abstraction6 [40]: it is an infor-

mation layer that provides agents with various func-

tionalities, such as mediating interaction, communica-

tion, and coordination among agents; mediating access

to the external environment (e.g., devices, digital ser-

vices); providing an abstraction layer for modeling, rep-

resenting, and programming artifacts that agents can

use to achieve their goals. Unlike typical environments

in MAS, however, the environment in a Hypermedia

MAS uses hypermedia to drive interaction in the sys-

tem: agents navigate the hypermedia environment to

discover other entities in the MAS as well as the means

to interact with those entities. The hypermedia environ-

ment thus serves as a conceptual bridge between MAS

and the Web architecture [8].

From the agents’ viewpoint, hypermedia enables a

seamless distribution of MAS on the Web: similar to

how people navigate and use Web pages regardless of

their location, autonomous agents use hypermedia con-

trols to discover and interact with other entities (other

agents, tools, etc.) regardless of their location. Hyper-

media controls allow autonomous agents to discover at

run time the affordances of entities in their environ-

ment, such as the operations exposed by a light bulb

(cf. Figure 1). In the WoT, such affordances can be

described in a standard manner using the W3C WoT

TD [25].

Hypermedia can also be used to advertise in the

environment various other resources that agents can

discover and consume at run time, such as specifica-

tions of interaction protocols (e.g., using BSPL [44]),

specifications of organizations (e.g., using MOISE [23]),

data licensing policies [48], etc. (cf. Figure 1). Such re-

sources can be designed into the environment to fur-

6 This design choice draws from a line of research on engi-
neering agent environments [51].
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ther reduce coupling in MAS: for instance, engineers

in different parts of the world could develop and de-

ploy autonomous agents and interaction protocols in-

dependently from one another. To discover such het-

erogeneous resources, agents can navigate the hyper-

media environment themselves (e.g., see [7,11]), or they

can use hypermedia search engines (cf. Figure 1) – an

approach that has proven successful on the Web [5].

Agents can also manipulate the hyperlinks in their hy-

permedia environment in order to “rewire” the MAS

to fit their needs. We return to this discussion in Sec-

tion 3.3.

3.1.2 Hypermedia MAS on the Web

In REST-style hypermedia systems, such as the Web,

a resource is the key abstraction of information [16]. In

a Hypermedia MAS, the entire observable state of the

MAS (e.g., agents, artifacts, relations among them) is

projected into the distributed hypermedia environment

in a resource-oriented manner, for instance as an RDF

graph [14] (cf. Figure 1). This makes the Hypermedia

MAS crawlable and searchable, and allows agents to in-

teract with the MAS in a uniform manner by consum-

ing and producing hypermedia. To illustrate the latter,

one agent can send a message to another by writing an

RDF representation of the message in the hypermedia

(e.g., using an OWL ontology for describing messages).

To receive messages, an agent can observe a resource

that represents its mailbox in the hypermedia. To turn

on a light bulb, an agent can manipulate the state of

a resource that represents the light bulb in the hyper-

media. All these resources – and the means to interact

with these resources – can be discovered by crawling
the hypermedia environment of the MAS.

All resources in a Hypermedia MAS are identified

using IRIs [15] such that they can be referenced glob-

ally. The uniform identification of resources is essential

to allow agents to reference and interact with other en-

tities in the MAS regardless of context. For instance, if

an agent or a light bulb in their environment is iden-

tified via an IRI, they can be referenced without the

need for contextual information such as how to interpret

platform-specific identifiers or low-level network infor-

mation (e.g., IP addresses of hosts) – in non-hypermedia

MAS, this is not generally the case.7 The uniform rep-

resentation of resources (e.g., in RDF) allows to hide

any implementation-specific details behind standard-

ized knowledge models. For instance, the state of a

light bulb could be represented in the hypermedia en-

vironment using RDF together with a standard ontol-

ogy. An agent could then interact with the light bulb

7 See [7] for a more detailed discussion.

(a) STN Ontology.

Workspace stn:Agent

Environment stn:Artifact

Observable
Event

Observable
Property

Operation Affordance

joined

contains

subClassOf

subClassOf

contains

subClassOf

hasAffordance

uses

(b) EVE vocabulary.

Fig. 2: An overview of the core concepts and properties used
to design the distributed environment in our Hypermedia
MAS. Term prefixes are omitted for legibility (see Tabel 1
in Section 4.2). Fig. 2b is sourced from [7].

by interpreting and manipulating its semantic repre-

sentation either directly or via some intermediary tool

(e.g., via an artifact). The relations among entities in a

hypermedia MAS (e.g., agents, artifacts, organizations,

datasets) are also represented explicitly in the hyper-

media environment in a uniform manner – such that

they can be crawled, manipulated, and reasoned about.

