MOBILE AUGMENTED REALITY: DESIGN PRINCIPLES FOR THE USE IN EDUCATIONAL SETTINGS

CELDA 2020

Luca Moser
luca.moser@unisg.ch
University of St.Gallen
Switzerland
Overview

1. Background and Goal
 Basic Assumptions | Research Gap and Goal

2. Theoretical Baseline
 TPACK | MAR in Education

3. Literature Review
 Method | Results

4. Further Work and Discussion
 MARLS | Closing the Gap | ...
Background and Goal | Basic Assumptions

Why Focus on MAR?

1) Augmented Reality may improve learning settings and make learning more effective (Bacca et al., 2014; Radu, 2012)

2) MAR is cost-efficient because mobile devices are widely available (Akçayır and Akçayır, 2017)

Further Assumptions

3) To use MAR and design effective MARLS in classrooms is challenging and teachers often lack the necessary media-didactical skills (Bucher et al., 2020; Cuendet et al., 2013)

4) Isolated knowledge about a technology and isolated knowledge about pedagogy are not sufficient to effectively use new technologies in classrooms (Mishra and Koehler, 2006)
Background and Goal | Research Gap and Goal

Research Gap

- Shortage of principles illustrating how to effectively use MAR applications to design MARLS (Kerr and Lawson, 2020; Kourouthanassis et al., 2015)

Theoretical Baseline

- Review on MAR in education
 - TPACK Model (Mishra and Koehler, 2006)

Literature Review

- Review on MARLS design and MAR application

Main Goal

- Identification of design principles for MARLS

AR: Augmented Reality
MAR: Mobile Augmented Reality
MARLS: MAR Learning Setting
Theoretical Baseline | MAR in education

Seven metastudies on MAR in education

Only 2015-2020 to account for considerable technical developments (Cuendet et al., 2013)

- Positive learning effects
- Increased motivation and engagement
- Change the perspective on learning objects
- New ways to interact with materials, teachers and other learner

- Technological difficulties
 - High complexity for teachers and learners

- Research and practical interest for MAR in education is growing
 - “Novelty effect”

<table>
<thead>
<tr>
<th>Metastudy</th>
<th>No of Analyzed Studies (346)</th>
<th>Years of Analyzed Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Chen et al., 2017)</td>
<td>55</td>
<td>2011 – 2016</td>
</tr>
<tr>
<td>(Garzón et al., 2019)</td>
<td>61</td>
<td>2012 – 2018</td>
</tr>
<tr>
<td>(Quintero et al., 2019)</td>
<td>50</td>
<td>2008 – 2018</td>
</tr>
<tr>
<td>(Sommerauer and Müller, 2018)</td>
<td>36</td>
<td>2010 – 2017</td>
</tr>
<tr>
<td>(Yuliono et al., 2018)</td>
<td>18</td>
<td>2009 – 2018</td>
</tr>
</tbody>
</table>
Isolated knowledge about a technology and isolated knowledge about pedagogy are not sufficient to effectively use new technologies in classrooms (Mishra and Koehler, 2006)

- Teachers have pedagogical knowledge
- Teachers have content knowledge
- Combinations of content knowledge with technological and pedagogical knowledge varies with the content

➢ Focus on technological pedagogical knowledge to identify general MARLS design principles

TPACK to identify MARLS design principles (adapted from: Mishra and Koehler, 2006, p. 1025)
Literature Review | Method

<table>
<thead>
<tr>
<th>Database</th>
<th>BASE, ERIC, Science Citation Index, Science Direct, and Scopus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>(“design principle” OR “design framework” OR “usability principle”) AND (educat* OR learn* OR school OR teach*) AND (“augment* reality”)</td>
</tr>
<tr>
<td>First search</td>
<td>155 found in title or abstract</td>
</tr>
<tr>
<td>Inclusion</td>
<td>77 read no duplicates, 2010-2020, online available, scientific journal</td>
</tr>
<tr>
<td>Analysis</td>
<td>12 analyzed design principles or frameworks for the construction or application of MAR for educational purposes</td>
</tr>
</tbody>
</table>

