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Abstract

We build on a growing literature that studies the impact of market frictions on the
dynamics of stock markets, such as momentum, price spirals, excess volatility, and
investigate the potential feedback effects of delta-hedging in derivative markets on the
underlying market. We document a link between large aggregate dealers’ gamma im-
balances in illiquid markets and intraday momentum/reversal and market fragility.
This link is distinct from information frictions (adverse selection and private informa-
tion) and funding liquidity frictions (margin requirement shocks). We test our joint
hypothesis using a large panel of index and equity options that we use to compute
a proxy of aggregate gamma imbalance. We find supporting evidence that intra-day
momentum (reversal) is explained by the interaction of negative (positive) aggregate
ex-ante gamma imbalance and market illiquidity. The effect is stronger for the least
liquid underlying securities. The result helps to explain both intra-day volatility and
autocorrelation of returns. Moreover, we find that gamma imbalance correlates to the
frequency and the magnitude of flash crash events.
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A growing literature has documented the existence of temporary and permanent compo-

nents in equity returns (Fama and French (1988), Daniel, Hirshleifer, and Subrahmanyam

(1998)).1 Some of these effects are found at daily frequencies (price spirals) while others

manifest over longer horizons (momentum). In this paper, we focus on the first set of prop-

erties. Indeed, at intraday frequencies, several studies document that stock prices deviate

from a random walk.

Figure 1 provides a simple summary of the properties of the autocorrelation coefficient

ρ of intraday returns sampled at 5-minutes frequency using 12 non-overlapping observations

in a 60 minutes window based on a large sample of liquid stocks in the TAQ dataset in the

period 1996 to 2014. 2 On the y-axis the figure reports the probability that the absolute

value |ρ| is larger than ρ̄ with ρ̄ = 0.10, 0.20, . . . , 0.90. If stock prices were random walks,

the autocorrelation coefficient ρ would be zero. The results strongly reject this hypothesis

and show evidence of non-zero intraday autocorrelation. For instance, 34% of the time the

autocorrelation coefficient is either larger than 0.30 or lower than −0.30. Moreover, if we

run a regression of ρ on its lag we find that the slope coefficient is positive with a t-statistics

equal to 54.17, suggesting a significant persistence of ρ at the stock level.

These properties are not only statistically strong but also interesting from an economic

point of view as they deviate from what one would expect in a simple frictionless market.

Recently, some of the biggest investment banks have started to offer investable financial

products based on strategies that use intraday movements (momentum and reversion) of

underlying assets.3 Therefore, a natural question that emerges is whether these patterns are

the outcome of some deeper structural properties of financial markets.

1Examples include under- and over-reaction to news, momentum, mean reversion, excess volatility, and price
spirals.

2This provides us with 4,777 trading days and 6,039,248 hourly observations of ρi across all stocks i.
3See, for instance, the Morgan Stanley Intraday Indexes (quoted on Bloomberg) MSCBL1ES, MSCBL1NQ, and

MSCBL1RT which are constructed on the SPX, Nasdaq, and Russell Indexes, respectively.
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Figure 1. Magnitude of Intra-day Autocorrelation
The figure describes the magnitude of autocorrelation of intra-day stock returns. We define ρ = ρ(j, d, h) as
the auto-correlation coefficients of 5-minutes returns of stock j during the trading hour h of day d, thus based
on 12 non-overlapping observations. The figure displays the probability that |ρ| > ρ̄ for ρ̄ ∈ [0.1, 0.2, . . . , 0.9],
based on the empirical distribution of ρ sampled for a set of 276 individual U.S. equity stocks over the period
from 1996 to 2017 (6,039,248 observations).

The literature has proposed a few explanations to explain some of these regularities. A

first explanation emphasizes the role played by economic frictions, such as margin require-

ments and capital constraints, in the formation of price spirals (Brunnermeir and Pedersen

(2009)) and excess volatility. However, these explanations find it difficult to explain the

existence, at the same time, of both positive and negative autocorrelations. A second expla-

nation builds on how information gets incorporated into asset prices. Easley, O’Hara, and

Srinivas (1998) formally study a model that allows for endogeneous participation of informed

traders in the options market. They show the existence of a pooling equilibrium in which

informed investors use both option and stock markets if the leverage implicit in options is

large and the liquidity in the stock market is low. As a result, equity returns may display

predictability. Pan and Poteshman (2006) find supporting evidence for the existence of an

information-based channel linking the trading activity of privately informed traders in the
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options market and predictability in stock returns. Indeed, several studies have argued that

informed investors might choose to trade derivatives because of the higher leverage offered

by such instruments, e.g. Black (1975). Easley, Lopez de Prado, and O’Hara (2012) pro-

pose a measure of flow toxicity which captures states of the world in which there is a high

probability that market demand is affected by the presence of informed investors. In these

states, order flow adversely selects market makers, who may be unaware they are providing

liquidity at a loss. As a consequence, markets can become fragile, volatility and autocorre-

lation may increase, and flash crashes are more likely to occur. A third growing literature

emphasizes the importance played by behavioral biases.4 This paper focuses on a different

type of friction that is linked to the role played by the derivative market during periods of

market illiquidity. It differs from information-based explanations and it may occur even in

the absence of margin and capital constraints.

In the last 20 years, the use of derivatives for hedging has seen a massive increase due both

to growing emphasis on asset-liability management and to explicit regulatory constraints.

Solvency II, Dodd-Frank, and the EMIR Risk Mitigation Regulation increased the cost of

capital in favor of risk mitigation techniques including hedging and reduction of counterparty

risk. In particular, insurance companies have increased their use of derivatives to manage the

embedded optionalities which are normally provided as part of their contracts and reduced

the use of reinsurance. A life insurer, for instance, with a large portfolio of guaranteed mini-

mum death benefits (GMDB) and variable annuities (VA) can hedge against a drop in equity

markets using put options. As hedging reduces required economic capital, derivatives have

become a widely used ex-ante mechanism for insurance companies to relieve excessive con-

4Initial underreaction to new fundamental information has been linked to the disposition effect (Frazzini (2006),
Barberis and Xiong (2009), Shefrin and Statman (1985), Ben David and Hirshleifer (2012)). Daniel, Hirshleifer, and
Subrahmanyam (1998) and Luo, Subrahmanyam, and Titman (2018) argue that the overestimation of one’s own
precision of private information signals (own ability) can help explain post-corporate post-earnings announcement
stock price ’drift’, negative long-lag autocorrelations (long-run ’overreaction’), and excess volatility of asset prices.
Moreover, if in addition agents are affected also by a self-attribution bias, one may justify momentum (positive
short-lag autocorrelations).
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centration of risk and generate business value.5 As a consequence, in 2017 the notional value

of insurance industry derivatives reached $2.3 trillion, with roughly 95% held by life/annuity

insurers and with options constituting 43% of this exposure.6

The aggregate net positions of options is by definition equal to zero. However, there

is significant heterogeneity in the positions of different types of options (over maturity and

strikes) across different types of institutions. This reflects institutional differences in pref-

erences, technologies and possibly different strategic objectives across institutions and retail

investors in the supply chain of options. Indeed, several empirical studies find that indi-

vidual agents are on average net buyers of index put options, both directly and indirectly

via insurance and structured products. Insurance companies provide these optionalities and

buy protection using liquid options in centrally cleared markets. In equilibrium, the risk is

transferred over the option supply chain to market makers who are left, depending on their

risk aversion, with the ultimate task to manage their risk exposure using dynamic hedging

techniques. See Figure 2.7

In absence of any risk management, a dealer profit profile is potentially very volatile and

non-linear. If he sold put options, he would be long delta and short gamma: if the value

of the underlying asset drops, his put options become more in-the-money and their deltas

increase. To limit their market exposure, most dealers delta-hedge by selling shares of the

underlying asset. The optimal amount of shares to short, however, changes depending on the

intraday fluctuations of the underlying price. When the aggregate market gamma imbalance

of dealers is large, the overall intraday activity of financial intermediaries may be substantial

5An example of the preference of using derivatives to hedge instead of reserve-capital to back guarantees is made
explicit by Generali INA-Assitalia (a large insurance company), which states: “we view our life insurance policies as
nothing less than a portfolio of embedded options. . . We use liquid derivatives to replicate the liability portfolio.”
(Risk, November 1999)

6See, Best’s Special Report (2018), “Growing Use of Derivatives for Liability Risk Management”.
7No market maker would simply sell puts (or call) options to hold the naked position on the underlying asset

overnight. Such directional bets would simply be too large and not justifiable.

