Deglobalisation post COVID-19 could spell trouble for the European Monetary Union

Akvile Bertasiute, Domenico Massaro, Matthias Weber
1 July 2020

Less economic integration would make it difficult for the ECB to stabilise the euro area economies. Symmetric monetary policy cannot do anything about this and individual countries would need to use fiscal policy tools.

The COVID-19 crisis led to severe restrictions in mobility across borders, concerning both individuals and goods. Borders were closed, international travel made almost impossible, and final and intermediate goods were unable to get from one country to another. Massive disruptions of global value chains were caused by inputs not being manufactured due to lockdowns or not being delivered.

While the situation is improving, it is not clear what the long-run economic consequences of the pandemic are. Firms might, for instance, rely more on the production of inputs within national borders to be prepared for similar situations. Such hedging of risks might come at the expense of productivity, as most economists are aware. In addition, such a renationalisation or de-globalisation could interfere with monetary policy in the euro area and severely trouble the functioning of the monetary/currency union, which is not well known.

We show why this is the case in a recent research article (Bertasiute et al., 2020). We use a dynamic macroeconomic currency union model to analyse how a currency union is affected by the interconnectedness of the countries and how this interacts with monetary policy. We analyse the model not only with rational expectations but also with a variety of behavioural expectations, as rational expectations have many times been attacked for their lack of realism. Which varieties of behavioural expectations we use is described further below – our main results hold up with behavioural and rational expectations alike.

The importance of economic integration

We show that the level of economic integration is crucial for the currency union to function. High economic integration in the model means that there are few barriers to trade, so that countries can and do trade a lot with each other. When countries trade a lot with each other, this means that the developments of inflation in one country matter relatively much for other countries. Thus, in a country currently in an economic downturn, inflation will be lower than in other countries. Therefore, prices in this country will become lower and its goods more competitive in other currency union countries. If the countries trade a lot with each other, the effect of the increased demand abroad can stabilise prices in the troubled country. While such a positive effect of trade in currency unions is well known, our article is the first to show
this in a multi-country dynamic macroeconomic model with rational and behavioural expectations.

Also, the level of economic integration needed for a currency union to function increases with the number of countries in the currency union. That is, while a currency union with only a few countries may still be fine with a moderate level of economic integration, a much higher level is needed in a currency union with many countries. There are certainly benefits to having many countries in a currency union (for instance no exchange rate risk for trade with all the involved countries or an advantage in becoming an international currency with borrowing privileges for the member countries, see Gourinchas and Rey, 2007), but it is important to know that large currency unions need a high degree of economic integration. However, the additional level of economic integration needed with each additional country decreases with the size of a currency union. When there are already many members, there is no need for much additional economic integration when a new member joins.

The central bank cannot do enough: fiscal policy is needed

Unfortunately, even well-conducted regular monetary policy – that is, appropriate changes in the monetary union interest rate – cannot improve the functioning of the union if economic integration is too low. The joint central bank could still do a lot of harm: too low interest rates in a boom or monetary policy that is not expansionary enough when the same negative shock hits all countries (such as COVID-19) would still be problematic. But even if the central bank reacts as best it can with symmetric measures, the union will always be in trouble if economic integration is too low.

The reason for that is that the central bank can never set an interest rate that is right for all countries. Some countries may be in a boom, while others are in an economic downturn. In such a case, the interest rate that is set for the currency union as a whole is too low for the countries in the boom and too high for the countries in the slump. This suggests that fiscal policy, which is conducted at the country level, is an indispensable macroeconomic stabilisation tool. Useful fiscal policy would not have to be directed by currency union authorities, but there would have to be enough leeway for the individual countries to conduct counter-cyclical fiscal policies. This could happen in coordination with the other countries or following joint rules at the union level, as long as these rules are not simple debt limits as the current EU rules (the countries must also be able to finance counter-cyclical fiscal policies – there are several ways to make sure that they are able to do so in times when additional spending is useful, including eurobonds or outright debt monetisation; see Weber 2020a, 2020b).

Why use behavioural expectations? Realism and prediction performance

Why is it important to use behavioural models of expectation formation? As the results are qualitatively similar under rational and behavioural expectations, wouldn’t the model with rational expectations be enough?

First, that the results are qualitatively similar became only clear after analysing the model with both rational and behavioural expectations. This is by no means a trivial result, as rational
and behavioural expectations often lead to (also qualitatively) very different results (see, for instance, Hommes et al., 2019).

Second, rational expectations have been criticised so heavily for their lack of realism that it seems important not to base economic findings exclusively on them. Indeed, rational expectations place extraordinary demands on the ability of economic agents. Rational expectations require that agents know all equations determining economic outcomes and possess the computational ability to calculate the solutions of such equations, an impossible task in the real world.

While most economists acknowledge that people neither know the equations governing the economy nor engage in higher mathematics when making economic decisions, some macroeconomists believe that mistakes in expectation formation should somehow average out. Believing in such averaging out makes expectation formation a black box, completely eliminating any meaning from the so-called microfoundations that ground aggregate economic behaviour in individual decisions. It is in general also wrong, because expectations of different people are not uncorrelated.

The behavioural variants that we use go from a very simplistic model — where people naively use the last observation as expectation — to a sophisticated evolutionary learning model that performed well to describe individual expectations in other work (e.g., Hommes et al., 2019; Assenza et al., 2020). In this evolutionary learning model, people use relatively simple rules to forecast future variables, such as extrapolating past trends or thinking that variables will slowly return to a long-run average. However, agents are not stupid, they learn from the past: people rely more often on the forecasting rules that performed better in the recent past.

![Figure 1. Mean squared errors of one-quarter-ahead predictions for inflation](image)

Notes: The data used for Figures 1 and 2 are year-on-year percentage changes of the HICP for inflation and data as in Comunale (2015) for the output gap (from 1999 to 2014).
We believe a good way to compare different models is to assess their prediction performance. Models that perform better out of sample are in general more convincing. While we do not perform a full estimation of all model parameters in our paper (which would be an interesting topic for an empirical paper), we compare the prediction performance of the models with rational and behavioural expectations on the basis of parameter estimates from other work (Dees et al., 2010). Figures 1 and 2 show the mean squared one-quarter-ahead prediction errors of the two types of models for inflation and for the output gap. As can be seen, both inflation and output gap are predicted much better by the behavioural model for all countries (relying on the evolutionary learning model for behavioural expectation formation).

![Output Gap Forecast Errors](image)

Figure 2. Mean squared errors of one-quarter-ahead predictions for the output gap

Notes: The data used for Figures 1 and 2 are year-on-year percentage changes of the HICP for inflation and data as in Comunale (2015) for the output gap (from 1999 to 2014).

References