→ Few results because of research gap?
<table>
<thead>
<tr>
<th>Study</th>
<th>Theoretical Foundation</th>
<th>Design Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Altmeyer et al., 2020)</td>
<td>Spatial contiguity principle, Cognitive load theory, Cognitive theory of multimedia learning</td>
<td>1 Avoid split-attention effect, 2 Use common technology and context</td>
</tr>
<tr>
<td>(Bucher et al., 2020)</td>
<td>Learning technology by design, Action-oriented didactics, Basic of media pedagogy, Basics of HCI</td>
<td>1 Learning activities, 2 Teaching activities, 3 Interdisciplinarity</td>
</tr>
<tr>
<td>(Cuendet et al., 2013)</td>
<td>Usability of HCI settings, Classroom orchestration, Design whole learning settings</td>
<td>1 Integration, 2 Empowerment, 3 Awareness, 4 Flexibility, 5 Minimalism</td>
</tr>
<tr>
<td>(Dunleavy, 2014)</td>
<td>Intrinsic motivation</td>
<td>1 Enable than challenge, 2 Gamified story, 3 See the unseen</td>
</tr>
<tr>
<td>(Kerr and Lawson, 2020)</td>
<td>Digital storytelling, Physicality of learning object, Scaffolding, Informal learning</td>
<td>1 Experiential theme/s, 2 Unique narrative, 3 Multisensory design, 4 Design for gaps, 5 Collaboration</td>
</tr>
<tr>
<td>(Ko et al., 2013)</td>
<td>Usability of mobile applications</td>
<td>1 User-information, 2 User-cognitive, 3 User-support, 4 User-interaction, 5 User-usage</td>
</tr>
<tr>
<td>(Kourouthanassis et al., 2015)</td>
<td>Usability of mobile applications</td>
<td>1 Context, 2 To-the-task content, 3 Transparency, 4 Feedback on infrastructure, 5 Memory</td>
</tr>
<tr>
<td>(Messuti et al., 2015)</td>
<td>Basic learning theories, Usability of mobile applications</td>
<td>1 Basis in learning theories, 2 Simple interface and usability, 3 Blend the environment</td>
</tr>
<tr>
<td>(Sommerauer and Müller, 2018)</td>
<td>Lens of theory, General learning theories</td>
<td>1 Mobile learning, 2 Game based learning, 3 Experiential learning, 4 Situated learning</td>
</tr>
<tr>
<td>(Stefan and Moldoveanu, 2013)</td>
<td>Game based learning</td>
<td>1 Playability, 2 Emotional appeal, 3 Player's contribution, 4 Challenge, 5 Curiosity, 6 Control, 7 Fantasy, 8 Motivation, 9 Iteration, 10 Scaffolding</td>
</tr>
<tr>
<td>(Tuli and Mantri, 2020)</td>
<td>Usability of mobile applications, AR design principles</td>
<td>1 Cognition, 2 Orientation, 3 Design, 4 Support</td>
</tr>
<tr>
<td>(Zhao, 2018)</td>
<td>Interactive interface design method, Multiple analysis</td>
<td>1 User centeredness, 2 Consistency, 3 Rationality and clarity, 4 Diversity, 5 Interactivity</td>
</tr>
</tbody>
</table>
Literature Review | Results

54 Design Principles

- Named by 3 or more studies
- Usability (techn.)
- User/learner centeredness (pedag.)
- Cognitive (over)load

Clusters of remaining principles

- Clusters of remaining principles
- Basic learning theories
- Conscious application of MAR

19 remaining Principles

- Learning activities
- Teaching activities
- Interdisciplinarity

(Bucher et al., 2020)

- Integration (in curriculum)
- Empowerment (of teachers)
- Awareness (for MAR advantages)

(Cuendet et al., 2013)

- Enable than challenge
- See the unseen (thanks to MAR)

(Dunleavy, 2014)

- Multisensory design
- Design for gaps
- Collaboration

(Kerr and Lawson, 2020)

- Basis in learning theories
- Blend the environment

(Messuti et al., 2015)

- Mobile learning
- Experiential learning
- Situated learning

(Sommerauer and Müller, 2018)

- Challenge
- Iteration
- Scaffolding

(Stefan and Moldoveanu, 2013)
Literature Review | Results

<table>
<thead>
<tr>
<th>MARLS Design Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability (techn.)</td>
</tr>
<tr>
<td>– easy and appealing to use for teachers and students (Cuendet et al., 2013)</td>
</tr>
<tr>
<td>– interface containing only relevant information and functions (Ko et al., 2013)</td>
</tr>
<tr>
<td>User/learner centeredness (pedag.)</td>
</tr>
<tr>
<td>– focus on the needs and requirements of the targeted learners (Stefan and Moldoveanu, 2013)</td>
</tr>
<tr>
<td>– easy classroom management and efficient use of the scarce learning time (Cuendet et al., 2013)</td>
</tr>
<tr>
<td>– motivational design and a context relevant to the learners (Dunleavy, 2014; Kerr and Lawson, 2020)</td>
</tr>
<tr>
<td>Basic learning theories</td>
</tr>
<tr>
<td>– classical learning theories still apply for MARLS (Messuti et al., 2015)</td>
</tr>
<tr>
<td>– create motivational and learner-centered MARLS (Bucher et al., 2020)</td>
</tr>
<tr>
<td>Conscious application of MAR</td>
</tr>
<tr>
<td>– organize and scaffold the activities to use the learning time effectively (Stefan and Moldoveanu, 2013)</td>
</tr>
<tr>
<td>– restrict MAR use to the activities where it supports the learning process effectively (Tuli and Mantri, 2020)</td>
</tr>
<tr>
<td>Cognitive (over)load</td>
</tr>
<tr>
<td>– special attention to the cognitive load of students (Garzón et al., 2019) and teachers (Cuendet et al., 2013)</td>
</tr>
</tbody>
</table>

→ Design for students AND teachers
<table>
<thead>
<tr>
<th>MAR- Parcours for High-School-Students</th>
<th>Refinement of DPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational Design Research (EDR)</td>
<td>Institutional Requirements</td>
</tr>
</tbody>
</table>
Literature (1/2)

Literature (2/2)