4



Retail Investors

Variable Annuity

Market Makers Hedge Funds

Option Hedging

Insurance Company

Delta Hedging

Gamma Imbalance
[Demand for Short Term 

Protection]

Heterogeneity in Use of 
Derivative Markets 

Long Term Option 
Protection

Risk Transfer

[Medium/short horizon] [Intraday][Long horizon]

Figure 2. Risk Transfer in the Supply Chain of Options Markets

and may add additional pressure to an initial move of the underlying asset, giving rise to

intraday momentum. If the dealer’s book is made, on the other hand, of long positions in

out-the-money call options, the dealer is long delta and long gamma. In this case, an initial

price drop induces the dealer to buy the underlying asset, reducing pressure to the underlying

asset and giving rise to intraday mean-reversion. The potential role of this channel to help

to explain these observed effects depends on the extent of heterogeneity in both the supply

chain of options and on the incentives by market makers to hedge intra-daily. Differently

than individual investors, most market makers have an institutional mandate to hedge their

derivative positions by the end of the trading day. However, the specific dynamics during

the day typically vary among dealers.

The sign of the intraday serial correlation is opposite depending on the aggregate com-

position of the book. This provides an interesting set of joint testable implications. Let us

define the aggregate dollar value of all market makers outstanding gamma with their clients

as the gamma imbalance, which accounts for all options positions of different strike prices and
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maturity. When the aggregate gamma imbalance is large and negative, one should observe

larger market volatility and short-term momentum (positive serial autocorrelation). On the

other hand, when the gamma imbalance is positive, one should observe lower than average

volatility and short-term mean reversion (negative serial autocorrelation). Notice that this

specific effect is independent of the presence of information frictions, such as order flow

toxicity, and of the additional role played by economic frictions such as margin constraints.

It does, however, require that the market is not infinitely liquid to absorb intraday market

makers demand shocks. This suggests an additional testable implication: the effect should

be stronger (in the cross-section) for less liquid stocks and (in the time-series) during less

liquid times since in a perfectly liquid and frictionless market options are redundant assets

and no feedback effect should exist between options and their underlying.

To investigate the extent to which gamma imbalance can help to explain the observed in-

traday patterns in equity markets, we use the IvyDB dataset from OptionMetrics to construct

a comprehensive dataset of equity options that include both index and a large cross-section

of individual stock options. Information on both open interest and option specific greeks are

used to obtain a panel on day- and security-specific gamma imbalance. The dataset covers

the period between 1996-2017. Intra-day returns and the trading volume for each of the

underlying assets are from TAQ. The cross-sectional dimension of the dataset is important

since at each given point of time, a large number of assets have negative and positive gamma

imbalance. This helps to identify the effect and increases the power of our tests.

We focus on three main questions. First, what is the extent to which gamma imbalance

explains asset volatility? Limited market liquidity and the existence of an institutional fric-

tion suggests that volatility is larger when gamma imbalance is more negative. We run a

panel regression of the absolute value of the return of underlying asset j on day t on our

proxy for the gamma imbalance of options dealers measured at time t− 1. As predicted, the

data shows a negative relationship between daily return volatility and gamma imbalance.
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The results are strongly statistically significant and robust to a series of controls, such as al-

ternative definitions of intraday volatility and after conditioning for time and other common

effects. We also find that most of the impact of this friction is transitory and is not present

after 2 trading days. Moreover, using the cross-sectional dimension of the dataset, we find

that the increase in volatility during negative gamma days is significantly stronger for the

least liquid assets. This is consistent with the hypothesis of a dealer order flow friction that

becomes more binding in illiquid markets.

Second, what is the extent to which gamma imbalance explains intra-day momentum and

reversal? We run a panel regression of the autocorrelation coefficients of h-minute returns of

stock j onto date and security-specific gamma imbalance. We find that the slope coefficients

are negative and statistically significant, supporting the null hypothesis. We also find that

the magnitude and significance of the coefficients is increasing with the frequency and peaks

at a horizon of h = 30 minutes, consistent with an economy in which dealers adjust their

delta-hedged portfolios intraday at a similar frequency.

Third, we investigate the link between gamma imbalance and flash crashes, that is,

large price drops materializing over a short time period. Using the “drift burst” detection

methodology proposed by Christensen, Oomen, and Renò (2018), we identify a panel of flash

crash events and study their relationship to gamma imbalance. We find that conditional on

negative ex-ante gamma imbalance flash crashes are more likely to occur and to be larger

in magnitude. This effect is economically significant in the first part of our sample, while it

becomes less relevant after the introduction of circuit breakers in 2010.

Finally, we compare the economic importance of institutional frictions such as gamma

imbalance versus alternative explanations, such as flow toxicity. Easley, Lopez de Prado,

and O’Hara (2012) argue that when order flow adversely selects market makers, who may be

unaware they are providing liquidity at a loss, it can become toxic. We use a large dataset

on volume imbalance and trade intensity to construct Easley, Lopez de Prado, and O’Hara

(2012) proxy of order flow toxicity (VPIN) sampled at volume time, instead of traditional

7



clock time. We study the relative economic and statistical importance of these two channels

and find that gamma imbalance retains its significance even after controlling for VPIN,

suggesting that it captures an additional independent driver of price volatility.

Related Literature. This paper is related to several streams of the asset pricing liter-

ature. A first stream studies the relation between economic frictions, liquidity, and market

fragility – see, among others, Holmstrom and Tirole (1997) and Brunnermeir and Pedersen

(2009). The last investigate the link between an asset’s market liquidity (i.e., the ease with

which it is traded) and traders’ funding liquidity (i.e., the ease with which they can obtain

funding). They show that, under certain conditions, margins are destabilizing and market

liquidity and funding liquidity are mutually reinforcing, leading to liquidity spirals. They

argue that speculators’ capital can become a driver of market liquidity and risk premiums.

Their work is part of a growing literature. See among others, Adrian, Moench, and Shin

(2014), Gromb and Vayanos (2002), Garleanu and Pedersen (2001), Adrian, Etula, and Muir

(2014), Adrian and Shin (2010), Adrian and Boyarchenko (2015), Adrian, Colla, and Shin

(2012).

Our work is also related to an important literature that studies the impact of asym-

metric information and adverse selection in the context of informed trading on asset prices.

Information-based models (e.g., Glosten and Milgrom (1985), Easley, O’Hara, and Srinivas

(1998)) suggest that while stock prices will fully adjust when all public information is re-

vealed, they may gradually adjust to the private component of information. As a result,

stock returns may display predictability and serial correlation. Pan and Poteshman (2006)

test this hypothesis using information from options markets and show that stocks with low

put-call ratios outperform stocks with high put-call ratios by more than 40 basis points on

the next day and more than 1% over the next week. They interpret the economic source of

this predictability as private information possessed by options traders rather than market

inefficiency. Easley, Lopez de Prado, and O’Hara (2012) contribute to this literature propos-
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ing a new proxy of order toxicity that is sensitive to the probability that market dealer face

privately informed traders. Their measure is based on volume increments, as opposed to

time increments, and find that it helps to explain market volatility. Engle and Lange (2001)

propose an intraday measure of market liquidity (VNET) that captures the depth of the

market corresponding to a particular price deterioration. They use the excess volume of

buys or sells (order imbalance) measured over price increments to obtain VNET and find

that it helps to explain volatility.