The uniform identification and representation of re-

sources in Hypermedia MAS, together with the explicit

and uniform representation of relations among those re-

sources, allow to create a homogeneous information fab-

ric that (i) interconnects heterogeneous resources in a

Social Ubiquitous Web, and (ii) can be reliably crawled

and indexed for resource retrieval.

3.2 Bridging the Web of Things and the Web of People

A specific type of Hypermedia MAS are Socio-Technical

Networks (STNs). The STN model, which was formally

defined in [10], provides a least common denominator

for the Web of People and the Web of Things: it defines

concepts and terms that capture the commonality from

existing online social platforms, W3C recommendations

and open standards for the Social Web8, and research

on social aspects in the WoT. The STN Ontology, which

defines these concepts and terms, is available online.9

In previous work, it was demonstrated that the STN

ontology can be used to create a homogenous hyperme-

dia overlay that spans across silos in the WoT and the

Social Web [11] – allowing agents (and any other soft-

ware clients) to navigate across the otherwise “walled

gardens” of the Web.

8 Such as the activity of the W3C Social Web Working
Group (https://www.w3.org/Social/WG) and Interest Group
(https://www.w3.org/Social/IG).
9 https://w3id.org/stn

https://www.w3.org/Social/WG
https://www.w3.org/Social/IG
https://w3id.org/stn
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An overview of the core concepts and properties de-

fined in the STN ontology is depicted in Figure 2a. In

more recent work, the STN ontology was extended with

a vocabulary for describing agent environments on the

Web (EVE), which is depicted in Figure 2b. Both the

STN ontology and the EVE vocabulary have their roots

in the A&A meta-model (see Section 2.1) – and we used

both to design the distributed hypermedia environment

in our system, which is presented in Section 4.

Informally, STNs are dynamic networks of agents

and artifacts. All entities in an STN (stn:Agents, stn:

Artifacts, etc.) are interrelated in a meaningful man-

ner via typed relations. Typed relations allow STNs to

be navigated in an informed manner. The STN On-

tology defines stn:connectedTo as a generic relation

between agents, which can be further extended with

domain- and application-specific relation types. On top,

the EVE vocabulary adds new concepts and proper-

ties that further enhance navigability. For instance, the

properties eve:joined and eve:contains can be used

to represent explicitly in the environment hyperlinks

to all stn:Agents and stn:Artifacts in the system –

thus making them discoverable via crawling. The affor-

dances of artifacts are also described explicitly in the

hypermedia environment using the EVE vocabulary (cf.

Figure 2b) – in conjunction with other vocabularies that

can be used to describe implementations of affordances

via hypermedia controls, such as the W3C WoT TD [25]

and Hydra [29].

By enabling the seamless integration of the Web of

Things and the Web of People, STNs define a flexible

backbone for a Social Ubiquitous Web – and can be

crawled and indexed to retrieve resources that are rel-

evant for people and autonomous agents.

3.3 Searching for Heterogeneous Resources in a Social

Ubiquitous Web

Along its evolution, the Web required increasingly so-

phisticated machines to sustain its growth. In the early

days of the Web, hypermedia by itself was sufficient

to allow people to publish documents and to discover

documents by following hyperlinks. But as the num-

ber of documents grew, new mechanisms were devel-

oped to manage this growth: from manually maintained

Web directories (e.g., the now defunct Yahoo! Direc-

tory, DMOZ), to automatic search engines that use

crawlers and information retrieval algorithms to exploit

the hypermedia structure of the Web (e.g., via PageR-

ank [37]). As we now move towards a Social Ubiquitous

Web, this evolution raises new challenges that are not

addressed by traditional hypermedia search engines.

First, unlike the documentary Web, the Social Ubiq-

uitous Web is populated with non-textual resources (e.g.,

agents, devices, people) that cannot be simply indexed

and ranked based on term frequency – this is partic-

ularly the case in the WoT (see also [32]). Rather, it

would be more appropriate to index semantic descrip-

tions of such resources, which can also capture relevant

contextual information (e.g., the current location of a

maintenance engineer). Furthermore, the Social Ubiq-

uitous Web is already populated with heterogeneous re-

sources that can be described using a plurality of Web

ontologies (one of the main challenges in the Seman-

tic Web community [17]). For instance, to adjust the

brightness in a room, an autonomous agent may derive

the need to find resources that can increase the room’s

light level – such as light bulbs or window blinds. The

resources can be manufactured by different vendors and

described using various ontologies. This motivates the

need for methods that support approximate query pro-

cessing when searching the Social Ubiquitous Web.