Our paper provides further evidence suggesting that trading on derivatives may affect

the price of the underlying securities. Ben-David, Franzoni, and Moussawi (2018) shows that

the arbitrage activity of market makers in the ETF market generates excess volatility on the

underlying stocks. Shum, Hejazi, Haryanto, and Rodier (2015) find that leveraged ETFs

drive up volatility near the market’s close because of hedging activities of ETF providers.

More recently, growing interest has focused on the role played by high-frequency traders

(HF) on flash crashes and other intraday price dynamics. Hendershott and Riordan (2013)

present evidence on HF trading on the Deutsche Borse. Brogaard (2010) and Hasbrouck and

Saar (2013) analyze the role and strategies of HF traders in U.S. equity markets. Kirilenko,

Kyle, Samadi, and Tuzun (2017) characterize the behavior of HF traders and other market

participants in the S&P 500 futures market. Hendershott, Jones, and Menkveld (2011) study

the empirical relationship between algorithmic trading and liquidity, finding that algorithmic

trading improves liquidity for large stocks.

Our paper relates also to a third stream of the literature that investigates the effect of in-

stitutions on asset prices. In this area, important works include Vayanos and Woolley (2013)

and Gorton, Hayashi, and Rouwenhorst (2013). The first suggests a theory of momentum

and reversal based on flows between investment funds. They argue that flows are triggered

by changes in fund managers’ efficiency, which investors either observe directly or infer from

past performance. Momentum arises if flows exhibit inertia, and because rational prices

under-react to expected future flows. Reversal arises because flows push prices away from
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fundamental values. Hendershott and Seasholes (2007) study explicitly the link between

non-informational order imbalances (buy minus sell volume) to predict daily stock returns

at the market level. Additional evidence on the role of institutions in the correlations of as-

set returns is also discussed in Anton and Polk (2014), Chang, Hong, and Liskovich (2013),

Greenwood and Thesmar (2011), Lou and Polk (2013), and Jotikasthira, Lundblad, and Ra-

madorai (2012). In the context of commodity markets, Gorton, Hayashi, and Rouwenhorst

(2013) argue that momentum can be explained by specific market frictions in the context

of the Theory of Storage and Normal Backwardation. Indeed, they show that momentum

portfolios take positions in similar commodities as those obtained from basis-sorted port-

folios. Thus, high momentum portfolios select commodities with below normal inventories

and relatively high bases, while the Low Momentum portfolio does the opposite. They ar-

gue that, in the event of a stock-out the convenience yield is positive to reflect a spot price

increase due to a shortage of goods. They interpret the result as evidence of a friction-based

explanation of momentum.

I. An Example: General Motors

To illustrate the potential effect of gamma imbalance on intraday stock price dynamics,

consider the time series properties of General Motors stock price on October 13th 2014 and

on January 9th 2009. Figure 3 summarizes the two time series. The first panel displays

the evolution of the price on October 13th 2014, when the gamma imbalance of option

dealers on GM at the beginning of the trading day was deeply negative, amounting to more

than 11 million dollars. This is a significant amount, equivalent to more than 21% of the

average hourly volume for the underlying stock. If the imbalance is due to short OTM put

options positions, intermediaries can limit their market exposure by delta-hedging with short

positions in the stock. At around 13:30 the price starts dropping sharply, driving a large

amount of put options closer to being ATM. Thus, to maintain a constant delta exposure,

10



0

2

4

6

8

10

Vo
lu

m
e 

(m
ln

 $
)

Gamma Imbalance: -11.23 million $

10:00 11:00 12:00 13:00 14:00 15:00
0

1

2

3

4

5

6

Vo
lu

m
e 

(m
ln

 $
)

Gamma Imbalance: +10.56 million $

29.8

29.9

30.0

30.1

30.2

30.3

30.4

30.5

Pr
ice

40.3

40.4

40.5

40.6

40.7

40.8

40.9

Pr
ice

Figure 3. General Motors Stock Price

intermediaries should increase their short positions by selling more stocks. As the stock price

continues to fall throughout the rest of the trading day, delta-hedging would induce dealers

to increase even further their short positions. The effect is particularly strong during the

last 30 minutes of the trading day when we observe a significant rise in trading volume. On

this day, we find that the autocorrelation of hourly returns is +43%. Our conjecture is that

the automatic risk-management order flow has contributed to the intraday momentum.

The bottom panel shows another, albeit opposite, example. At the beginning of January

9th 2009, the aggregate gamma imbalance was significantly positive, due to long OTM call
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options positions. If the intermediary wanted to hedge market exposure, delta hedging would

require the dealer to short the underlying asset. In this case a price drop reduces the call

option’s delta, thus inducing intermediaries to buy back some equity. If the flow is significant

relative to the available liquidity, it could dampen the initial negative price shock. Consis-

tently, the plot shows evidence of strong intra-day mean reversion with an autocorrelation

coefficient equal to −63%. In these two examples, the sign of the autocorrelation coefficient

is negatively related to the sign of the ex-ante aggregate gamma imbalance. Moreover, while

in the first example the intraday (annualized) volatility is 24%, which is above the uncondi-

tional average, in the second case the volatility is at 18%, below the average. Are these two

examples simply a coincidence or are they revealing the existence of an important friction?

II. Data and Summary Statistics

This section discusses the data sources, the definition of the main variables we use and

documents the main summary statistics.

A. Data Sources

We obtain data on daily options prices, open interest, and greeks from the IvyDB dataset

provided by OptionMetrics. We focus on stocks and indices that have liquid option trading

by selecting the 300 underlying asset with largest average dollar open interest reported in

OptionMetrics over the sample period from 1996 to 2017.

On each day, we compute the total open interest for each asset in our universe for both

call and puts across all strike price levels and maturity available. Then, we merge this dataset

with the CRSP and TAQ databases by ticker to obtain information on daily and intra-daily

returns and trading volume for the underlying assets, respectively.

We also obtain data on market fundamentals from the News Analytics dataset by Raven-

Pack, which provides sentiment scores that is useful to identify asset-days with significant
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news.

The final sample includes four market indices (S&P 500, Dow Jones, Nasdaq 100 and

Russell 2000) and 276 individual U.S. equity stocks. Our panel is, by construction, unbal-

anced because some of the single-name options enter the sample only when they start being

traded.

Figure 7 shows the distribution of intra-day autocorrelation coefficients for equity returns

sampled at 5-minutes intervals. The median is slightly positive and equal to 10 percent.

We cannot reject the null hypothesis that the unconditional average of the autocorrelation

coefficient is zero. However, we find strong evidence both of conditional intra-day momentum

(positive autocorrelation) and reversal (negative autocorrelation). Indeed, about 24% (10%)

of the days had an intra-day autocorrelation greater than +0.30 (lower than −0.30).

Insert Figure 7 here

B. Gamma Imbalance

Let the value of the underlying asset at time t be St. The delta ∆t of an option Ct(St;K,T )

is defined as the first derivative of the option price with respect to the underlying price

∆t = ∂C
∂St

. At time t, delta-hedging of an option portfolio requires buying or selling an

amount of the underlying asset equal to −∆t. Since changes in St changes the value of ∆t,

delta hedging strategies require a dynamic adjustment of the position on the underlying

asset. The greek Γt measure the rate of change of ∆t given a change in the underlying asset,

i.e. Γt = ∂∆t

∂St
, and is proportional to the convexity of the value of the derivative security with

respect to St. Both call and put options are convex in St. Thus, a long portfolio of options

implies a positive Γt, which implies that the size of the delta-hedging position is positively

related to the underlying price. On the other hand, a short portfolio of options implies a

negative Γt, i.e. the size of the delta-hedging position is negatively related to the underlying
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price.

Financial institutions heavily rely on option markets to transfer some of the risk embed-

ded in the contracts offered to their clients. The traded options market has become a solution

of choice, due to their liquidity and limited counterparty risk. A large literature documents

that in certain periods the book of financial intermediaries can be imbalanced. This would

occur, for instance, when the aggregate demand of their customers contributes to a build-up

of an excess demand for either puts or calls in a particular index or individual stock. We

are interested in a measure of this imbalance (the gamma imbalance) and compute it at the

day and asset-specific level.

First, we compute the dollar open interest for each option contract, taking the product

of the open interest OI(t) and the contract price P (t)8

OI$
Type,K,T (t) = OIType,K,T (t) · PType,K,T (t), T ype ∈ Call, Put. (1)

Second, since each option has a gamma which depends on its moneyness and time to

expiration, we compute the dollar gamma of each specific call and put option on each trading

day t. Then we compute the value-weighted sum of the gammas of all option contracts to

obtain Γ$ as follows:

Γ$
Type(t) =

∑
K,T

OI$
Type,K,T (t) · ΓType,K,T (t), T ype ∈ Call, Put. (2)

Finally, since regulatory restrictions limit the amount of information available about the

specific identity of derivative holders, we build two alternative proxies of dealers gamma

imbalance depending on alternative assumptions about their positions. If dealers are long

call options and short put options, the aggregate imbalance is proportional to the difference

between the aggregate gamma of the call minus the aggregate gamma of the put options,

8the contract price is computed as the arithmetic average of the best bid and ask offers for the contract.
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[
Γ$
Call(t)− Γ$

Put(t)
]
. Accordingly, we define our first proxy Γ$

1(t) as a fraction of the average

daily volume for the underlying security:

ΓIB1 (t) =
[
Γ$
Call(t)− Γ$

Put(t)
]
/ADV(t)× 100. (3)

The average daily volume ADV(t) is computed as the rolling average of the dollar trading

volume over the quarter previous to t.

If dealers are long both call and put options, the aggregate imbalance is proportional to

the sum of the aggregate gamma of calls and puts options,
[
Γ$
Call(t) + Γ$

Put(t)
]
. Thus, we

define

ΓIB2 (t) =
[
Γ$
Call(t) + Γ$

Put(t)
]
/ADV(t)× 100. (4)

We design the empirical test to be agnostic with respect to the specific structural im-

balance of dealers. However, Pan and Poteshman (2006) compare the total open-buy and

open-sell option volume and document that put (call) options on the S&P500 and Nasdaq

are on average bought (sold) by investors that are not market makers.9 According to their

results, ΓIB1 would be the preferred proxy of gamma imbalance. On each trading day, we use

Option Metrics to obtain data on the open interest and gamma of all strike and maturity-

specific put and call options, as of the end of trading day. In all empirical applications, we

lag ΓIB1 by one trading day to avoid any forward-looking bias in the analysis.

Table I reports summary statistics on ΓIB1 and the open interest for the option contracts

in our sample. We also report statistics on the implied volatility, computed as the average

across all outstanding contracts for each day-asset pair. Equity and index options exhibit

similar statistical distributions for our gamma imbalance proxy while, as expected, index

options have a significantly larger open interest and a substantially lower implied volatility

relative to single name options. Our identification strategy is based on both the time-series

9For individual stock options, the difference varies over time and in the cross section.
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and the cross-sectional variation of ΓIB1 . In Figure 4, the darker line highlights the cross-

sectional average on each date t; the light (dark) shaded area represents the 10th and 90th

(25th and 75th) percentiles interval of the daily distribution of ΓIB1 .

Two main properties emerge. First, on almost every day in the sample ΓIB1 ranges from

significant negative to positive values across different individual stocks. Moreover, the cross-

sectional average displays rich time-variation. These two properties are important since our

identification strategy uses both time-series and cross-sectional variation.

Insert Figure 4 and Table I here

Two channels drive the time-variation in ΓIB1 . The first one is due to a quantity effect: the

portfolio decision of institutional and retail investors to buy/sell options and the willingness

of option dealers to accept the trade. The second one is due to a price effect: the endogenous

impact on ΓIB1 induced by a variation in the price of the underlying asset. This second effect

depends on the entire distribution of the moneyness and maturities of the call and put options

held in dealers’ book; intraday shocks to the underlying price have immediate implications

on the aggregate ΓIB1 . Figure 5 shows the relative importance of the two channels. On

November 15th, 2018, the S&P500 index was 2,730.27 and the aggregate ΓIB1 outstanding

was negative. As the blue curve shows, an increase in the S&P500 would also increase ΓIB1

and, in absence of other portfolio changes, the aggregate ΓIB1 would change sign and become

positive if the S&P500 were to move above 2762.5 (a 2.3 percentage move). The shape of

the curve depends on the specific distribution across moneyness and maturity of the dealers’

options book. Keeping constant the S&P500 level, one can compare the relative importance

of these two channels, on this particular day, by comparing the vertical distance between

the two curves (quantity effect). Our data allows us to track this information at the daily

frequency.

Insert Figure 5 here
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III. Empirical Results

In this section, we present the main empirical results of the paper. We articulate our analysis

around three main null hypotheses.

A. Volatility and Gamma Imbalance

The first empirical null hypothesis relates to the assumption that dealers’ order flow in the

underlying assets has a non-trivial intra-day price impact.

H01 : Does Gamma Imbalance help to explain intraday market volatility?

In particular, we investigate the existence of a negative link between daily volatility

and dealers’ gamma imbalance. When dealers’ gamma is positive (negative), their delta

increases (drops) when the underlying asset increases. Thus, their delta-hedging strategy

requires selling (buying) more of the underlying asset following an increase in the underlying

price. Therefore, dealers order-flow acts as a contrarian (reinforcing) force, thus limiting

(strengthening) the magnitude of initial price movements.

It is important to notice that there are many reasons why one may expect the null hy-

pothesis to be rejected. First, dealers may be less risk-averse than commonly perceived and

less interested to aggressively hedge their delta imbalances. Second, the underlying asset

market could be sufficiently liquid and frictionless so that dealers’ delta hedging strategies

have no price or volatility impact. Third, dealers could be extremely rational and techno-

logically sophisticated to be able to implement hedging strategies with no aggregate price

impact. Fourth, while this channel might be realistic, it might not be sufficiently strong to

dominate other equally important channels. Finally, the construction of a proxy of gamma

imbalance is notoriously difficult due to regulatory restrictions that, in some cases, limit

the amount of information necessary to identify all trading counterparties. The noisier the
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proxy, the less powerful the test, and the more likely one may reject the null hypothesis H01

even if there were a relationship, thus biasing the test against finding a result.

To test this hypothesis we run a panel regression of absolute returns on stock j conditional

on the aggregate gamma imbalance of option dealers ΓIBj,t−1 for security j at time (t− 1):

|Rj,t| = α + β0ΓIBj,t−1 + β1IV OLj,t−1 + FEj,t + ej,t, (5)

where the term FEj,t refers to different time and asset fixed-effects. Standard errors are clus-

tered by asset and month to allow for arbitrary correlation structures both in the time series

and cross-section. We control for the previous day implied volatility IV OLj,t−1 computed

as the average across all the outstanding options.

The results are summarized in Table II and show that the coefficient on ΓIBj,t−1 is negative

and highly significant with a t-statistics ranging between −4.54, after controlling for lagged

implied volatility, and −5.32, after controlling also for asset and month fixed effects. Indeed,

consistent with our null hypothesis, the data shows a negative relationship between daily

volatility of returns and gamma imbalance. In column two, three, and four we control for

asset, time, and both time and asset fixed effects, respectively. The statistical significance of

the results are even stronger. These results are also significant from an economic standpoint.

The estimates imply that one standard deviation in the gamma imbalance is associated to a

decrease of roughly 12 basis points in the absolute value of the daily return for the underlying

stock. This constitutes a non-negligible impact, given that absolute daily returns average at

around 109 bps in our sample.