Second, the Social Ubiquitous Web is expected to

evolve more rapidly than the documentary Web – par-

ticularly in the context of the WoT, since the nature of

WoT services is more sporadic and transient (e.g., due

to physical locality, sleeping nodes, and other contex-

tual factors). This motivates the need for methods that

support searching for resources in real-time, a research

topic that has already been identified in early work on

search engines for the WoT (e.g., [36,32]).

4 System Architecture

To address the challenges identified in the previous sec-

tion, we developed a hypermedia search engine that al-

lows machines to perform approximate queries for find-

ing relevant resources in their WoT environments in

(weak) real time. To achieve this, our approach inte-

grates results from research on the WoT, MAS, and

the Semantic Web.

Figure 3 depicts an overview of our system. Follow-

ing our discussion in the previous section, we design

and program the system as a Hypermedia MAS: people

and autonomous agents are situated in a distributed

hypermedia environment, and we model devices and

any other tools that agents use to achieve their goals

as artifacts in this environment. All entities in our sys-

tem (agents, artifacts, workspaces, etc.) are represented

as Web resources described in RDF and projected into

the distributed hypermedia environment, which enables

their system-wide discovery via crawling. We present

the main components of our system in what follows.
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Fig. 3: Conceptual overview of our system.

4.1 Agents & Artifacts Container

We use an Agents & Artifacts (A&A) Container for

programming and running agents and artifacts in W3C

WoT environments. The A&A Container is developed

using JaCaMo [3], a MAS platform that includes the

reference implementation for the A&A meta-model (see

Section 2.1). Among others, JaCaMo provides devel-

opers with a customizable architecture for cognitive

agents, a language for programming cognitive agents,

and a Java-based framework for programming artifacts

according to A&A.

4.1.1 Agent architecture

We model the autonomous agents in our system as

Belief-Desire-Intention (BDI) agents [4] – a type of cog-

nitive agent designed and programmed in terms of men-

tal attitudes: beliefs held about the world, goals desired

to be achieved, and plans used to achieve goals. The

BDI agent architecture – which is the mainstream ar-

chitecture for cognitive agents in MAS research – thus

provides developers with a formal “human-oriented”

level of abstraction that facilitates designing, program-

ming, but also inspecting and debugging autonomous

behavior. It therefore facilitates the engineering of au-

tonomous WoT systems. Another important feature of

the BDI agent architecture that makes it a good fit

for our approach is that it can balance goal-directed

and reactive behavior: BDI agents commit to goals by

executing plans, but they can still react to events and

changes in the environment while executing their plans.

The JaCaMo platform allows agents to observe artifacts

in their environment: changes in an artifact’s state and

signals emitted by the artifact are reflected in the ob-

serving agent’s belief base.

The typical program of a BDI agent is composed of

the agent’s initial sets of beliefs, goals, and plans – all of

which can evolve at run time. Multiple languages and

frameworks are available for programming BDI agents.

One of the most prominent agent programming lan-

guages is AgentSpeak(L) [39] and its more recent ex-

tended version commonly known as Jason [4]. Jason is

the language used in the JaCaMo platform on which

our A&A Container is based. BDI agents in our sys-

tem are equipped with libraries of Jason plans, where

a Jason plan has the form:

triggering event : application context <-

plan body .

For illustrative purposes, Listing 1 shows an extract

from a Jason program used by a maintenance agent

in our demonstrator (see Section 5 for details). The

!start goal on line 9 in Listing 1 is the entry point

into our agent program. Depending on the evolution of

the system at run time, the !start goal may eventu-

ally lead to the sub-goal !notify engineer(...) to be

created – that is, if the agent decides it is necessary to

notify an on-site engineer of a malfunction (cf. scenario

in Section 5.2).

1 /* Initial beliefs */
2 g r e en c o l o r ( 0 . 409 , 0 . 518 ) .
3 r e d c o l o r ( 0 . 4 , 0 . 2 ) .
4 // ( . . . )
5

6 /* Initial goals */
7 // I n i t i a l i z e s the agent , and may lead to

the
8 //"! notify_engineer " sub−goa l being created
9 ! s t a r t .