Insert Table II

Figure 6 (top panel) shows the distribution of t-statistics of the estimator of β0 when

we run time-series regressions for each of the 280 stocks in our sample. T-statistics are

computed using the heteroskedasticity and autocorrelation consistent (HAC) standard errors

18



from Newey and West (1986). We find that the distribution is strongly shifted to the left

(of zero): for 206 out of 280 stocks (73% of the population) the t-statistic is more negative

than −2.5. This is indeed a large proportion which highlights a strong negative link between

aggregate Gamma Imbalance and stock volatility. Figure 6 (bottom panel) shows a scatter

plot of the relation between the t-statistics and the logarithm of the open interest of options

written on the corresponding security. Consistent with the main economic argument, the

plot shows that a large open interest correlates with a large negative β0.

Insert Figure 6

Next, we investigate whether there are differences in the impact of the gamma imbalance

for options written on indices versus individual stocks. We expect the effect to be statisti-

cally and economically stronger for index options for both statistical and economic reasons.

Indeed, the open interest on index options is significantly larger than that of single-name

options and the aggregate gamma imbalance measure is likely to be a more precise proxy of

the real gamma imbalance of dealers. Results are summarized in Table III and show that

the coefficient on ΓIB is negative and significant in all specifications. As expected, the slope

coefficient is significantly larger for index options than for single-name options, ranging from

-14.8 (after controlling for both asset and month fixed effects) to -5.5 (after controlling only

for asset fixed effects). Moreover, the statistical significance is still high, and the t-statistics

ranges between -4.4 (after controlling for lagged implied volatility and abnormal volume but

no fixed effects) to -3.3 (after controlling for lagged implied volatility, abnormal volume, and

both asset and month fixed effects). This is rather impressive since the sample is about 50

times smaller than the panel of individual stocks. The economic magnitude of the effect is

even more striking, as one standard deviation increase in the gamma imbalance is associated

to a decrease in absolute return of the underlying index of more than 20 basis points (about

20% of a standard deviation)

Insert Table III
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Finally, since return volatility is known to be a highly persistent process, we re-run the

panel regressions adding alternative variables to control for persistent components in the

volatility process. Table IV summarizes the results. We find that in all these alternative

specifications the coefficient on ΓIB continues to be highly significant and roughly of the

same (negative) magnitude.

B. Heterogeneity in Illiquidity

Empirical findings supporting H01 might suggest the existence of frictions in the deriva-

tive and underlying asset market. A potential channel for such a friction relies on option

dealers generating price impact when rebalancing their delta-hedging positions. A testable

implication of such a theory is that the effect of gamma imbalance on stock returns is more

pronounced for less-liquid stocks, for which the price impact arising from option dealers

trades should be larger in magnitude. Hence, to study in further detail the nature of these

potential frictions, we investigate whether the effect of gamma imbalance is stronger in less

liquid assets and in less liquid time periods:

H02 : Is the impact of Gamma Imbalance stronger during time periods and for stocks that

are more illiquid?

To test the second hypothesis we compute the Amihud illiquidity ratio for each underlying

asset at the daily frequency, using a rolling window of two years ending one month before the

day of interest. We then compute the median value of each asset across the entire sample

period and use the resulting asset-level illiquidity measure to split our universe into two

equally-sized groups.

We run a difference-in-differences regression of absolute returns on IΓ×IL, defined as the

interaction of the dummy indicating the group of the most illiquid asset IL and the dummy

indicating days in which the gamma imbalance ΓIB on the asset is negative IΓ.
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Table V summarizes the results and unveils a positive and significant coefficient on the

interaction term across all specifications. These results imply that the increase in absolute

returns during negative gamma days is significantly larger for the most illiquid assets. This

finding supports our theory on the channel supporting the empirical relationship between

gamma imbalance and stock return dynamics, that is, intraday momentum and reversal are

induced by the price impact of option dealers rebalancing their delta-hedging positions.

Insert Table V

More generally, this result can be interpreted as evidence of the importance of economic

frictions for short-term asset price dynamics. It relates to a growing literature that argues the

existence of a link between asset’s market liquidity and market fragility. Brunnermeir and

Pedersen (2009) argue that market liquidity and funding liquidity are mutually reinforcing,

leading to excess volatility and liquidity spirals. Our results suggest that this may occur

even in the absence of (in addition to) margin constraints through the interaction of market

illiquidity and the risk-limiting behavior of risk-averse market makers.10

C. Intraday Autocorrelation: The Role of Gamma Imbalance for Momentum and Mean-

Reversion.

An additional implication of the channel underlying hypothesis H01 directly relates to the

existence of intraday market momentum or mean-reversion depending on the gamma imbal-

ance. Indeed, dealers delta-hedging strategies require selling more of the underlying asset

following an increase in the underlying price if their Gamma Imbalance is positive. The

opposite effect occurs when the Gamma Imbalance is negative. Thus, dealers order-flow

should act as a contrarian force when the Gamma Imbalance is positive giving rise to intra-

day mean-reversion, namely negative intraday autocorrelation. The opposite effect should

10See also Adrian, Moench, and Shin (2014), Gromb and Vayanos (2002), Garleanu and Pedersen (2001), Adrian,
Etula, and Muir (2014), Adrian and Shin (2010), Adrian and Boyarchenko (2015), Adrian, Colla, and Shin (2012).
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emerge when the Gamma Imbalance is negative when one should expect intra-day momen-

tum, i.e. positive intraday autocorrelation.

H03 : Equity serial autocorrelation is positive (negative) when dealers are short (long)

gamma.

To test this hypothesis, we use data from the TAQ database to compute the autocor-

relation of returns for the equity stocks in our universe, at different frequencies. For each

day-asset pair (t, j) we estimate the sample autocorrelation coefficient ρhj,t of h-minute non-

overlapping returns with h = 5, 10, 20, 30, and 60. Then, we run the following panel

regressions, for each frequency h

ρhj,t = αh + βh0 ΓIBj,t−1 + βh1Et−1[ρhj,t] + FEj,t + εj,t, (6)

where Et−1[ρhj,t] is the rolling-average autocorrelation coefficient of h-minute returns of stock

j, estimated over a 2-year window ending one month before day t. We test the null hypothesis

that βh0 < 0 at the intraday level. Results are reported in Table VI and show that the

slope coefficients on ΓIBj,t−1 are indeed negative and significant for almost all the frequencies,

supporting the null hypothesis H03. It is interesting to observe that the magnitude and

significance of the coefficients are increasing with the frequency and they peak at h = 30.

This is consistent with dealers adjusting their delta-hedged portfolios at an average frequency

of about 30 minutes. The economic magnitude of the result, however, is limited. A unitary

standard deviation increase in the gamma imbalance proxy is associated to a decrease in

autocorrelation of about 1% of a standard deviation.

[Insert Table VI]
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IV. Market Fragility and Flash Crashes

A growing literature studies market events that are characterized by a very rapid, deep, and

transitory fall in security prices. These events are often referred as “flash crashes” and have

been conjectured to originate from the interaction of automated high-frequency trading,

spoofing and price manipulation, the fragility of derivative markets, and other automatic

hedging strategies.

The literature on flash crashes gained particular vigour in the aftermath of the famous

May 6, 2010 U.S. market crash that saw about a trillion dollar of market capitalization being

wiped out in 36 minutes. The specific dynamics of how the crash occurred strike a familiar

note. When U.S. stock markets opened, the Dow started trending down due to worries about

the debt crisis in Greece. By 2:42 p.m. the Dow was down more than 300 points. After

2:42 p.m., the drop accelerated and the index fell an additional 600 points in 5 minutes

accumulating a total loss of nearly 1,000 points by 2:47 p.m. Although the sharp drop was

later reversed, the economic magnitude of the intraday volatility was remarkable given the

absence of significant economic news.

The May 6 2010 Flash Crash was not an isolated event. Gao and Mizrach (2016) argue

that flash crashes have occurred in almost every year in the period 1993-2011 that they study.

The most notorious of these events have directly involved the index. However, individual

stocks have also been exposed to similar events. Our hypothesis is that flash crashes are more

likely to occur when markets are fragile. In our context, an important factor contributing to

market fragility is the aggregate gamma imbalance.