10

11 /* Plans */
12 // ( . . . )
13 +! no t i f y e n g i n e e r ( ArtifactName , CIEx , CIEy) :

t rue <−
14 act ( " http :// iotschema . org / SetColour " , [
15 [ " http :// iotschema . org / CIExData " , CIEx ] ,
16 [ " http :// iotschema . org / CIEyData " , CIEy ]
17 ] ) [ a r t i f a c t name ( ArtifactName ) ] ;
18 . wait (2000) ;
19 act ( " http :// iotschema . org / TurnOff " , [
20 ] ) [ a r t i f a c t name ( ArtifactName ) ] .

Listing 1: Extract from the Jason program of a
maintenance agent in our demonstrator. The IoT
Schema IRIs in this listing are used only for illustrative
purposes.

In our demonstrator, malfunctions are signaled visu-

ally to on-site engineers via light bulbs. The creation of

the !notify engineer(...) sub-goal would then trig-

ger the execution of the plan on lines 13-20 of Listing 1:

the agent turns on a light bulb with a given color code

for 2 seconds, and then turns off the light bulb. The ini-

tial set of beliefs in our agent program includes, among

others, the CIE 1931 XY color codes [46] to be used

when notifying on-site engineers (lines 2-3).10

10 The color code values used in our demonstrator corre-
spond to nuances of green and red used by Philips Hue.
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Table 1: Prefix bindings.

Prefix IRI
td: http://www.w3.org/ns/td#
stn: http://w3id.org/stn/core#
eve: http://w3id.org/eve#
ex: http://example.org/#

4.1.2 Infrastructure artifacts

The A&A Container provides agents with several types

of infrastructure artifacts that they can use: browser

artifacts, crawler artifacts, and finder artifacts.

Browser artifacts serve as facades that allow agents

to interact with artifacts discovered at run time in their

hypermedia environment as they would interact with

any artifact in a local workspace (see Section 2.1) on

the JaCaMo platform. Browser artifacts are instanti-

ated with IRIs of W3C WoT TDs, and we refer to them

as “browser” artifacts because they perform functions

similar to Web browsers: they retrieve and parse W3C

WoT TDs, expose interaction affordances to agents,

and translate agents’ actions to interactions with the

Web Thing [25] being described (e.g., via HTTP or

CoAP). Unlike regular JaCaMo artifacts, browser arti-

facts expose metadata (e.g., about the supported types

of actions provided to agents) via observable properties.

To perform actions, such as the action of changing the

color of a light bulb in Listing 1 (line 14), agents use a

generic act operation provided by the browser artifact.

The act operation takes as arguments the IRI of the ac-

tion type to be executed as well as IRIs of any required

parameter types specified in the W3C WoT TD used

by the browser artifact. If the W3C WoT TD provides

multiple hypermedia controls for the same action type,

the first hypermedia control is used.

Agents can use crawler artifacts to configure the

search engine, for instance by providing seeds to be

crawled or by setting the link types to be followed when

crawling (see Section 4.3.1), and they can use finder

artifacts to perform search queries (see Section 4.3.2).

The role of crawler and finder artifacts is to simplify

the agents’ logic by encapsulating all logic required to

access the HTTP and SPARQL endpoints exposed by

our semantic hypermedia search engine.

4.2 Distributed Hypermedia Environment

All resources in our system (agents, workspaces, arti-

facts, devices, etc.) and relations among them are de-

scribed in RDF using the STN ontology and the EVE

vocabulary (see Section 3.2). In addition, we use the

W3C WoT TD [25] for describing devices and other ar-

tifacts together with the interaction affordances they

provide. Throughout the rest of this paper, we use the

prefix bindings in Table 1.

We map W3C WoT TDs to descriptions of arti-

facts as defined by the A&A meta-model (see discus-

sion in Section 2.1) – i.e., a Web resource can be both a

td:Thing and an eve:Artifact. This mapping allows

autonomous agents to use Web Things as they would

use any other artifacts programmed with JaCaMo (via

the browser artifacts presented in the previous section).

Both people and autonomous agents can manipulate

the hypermedia environment, for instance by adding

devices to the system. The hypermedia environment is

hosted on Yggdrasil [7], our prototypical platform for

programming hypermedia environments for autonomous

agents, and can be distributed across multiple nodes.

The version of Yggdrasil used in our demonstrator is

on GitHub11 and provides two core functionalities:

– it serves as a repository for semantic descriptions

of hypermedia environments; each Yggdrasil node

exposes a REST HTTP API for creating, updating,

and deleting RDF representations of environment,

workspace, and artifact abstractions (cf. A&A meta-

model in Section 2.1);

– it acts as a hub that (partially) implements the W3C

WebSub recommendation [18]; agents – or indeed

any software client, such as our A&A Container –

can use this functionality to observe resources in the

environment.