To investigate whether gamma imbalance is potentially related to these events, first we

construct a temporary proxy of intraday volatility that is particularly sensitive to intraday

jumps. We use as dependent variable the daily spread, i.e. the difference between the

intraday High and Low relative to the mid-point price (e.g., Spread = H−L
H+L

). Then, for each
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day-asset pair (t, j) we run a regression of the Spread(t) onto the lagged level of gamma

imbalance ΓIBj,t−1 after controlling for fixed effects and lagged implied volatility:

Spread(j, t) = α + β0ΓIBj,t−1 + β1IV OLj,t−1 + FEj,t + ej,t. (7)

We run four specifications. Specification (1) excludes fixed effects, while specifications

(2) and (3) include controls for asset and month fixed effects. Specification (4) include both

controls. The estimates are summarized in Table VII. Two main results emerge. First, the

slope coefficient of a regression of Spread on lagged ΓIB is negative, suggesting that large

negative values of the gamma imbalance correlates with increases in intraday price jumps.

In all specification, the t-statistics are based on robust standard errors double-clustered at

the asset and month level and indicate that lagged ΓIB is statistically significant at the 1%

confidence level.

Second, the economic significance of the effect on the intraday Spread is important.

Indeed, in specification (4), which includes both asset and month fixed effects, the slope

coefficient for ΓIBj,t−1 is −12.3. This estimate implies that a one standard deviation decrease

in gamma imbalance is associated to an increase of roughly 15 basis points in the daily

spread. This is consistent with the economic hypothesis that periods of large negative gamma

imbalances are more fragile. Jumps and flash crashes are more frequent, and volatility is

higher.

Insert Table VII

A. Flash Crash Identification and Tests

The previous results use the whole data and the dependent variable include both large and

small events. In the following, we directly identify the subset of flash crashes in the data set to

study the link with the gamma imbalance. Then, we test the hypothesis that the probability
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of a stock experiencing a flash crash increases when the stock is subject to negative gamma

imbalance and decreases when its gamma imbalance is positive. Moreover, we investigate

whether, conditional on a flash crash happening, the price drop is more pronounced for stocks

exposed to negative gamma imbalances. These tests use both time-series and cross-sectional

information.

We use the “drift burst” detection methodology proposed by Christensen, Oomen, and

Renò (2018). This approach aims to identify “sudden and extreme movement in price which

occurs in relatively short time and then reverts to the initial level” as opposed to simply a

period of extreme volatility or a price jump. To illustrate their methodology, let us assume

that pt be the log-price price of the asset follows

dpt = µtdt+ σtdWt. (8)

Moreover, assuming that the price process is observable over [0, T ] at some time points

0 = t0 < t1 < ... < tn = T , returns are defined as

rti = pti − pti−1
, i = 1, ...., n.

Christensen, Oomen, and Renò (2018) propose to compute of the current velocity of the

market as defined by the test statistics

T nt =

√
hn
K2

µ̂nt
σ̂nt
,

where µ̂nt and σ̂nt are non-parametric estimators of the drift and diffusion of dpt. These can

be obtained using a kernel-weighted average K(x) of observations in the vicinity of t. The

bandwidth hn determines how fast observations are downweighted when they occur farther
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away from t:

µ̂nt =
1

hn

n∑
i=1

K

(
ti−1 − t
hn

)
rti , and σ̂nt =

√√√√ 1

hn

n∑
i=1

K

(
ti−1 − t
hn

)
r2
ti

with K2 ≡
∫
K(x)2dx.

If the price is moving fast relative to the volatility T nt is large. Christensen, Oomen,

and Renò (2018) show that in absence of a “drift burst” and under the assumption that dpt

follows the process (8), the test statistics T nt converges asymptotically to:

T nt →

 N(0, 1) If no drift burst

∞ If drift burst
,

As n→∞, hn → 0, and nhn →∞.

We employ a 30-minute bandwidth for the mean and a 60-minute bandwidth for the

volatility. This means that, by construction, we are interested in flash crashes which develop

on a time span of roughly 30 minutes. We also set K(x) = exp(−|x|)1x≤0.

We compute the above test statistic every second during the course of a trading session.

A significant negative value of T nt reveals a large and fast drop in price. We define the

“beginning” of the crash t0 the first time T nt0 crosses −3 – corresponding to the 1000th

quantile of the distribution – from above. The “peak” of the crash, on the other hand,

is defined as time t1 such that T nt1 reaches its minimum level. Accordingly, τ = t1 − t0 is

defined as the duration of the crash. However, an additional condition needs to be satisfied

in order for an event to be defined as a “Flash Crash”, namely that the stock experiences a

cumulative price drop of at least 1% during the 30-minutes interval.

We apply the described methodology to a subset of 77 stocks from our original sample,

using minute-by-minute price changes constructed from the Trades and Quotes database

covering the period from 1997 to 2015. The procedure finds 672 distinct flash-crash events,
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which are mostly evenly distributed across time and affect 73 stocks (about 1 crash every two

years for each stock, on average). These events represent significant price drops materializing

in a relatively short time. The average drawdown during the 30-minute window is −3.71%

(median −1.17%).

To test our first hypothesis, we construct a dummy variable indicating the presence of

a flash-crash in a given stock-day and we run regressions on the panel of daily gamma

imbalance estimates for the 73 stocks that experienced a flash crash:

ICrash(j, t) = α + β0ΓIBj,t−1 + FEj,t + εj,t,

where ICrash(j, t) is the dummy indicating a flash crash for stock j on day t and ΓIBj,t−1

is the level of gamma imbalance for that stock measured at the end of the previous day.

The results are summarized in Table VIII and show that the estimate for β0 is significantly

negative with a t-stat equal to −5.99. The relationship between gamma imbalance and flash

crashes is highly significant not only from a statistical perspective, but also economically.

Indeed, these estimates imply that a negative shift of one standard deviation in the stock

gamma imbalance doubles the probability of flash crash for that stock. Furthermore, the

probability of a flash crash increases by 25% when the gamma imbalance is negative. It

is important to stress that correlation does not imply causation and we certainly do not

interpret these results as evidence that delta-hedging of option dealers can cause flash crashes;

rather, gamma imbalance can work as a friction that may exacerbate price movements due

to fundamental news or liquidity shocks.

Next, to directly assess the extent to which gamma imbalance is related to the severity

of flash crashes. Conditional on a “flash crash” identified by the previous methodology,

we create two subsamples depending on the sign of the gamma imbalance before the event.

Then, we compute the two event-time average price pattern in the two sub-samples. Figure 8

summarizes the results. We find the flash crashes are more severe when the stock is exposed
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to negative gamma imbalance. More precisely, the magnitude of the average drawdown is

−5% when the gamma imbalance is negative, compared to −3% when the gamma imbalance

is positive. The difference is statistically significant at the 1% level. From an economic

standpoint, given that the stocks we are considering are large caps, this implies an average

loss of value of about one billion US dollars, for each flash crash.

Insert Table VII and Figure 8

B. The May 6th 2010 Flash-Crash

The May 6, 2010 Flash Crash generated significant interest both among regulators and

academics. The reasons are simple. In a matter of only 36 minutes the U.S. stock first

erased more than a trillion dollar of market capitalization. From a theoretical perspective

this is hard to be reconciled with a frictionless market given that, by the time the market

closed, the Dow index had already recovered from the initial losses almost completely and

that no significant economic news marked the day. Indeed, both the press and regulators

immediately announced their intention to investigate the event and conjectured that the

cause of the event was the existence of market manipulation.

As we revisit in greater details the unfolding of these events, one fact appears particularly

striking to us as it rhymes with the narrative played by the role of gamma imbalance as

discussed earlier. Because of worries about the debt crisis in Greece, at the opening of the

stock market and well before the occurrence of the ”flash crash”, the Dow had already started

falling. Indeed, by 2:32pm the Dow had already dropped about 2%. After 2:32pm, the equity

market entered the “flash crash” climax and accelerated its fall by dropping an additional 600

points in just 5 minutes. By 2:47pm the index had accumulated a loss of nearly 1,000 points.