4.3 Semantic Hypermedia Search Engine

Autonomous agents in such distributed hypermedia en-

vironments need to be able to conduct searches for a

broad range of goals and require structured query and

result capabilities to achieve their goals. To this end,

we developed a hypermedia search engine for the WoT

that autonomous agents can use to perform approxi-

mate search queries in (weak) real time. The search

engine consists of two components: (i) our own imple-

mentation of a hypermedia crawler for dynamic WoT

environments, and (ii) Corese [13], an open-source in-

ference and query engine for Linked Data.12 The search

engine implements an event-driven non-blocking archi-

tecture using Vert.x 13. The hypermedia crawler and the

11 https://github.com/Interactions-HSG/yggdrasil/

tree/iot2019/
12 See https://project.inria.fr/corese/ and also http:

//corese.inria.fr/
13 https://vertx.io/, accessed: 15.04.2020.

https://github.com/Interactions-HSG/yggdrasil/tree/iot2019/
https://github.com/Interactions-HSG/yggdrasil/tree/iot2019/
https://project.inria.fr/corese/
http://corese.inria.fr/
http://corese.inria.fr/
https://vertx.io/


Autonomous Search in a Social and Ubiquitous Web 9

query engine are loosely coupled (and deployed in sep-

arate Vert.x verticles), which enhances the evolvability

of the system. The semantic hypermedia search engine

of our demonstrator is on GitHub.14

Push Seeds Crawl Seeds Index W3C WoT TDs

Answer Queries

Fig. 4: From seeding to query-answering.

Figure 4 depicts an overview of the functioning of

our search engine: (i) seed IRIs are pushed to the search

engine via crawler artifacts; (ii) the seed IRIs are deref-

erenced and crawled to discover any available W3C

WoT TDs; (iii) the discovered W3C WoT TDs are in-

dexed and (iv) queried using SPARQL. We elaborate

on these steps in the following.

4.3.1 Hypermedia crawler

We designed and implemented a crawler that navigates

distributed hypermedia environments to discover any

resources described with the W3C WoT TD. The seeds

for initiating the crawling process can be provided by

any entity in the system: humans, autonomous agents,

resource directories, etc. We enriched the Yggdrasil plat-

form (see Section 4.2) with the functionality to auto-

matically register seeds with the crawler whenever a

component is added to an hypermedia environment it

hosts (e.g., the IRI of a newly created workspace). This

functionality allows the crawler to keep track of the evo-

lution of the distributed hypermedia environment more

efficiently as it can rely on Yggdrasil nodes to push noti-

fications whenever parts of the distributed hypermedia

environment need to be (re-)crawled.

In addition to seeds, humans and autonomous agents

can also configure the crawler with the link types to

be followed when navigating hypermedia environments,

such as links among W3C WoT TDs, links between

workspaces and contained artifacts, or any link types

defined in the context of domain- and application-specific

STNs (see Section 3.2). This functionality allows the

crawler (i) to be customized for hypermedia environ-

ments described with various ontologies, and (ii) to

navigate large-scale hypermedia environments more ef-

ficiently.

The crawler exposes two HTTP endpoints: /links

for pushing IRIs denoting link types that should be

followed when crawling hypermedia environments, and

14 https://github.com/Interactions-HSG/wot-search/

/registrations for pushing seeds for the crawling pro-

cess (IRIs of artifacts, workspaces, etc.). Agents can

access these endpoints using the crawler artifacts pro-

vided by the A&A Container (see Section 4.1). After

being seeded, the crawler dereferences the registered

IRIs to obtain resource representations. From these rep-

resentations, it extracts links to be followed and con-

tinues the crawling recursively in a depth-first manner.

We study optimized crawling plans in another work [22]

and leave the integration of more sophisticated crawling

techniques for future development. The crawler stores

discovered W3C WoT TDs as RDF data to be indexed

and queried.

4.3.2 Semantic query engine

The W3C WoT TDs discovered by our crawler are in-

dexed and queried using Corese15[13]. The query engine

exposes a SPARQL endpoint /search that autonomous

agents can use to search for artifacts needed to achieve

their goals. Agents access the SPARQL endpoint using

the finder artifacts provided by the A&A Container

(see Section 4.1).

A feature of Corese that is central to our system is

the ability to process approximate queries: if there is

no exact answer for a query, Corese can approximate

the semantics of the query, its structure, or both [12].