Interestingly, this price fluctuation occurred in the absence of any significant economic news

and by 3:00pm the Dow had recovered most of its losses.

The Commodity Futures Trading Commission (CFTC) conducted an investigation and
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eventually the U.S. Department of Justice pressed charges on “22 criminal counts, including

fraud and market manipulation” against Navinder Singh Sarao, a British financial trader.

Later, he was found guilty of using spoofing algorithms: just prior to the flash crash, he placed

orders for about $200 million worth of bets” on the E-mini S&P 500 stock index futures

contracts that the market would fall, which were eventually replaced or modified 19,000

times before they were canceled. The CFTC argued that Sarao actions were “significantly

responsible for the order imbalances in the derivatives market which affected stock markets

and exacerbated the flash crash.”11 The CFTC argument is directly related to the core

question of our paper. Indeed, while price manipulation is difficult in normal markets,

spoofing can become effective in the presence of large order imbalances in the derivative

market.

According to our theory and the results from the previous section, gamma imbalance

could have played a role during the flash crash. To shed light on this issue, we investigate

the level of market-wide Gamma Imbalance during the days preceding the flash crash, defined

as the daily cross-sectional average of stock-level gamma imbalance. The first Panel of Figure

9 shows that the market gamma imbalance drops and moves into negative territory in the

days leading to the crash, and it is recorded at −1.7 standard deviation units during May

6. This corresponds to a negative market-wide dollar imbalance of roughly −431 million

U.S. dollars. The second Panel of Figure 9 shows that this value is statistically significantly

different from the average and sits in the left tail of the distribution. The drop in gamma

imbalance occurred reasonably quickly during the week leading to the flash crash. Indeed,

one week before the flash crash the total gamma imbalance was positive at about 383 millions.

Even though we cannot claim a causal relationship between the negative level of gamma

imbalance and the flash crash, this evidence suggests that the delta-hedging activity of option

dealers can contribute to market fragility and increasing the magnitude of price drops. Given

11See, Brush, Silla, Tom Schoenberg, and Suzi Ring (April 22, 2015), “How a Mystery Trader with an Algorithm
May Have Caused the Flash Crash”, Bloomberg News.
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the fast price drop and the negative gamma exposure, dealers likely sold a significant amount

of index shares to keep their positions hedged. This could have consumed additional liquidity

and increased the downward pressure on the price, thus enhancing the drop.

Insert Figure 9

C. Introduction of Circuit Breakers

The events that followed the 2010 flash crash provide an interesting natural counterfactual

experiment. Indeed, following the Flash Crash on May 6 2010, the SEC announced that new

trading curbs – also known as circuit breakers – would be tested starting from June of that

year. This new rule dictates a complete trading suspension for five minutes on any stock

whose price moves more than 10% within a 5-minute window. After a short test period, in

which the rule was imposed on a subset of pilot stocks, by the end of June circuit breakers

were installed for all S&P 500 stocks.

These new measures have been controversial as many claimed that they interfere with

the price discovery process. Subrahmanyam (1994, 1995) argues that circuit breakers 12 may

have the perverse effect of increasing price variability by forcing agents to advance their

trades before trading is halted, a so-called “magnet effect.” Moreover, he shows that in a

multiple markets setting if the circuit breaker is triggered in the more liquid market, there

is the risk of a negative externality in the less liquid market which would experiencre higher

volatility and lower liquidity. Subrahmanyam (1997)13 also suggests that informed traders

may reduce their trading in anticipation of a trading halt resulting in higher trading costs for

small investors. On the other hand, Greenwald and Stein (1991), argue that circuit breakers

can be useful in reducing the uncertainty about execution price. When current prices fail

12Subrahmanyam, Avanidhar (1995) On rules versus discretion in procedures to halt trade. Journal of Economics
and Business 47(1), 1–16.

Subrahmanyam, Avanidhar (1994) Circuit breakers and market volatility: A theoretical perspective. Journal of
Finance 49(1), 237–254.

13Subrahmanyam, Avanidhar (1997) The ex ante effects of trade halting rules on informed trading strategies and
market liquidity. Review of Financial Economics 6(1), 1–14.

30



to accurately represent information, a circuit breaker may encourage buyers and sellers to

submit orders. Indeed, when a very large volume shock hits a market, transactional risk

rises sharply.

Circuit breaker rules were already in effect at the time of the May 6 2010 Flash Crash

but the rules applied market-wide and they did not get triggered.14

Given the debate on the role of circuit breakers to help avoiding flash crashes, we inves-

tigate whether the occurrence and severity of flash crashes change after the introduction of

the new circuit breaker rules in June 2010. We partition our sample in two non-overlapping

periods, before and after June 2010. Then, we identify all flash crashes that occurred before

and after June 2010. Consistent with Greenwald and Stein (1991) we find that the frequency

of fire-sales events decreases significantly in the most recent period, from an average of more

that 45 to roughly 4.5 per year. The difference is both statistically and economically sig-

nificant. Moreover, the average drawdown displays a four-fold decline from −4% to −1%

after the introduction of trading curbs. Interestingly, as shown in Figure 10, the empirical

relationship between the ex-ante gamma imbalances and the magnitude of the crashes is

significantly reduced after June 2010.

V. Information-Based Explanations

An important literature studies the role played by asymmetric information and adverse

selection in the short-term dynamics of asset prices. Several information-based models (e.g.,

Glosten and Milgrom (1985), Easley, O’Hara, and Srinivas (1998)) show that when market

makers face the risk of privately informed traders, stock returns may display predictability

and serial autocorrelation.

In this section, we compare the relative importance of the gamma-imbalance factor versus

adverse selection in driving return volatility and autocorrelations.

14The first circuit breaker was implemented in October 1988. The original circuit breakers were triggered when
the DJIA fell by 250 points and trading would be halt for one hour.
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A. Order-Flow Toxicity

Easley, Lopez de Prado, and O’Hara (2012) propose a new proxy of adverse selection that is

designed to capture the probability that market dealers face privately informed traders. The

idea is that risk-averse market makers withdraw from the market in the presence of informed

flow and, as a consequence, liquidity dries out when it is needed the most. They call this

measure order-flow toxicity (VPIN) and is based on volume, as opposed to time, increments.

They find that it helps to explain market volatility and can be used as a predictor of flash

crashes and sharp price movements.

Under this view, the baseline source of the price movement is fundamental information,

but short-term volatility is amplified by a temporary lack of liquidity. This resonates with

our theory, in which initial price movements, motivated by fundamental news, may induce

(conditional on negative gamma imbalance) a delta-hedging portfolio rebalancing, thus lead-

ing to short-momentum and excess volatility.

To test the relationship and the relative importance of these two channels, we construct

the VPIN measure for all assets in our universe and re-run the panel regressions presented

in Section A and Section C after controlling for the order-flow toxicity.

The VPIN is constructed following the definition of O’Hara et al (2012) and using intraday

data from the TAQ dataset. For asset j on day t we start from the time-series of minute-by-

minute prices pt and construct the standardized first-difference ∆pt = (pt − pt−1)/σ where

σ is the sample standard deviation of price changes estimated over the previous 12 months.

We then apply the standard normal CDF to obtain a proxy for the fraction of buy-initiated

orders bt = Z(∆pt). Next, we average bt at the trade-time frequency τ (which increases by

one unit every 10 transactions) to obtain Bτ and its complementary Sτ = 1 − Bτ . Finally,

we compute the average order flow toxicity (VPIN) for each trading day as volume-weighted

average of the trade-time (day) imbalances | Bτ − Sτ |.

Results are summarized in Table IX and X. Three key results emerge. First, even after
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controlling for VPIN the slope coefficients on the gamma imbalance factor ΓIB are signifi-

cantly negative in all specifications. This suggests that even in the presence of a potential

information-based channel, gamma imbalance is an important separate driver of short term

volatility.