To illustrate this feature, let there be an OWL ontol-

ogy that describes industrial robots in which the UR5

and UR10 series of single-armed robots from Universal

Robots are sibling subclasses of SingleArmedRobots,

while the Baxter series of two-armed robots from Re-

think Robotics is a subclass of TwoArmedRobots (where

SingleArmedRobots and TwoArmedRobots are sibling

subclasses of RobotsWithArms. If an agent searches for

a UR5 robot and none is available, Corese uses the onto-

logical distance between the classes (as they are defined

in the class hierarchy) to approximate a UR10 robot as

being semantically closer to a UR5 than a Baxter robot

is. We refer the interested reader to [12] for further de-

tails on all the query approximation techniques used

by Corese – Corese also provides several other features

that could be leveraged for searching the WoT, such as

federated queries over heterogeneous data sources (see

also Section 6).

5 Prototypical Deployment

We deployed a demonstrator based on a concrete ap-

plication scenario in which agents have to cope with

open and dynamic WoT environments: the maintenance

15 https://github.com/Wimmics/corese

https://github.com/Interactions-HSG/wot-search/
https://github.com/Wimmics/corese
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of industrial robots in world-wide manufacturing sys-

tems, in which production sites are distributed across

the globe [9]. For our scenario, we consider two types of

robots: manufacturing robots and maintenance robots.

Manufacturing robots might require maintenance tasks,

and they can delegate such tasks either to maintenance

robots or to maintenance engineers. To this end, the

manufacturing robots thus have to find in real time

what heterogeneous resources (robots or engineers) are

available across production sites, and to decide what

maintenance tasks can (and should) be fulfilled by a

robot and what tasks would require an engineer con-

sidering also their locality (e.g., engineers can travel

between production sites).

A video of our demonstrator is on YouTube,16 and

the source code is on GitHub.17 In the following, we

first present our deployment setup and then discuss the

demonstrator scenario.

5.1 Deployment Setup

We deployed our system in a laboratory at the Uni-

versity of St. Gallen. We used two devices in our de-

ployment: a PhantomX AX-12 Reactor Robot Arm con-

trolled via an HTTP API18 that can be accessed from

the Internet, and a Philips Hue light bulb controlled

via an HTTP API exposed by a Philips Hue bridge in

the local network. We deployed a hypermedia environ-

ment distributed across two Yggdrasil nodes running

on a MacBook Pro machine in the local network. We

deployed the search engine on the same machine to-

gether with two A&A Containers that host the agents

in our demonstrator. Even though in this setup all soft-

ware components are deployed on the same machine,

the components interact with one another via HTTP

and could be easily deployed across the Internet.

5.2 Demonstrator Scenario

Each of the two Yggdrasil nodes in our deployment

hosts the hypermedia environment of a production site

– Site A and Site B. The Philips Hue light bulb is

deployed on Site A and the PhantomX robot is de-

ployed on Site B. Both the light bulb and the robot

are modeled as artifacts that agents can observe and

use. In our scenario, agents use the light bulb to sig-

nal malfunctions to on-site engineers. We deploy two

autonomous agents for each production site: on Site A

16 https://youtu.be/iuTzzMA-7FI
17 https://github.com/Interactions-HSG/

wot-search-manufacturing/
18 https://github.com/Interactions-HSG/leubot

we deploy a maintenance agent tasked with monitoring

and maintaining industrial robots across all production

sites, and on Site B we deploy a manufacturing agent

tasked with controlling the robot arm during normal

operation. Each agent runs in one A&A Container.

In what follows, we present our demonstrator across

three phases (cf. demonstrator video).

5.2.1 Phase 1

In the first phase, the maintenance agent on Site A

is launched, starts to observe the light bulb (see Sec-

tion 4.1), and seeds the crawler with the IRI of its

local workspace on Site A. The crawler then crawls

the workspace by following all stn:connectedTo links

(meaning here: a workspace is connected to another work-

space) and all eve:contains links (meaning here: an

artifact is contained in a workspace), which lead the

crawler to discover a second workspace on Site B that

contains the robot artifact.

The maintenance agent on Site A searches for robots

to be monitored – across all existing production sites

– by querying the search engine for artifacts that are

robotic devices. The ability of Corese to process approx-

imate queries allows the maintenance agent to query

for devices of type ex:RoboticDevice and to receive

as a result the PhantomX robot on Site B, which is of

type ex:Ax12ReactorArm – in the vocabulary used for

this demonstrator, ex:Ax12ReactorArm is a subclass of

ex:RoboticDevice.

Once the robot artifact on Site B is found, the main-

tenance agent at Site A starts observing it to receive

any events it might generate. The manufacturing agent

on Site B is launched at the end of Phase 1 and starts

operating the robot.

5.2.2 Phase 2

The robot at Site B malfunctions and issues a mainte-

nance event. This event is pushed from the Yggdrasil

node on Site B to the A&A Container on Site A, which

dispatches the event to the maintenance agent due to

the subscription created earlier. When the event is re-

ceived, the maintenance agent queries the search engine

to find maintenance suppliers that can perform the re-

quired maintenance task.

Since no maintenance robot is deployed at Site B,

the search returns an empty result. The agent then no-

tifies any maintenance engineer that might be available

on Site A by switching on the light bulb with a red

color (cf. Listing 1). A maintenance engineer travels to

Site B, repairs the manufacturing robot, and the robot

resumes its tasks.

https://youtu.be/iuTzzMA-7FI
https://github.com/Interactions-HSG/wot-search-manufacturing/
https://github.com/Interactions-HSG/wot-search-manufacturing/
https://github.com/Interactions-HSG/leubot
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5.2.3 Phase 3

A maintenance robot is deployed on Site B and reg-

istered with the local Yggdrasil node, which automati-

cally updates the workspace of Site B. Yggdrasil pushes

the IRI of the newly added robot to the crawler, which

discovers the robot.

Similar to Phase 2, the manufacturing robot mal-

functions and issues a maintenance event, which is dis-

patched to the maintenance agent on Site A. Upon re-

ceiving the event, the maintenance agent queries again

the search engine and receives as a result the newly in-

stalled maintenance robot on Site B. The maintenance

agent delegates the task to the maintenance robot and

informs manufacturing engineers on Site A by switching

on a green light (cf. Listing 1).

6 Discussion and Limitations

The deployed demonstrator proves the two key elements

of our approach. First, the maintenance agent is able to

use approximate search queries to find industrial robots

in a hypermedia environment distributed across two

production sites. In our setup, the Yggdrasil nodes for

the two production sites run on the same machine, but

they could be easily distributed across the Web – as

they are in the Yggdrasil demonstrator presented in [7].

Second, our prototypical search engine has the ability to

keep track of the evolution of the hypermedia environ-

ments it indexes, which allows the maintenance agent

to perform searches in (weak) real time: when the main-

tenance robot is added to the environment, Yggdrasil

notifies the search engine, which crawls and indexes the

robot. In the future, we intend to implement a similar

mechanism for tracking components that are removed

from the environment. We say searches are performed

in weak real time because the notification-based mech-

anism used in our prototype would be insufficient for

keeping track of large-scale, rapidly evolving environ-

ments. In the future, complementary mechanisms could

be added to improve real-time search. For instance, pre-

dictive crawling (e.g., see [21]) could be used to crawl

and index fast-changing areas in the environment more

frequently, or to determine which parts of an environ-

ment should be prioritized during crawling.

Our search engine crawls WoT environments to dis-

cover and index W3C WoT TDs. In most cases, the TDs

would describe devices, but they could also describe re-

source directories, such as the Thing Directory.19 Our

current implementation would treat a discovered Thing

19 https://github.com/thingweb/thingweb-directory/,
accessed: 08.09.2019.

Directory as any regular Thing in the environment –

and thus leaves it to agents to use the Thing Directory

if they are able to do so. In the future, we intend to

extend our search engine with the ability to automat-

ically query SPARQL endpoints discovered in the en-

vironment at run time. Corese already supports feder-

ated SPARQL queries, and we study the automatic dis-

covery and querying of SPARQL endpoints in another

work [34]. Our current implementation also does not

check the correctness of discovered TDs beyond RDF

syntax – for instance, to check if a given TD is usable

and corresponds to the Web Thing being described, or

if a described device is operational. We leave it as future

work to investigate such mechanisms.

As a direction for future research, we intend to in-

vestigate the ranking of resources based on agents’ goals

and current context. For instance, an agent having the

goal to increase the brightness in a room could do so

either using light bulbs or window blinds, but the rel-

evance of these resources is also contextual: opening

the window blinds during night-time would have lit-

tle impact on the room’s light level. Going further, in

our current approach agents rely on libraries of plans

programmed by developers in order to “bridge” their

goals to relevant resources. Currently, this knowledge

has to be programmed into the agents (cf. Listing 1),

it can be obtained at run time from other agents (if

available), or could potentially be inferred at the ex-

pense of added complexity (e.g., via automated plan-

ning). Providing agents with a context-aware search

engine that can process goal-oriented queries (rather

than resource-oriented queries) would further enhance

the agents’ flexibility in achieving their goals.

7 Conclusions

We hypothesize that similar to how hypermedia search

enhances people’s ability to achieve their everyday goals

through the Web (for online shopping, travel planning,

etc.), semantic hypermedia search can enhance the au-

tonomous behavior of software agents in a Social Ubiq-

uitous Web. To this end, we designed and implemented

a prototypical search engine that allows autonomous

agents to use approximate search queries for finding rel-

evant resources in their WoT environment in (weak) real

time. We demonstrate these features in a maintenance

scenario for a prototypical agent-based manufacturing

system deployed in one of our laboratories at the Uni-

versity of St. Gallen. Our demonstrator shows that –

through these features – the search facility enhances the

agents’ flexibility and agility in achieving their goals.

We presented an approach to create a hypermedia-

driven Social Ubiquitous Web on top of interlinked socio-

https://github.com/thingweb/thingweb-directory/
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technical networks. Agents can configure our prototyp-

ical search engine to crawl any relation types in these

networks, and they can manipulate the networks to

“rewire” their environments according to their needs.

The current search engine prototype is indexing only

W3C WoT TDs, but the same search facility could

serve a broader range of purposes. For instance, au-

tonomous agents could use the search engine to dis-

cover how to interact with one another based on declar-

ative specifications of agent interaction protocols (e.g.,

in a formal language such as BSPL [44]) or of multi-

agent organizations (e.g., in a formal language such as

MOISE OML [23]). Such resources could be designed

into the hypermedia environment to further enhance

autonomous behavior in a social and ubiquitous Web.
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Santi, A.: Multi-agent oriented programming with ja-
camo. Science of Computer Programming 78(6), 747
– 761 (2013). DOI https://doi.org/10.1016/j.scico.2011.
10.004. URL http://www.sciencedirect.com/science/

article/pii/S016764231100181X
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des Systèmes d’Information (2018). DOI 10.3166/ISI.23.
3-4.11-56. URL https://hal.inria.fr/hal-01935898

18. Genestoux, J., Parecki, A.: WebSub, W3C Recommen-
dation 23 January 2018. W3C Recommendation, World
Wide Web Consortium (W3C) (2018). URL https:

//www.w3.org/TR/2018/REC-websub-20180123/

19. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and
planning. In: AAAI, vol. 87, pp. 677–682 (1987)

20. Guinard, D., Trifa, V., Pham, T., Liechti, O.: Towards
physical mashups in the web of things. In: Networked
Sensing Systems (INSS), 2009 Sixth International Con-
ference on, pp. 1–4. IEEE (2009)

https://doi.org/10.1007/978-3-319-63962-8_228-1
https://doi.org/10.1007/978-3-319-63962-8_228-1
https://www.alexandria.unisg.ch/257439/
https://www.alexandria.unisg.ch/257439/
http://www.sciencedirect.com/science/article/pii/S016764231100181X
http://www.sciencedirect.com/science/article/pii/S016764231100181X
http://www.sciencedirect.com/science/article/pii/S016975529800110X
http://www.sciencedirect.com/science/article/pii/S016975529800110X
http://doi.acm.org/10.1145/3199919.3199924
https://www.alexandria.unisg.ch/255802/
http://doi.acm.org/10.1145/3017995.3018001
http://doi.acm.org/10.1145/3017995.3018001
https://hal.archives-ouvertes.fr/hal-00746772
https://hal.archives-ouvertes.fr/hal-00746772
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.ietf.org/rfc/rfc3987.txt
http://doi.acm.org/10.1145/514183.514185
https://hal.inria.fr/hal-01935898
https://www.w3.org/TR/2018/REC-websub-20180123/
https://www.w3.org/TR/2018/REC-websub-20180123/


Autonomous Search in a Social and Ubiquitous Web 13

21. Han, S., Brodowsky, B., Gajda, P., Novikov, S., Bender-
sky, M., Najork, M., Dua, R., Popescul, A.: Predictive
crawling for commercial web content. In: Proceedings
of the 2019 World Wide Web Conference, pp. 627–637
(2019)

22. Huang, H., Gandon, F.: Learning URI Selection Crite-
ria to Improve the Crawling of Linked Open Data. In:
ESWC2019 - The 16th Extended Semantic Web Con-
ference. Portoroz, Slovenia (2019). URL https://hal.

inria.fr/hal-02073854
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