Table IX and X

Second, more negative levels of ΓIB correlate with greater stock market volatility. The

slope coefficient of ΓIB is robust to controlling for asset and month fixed effects, as separately

reported in columns (2) and (4). We also find that the slope coefficient is more negative when

using as dependent variable the intraday difference between the maximum and minimum

price (e.g. “Spread”) than when using the absolute open-to-close return (e.g. “|Return|”).

In the first case the slope coefficient is −14.5 with a t-statistics of −4.5; in the second

case the slope coefficient is −8.9 with a t-statistics of −4.9. Since flash crashes are very

high frequency events and often mean-reverts intradaily, the “Spread” variable is a better

proxy to capture these events. Indeed, our results suggests that large and negative gamma

imbalances correlated with these extreme intraday volatility events.

Finally, when we analyze the effect on the serial autocorrelation of asset returns for

different time horizons, ranging from 5 to 60 minutes, we find that the slope coefficient on

ΓIB is negative, consistent with the null hypothesis. Table X summarizes the results. After

controlling for V PIN , the slope coefficient of ΓIB is no longer significant at the 5 minutes

horizon; however, it continues to be strongly significant at horizons above 10 minutes. The

stronger economic and statistical significance occur when the autocorrelation coefficient is

obtained from data sampled at 30 minutes intervals. In this case, the slope coefficient is

−0.33 with a t-statistics equal to −3.75. This result is consistent with those documented in

Table VI.

It should be noticed that while the coefficient on the VPIN measure is highly significant

its sign is negative in all specifications. At first, this may be surprising since it indicates that,
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after controlling for ΓIB, larger order flow toxicity VPIN is associated to a lower absolute

daily returns and daily spread. However, VPIN may be a more effective measure to explain

excess volatility and flash crash events occurring at much higher frequencies.

B. Fundamental News

Another potential alternative information-based explanation of short-term dynamics may

rely on the idea that participants in the options market may have superior information on

the fundamentals of the underlying assets. Black (1975) argues that informed investors

might choose to trade derivatives because of the higher leverage offered by such instruments.

Easley, O’Hara, and Srinivas (1998) formally study a model that allows for endogenous

participation of informed traders in the options market in equilibrium. Pan and Poteshman

(2006) find supporting evidence for this hypothesis and show a link between trading in option

markets and predictability in stock returns. One may argue that our time-series and cross-

sectional pattern could be explained by assuming that then investors take large positions on

put options when they expect large negative movements in the stock price.

We already partially address this concern by controlling for ex-ante implied volatility.

However, to directly address this alternative explanation, we collect fundamental news from

RavenPack News Analytics. In this dataset a sentiment score is assigned to each news article,

using both RavenPack proprietary techniques and open source natural language processing

(NLP) algorithms, as described in Manning et al (2014). We use the sentiment score to

classify strong positive news and strong negative news. Finally, we re-run all our regressions

by excluding from the sample those day-asset observation (t, j) in which at least one strongly

negative or strongly positive news was released on asset j in a window of two weeks around

day t. This filter reduces our sample by about 20% of the data.

Table XI summarizes the results and shows that, even after filtering out the most signif-

icant fundamental news, the slope coefficient on the gamma imbalance factor ΓIB continues
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to have the same magnitude and level of statistical significance.

Table XI

C. Leveraged ETF and ETN

A recent literature suggests that a significant increase in adoption of leveraged ETFs has

contributed to an increase in market volatility. Since leveraged ETFs provide a daily constant

multiple of the underlying index, following any market move the ETF needs to daily rebalance

its positions to maintain a constant leverage ratio. For example, a 4× fund is designed to

offer four times the daily index return, while a −4× fund is designed to generate four times

the opposite return of the index. These funds achieve their target exposure to the index

with a combination of swaps and futures. While leveraged ETFs are synthetic instruments,

their swap counterparties have to rebalance to maintain the required exposure, regardless of

market conditions. If L is the leverage multiple, the exposure E∗t needs to be L×NAVt. Thus,

if the return on the index at time t+ 1 is rt+1, the E∗t+1 is equal to L[NAVt× (1 + rt+1×L)].

This implies that the required rebalancing at time t+ 1 is

E∗t+1 − E∗t = L2(rt+1 ×NAVt)

When the market increases (e.g. rt+1 > 0), both levered long and short funds need to

increase their notional principal, thus adding to any existing buying pressure that contributed

to the initial price increase. When the market decreases (e.g. rt+1 < 0), both long and

short funds are net sellers in the market. This implies that by the end of the trading day,

the demand and supply of leveraged ETFs create additional demand or selling pressure in

the same direction as the market move. This argument predicts that a greater adoption

of leveraged ETFs and ETNs should correlate with greater price momentum in the hours

before market close (Cheng and Madhavan (2009)).
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Ben-David, Franzoni, and Moussawi (2018) find evidence that stocks owned by ETFs

exhibit significantly higher overall daily volatility. They estimate that an increase of one

standard deviation in ETF ownership is associated with an increase of 16% in daily stock

volatility. They argue, similarly to us, about the existence of feedback effects due to the

hedging activity of arbitrageurs active in the ETF market. Indeed, they find that the effects

are stronger for stocks with lower bid-ask spread and lending fees. However, they do not

study intraday patterns. Shum, Hejazi, Haryanto, and Rodier (2015) document the existence

of a link between the rebalancing activity of leveraged ETFs and market volatility before

market closure. Although related to our findings, these papers do not provide predictions

about the coexistence of both intraday momentum and reversal. While the aggregate value

of leveraged ETFs have increased almost monotonically in the last ten years, the frequency

of positive price momentum has not monotonically increased over time. Instead, we observe

both intraday price momentum and reversals. We test whether unusual intraday high (low)

autocorrelation or/and volatility correlates with unusually high (low) aggregate notional of

leveraged ETF and comfortably reject this hypothesis.

Finally, using cross-sectional data on individual stocks we document significant cross-

sectional dispersion in price momentum and reversal which cannot be explained by the

rebalancing activity of leveraged ETFs. At the same time, this cross-sectional dispersion

correlates with cross-sectional differences in gamma imbalance.

VI. Conclusion

This paper provides evidence supporting the view that trading in derivatives may affect the

price process of the underlying assets, contributing to intraday stock volatility and auto-

correlation by increasing (dampening) the initial effect of news on market fundamentals.

Indeed, we unveil a strong negative relationship between the gamma imbalance of option

dealers and measures of intraday volatility. This phenomenon is relevant both for market
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participants and regulatory concerned about market fragility. This effect might become even

more important in the future given the increasing incentived for institutions to use derivative

products with non-neutral gamma to reduce their required regulatory risk capital.
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VII. Tables

Table I. Option Data - Summary Statistics
This table presents summary statistics of the main variables employed in the analysis. We consider options
written on a universe of 280 assets over the period from January 1996 to December 2017. The gamma
imbalance proxy ΓIB is defined in Section II.B and expressed in percentage units. The open interest and the
trading volume of the underlying assets are expressed in million dollars. Absolute values of returns and daily
spreads are in basis points.

All Options Count Mean Std 10% 25% 50% 75% 90%

Dealers Gamma Imbalance 1,036,850 0.157 0.469 -0.525 -0.200 0.214 0.545 0.741

Options Open Interest 1,036,850 3.733 35.720 0.017 0.113 0.484 1.479 3.665

Options Implied Volatility 1,036,850 0.500 0.241 0.274 0.339 0.441 0.591 0.809

Underlying Volume 1,036,850 26.507 260.876 0.003 0.028 0.199 0.906 3.230

Underlying Absolute Return 1,036,850 170.665 212.345 17.584 46.825 109.091 218.567 382.961

Underlying Daily Spread 1,036,850 295.268 253.720 98.855 146.149 227.685 360.144 555.630

Index Options Count Mean Std 10% 25% 50% 75% 90%

Dealers Gamma Imbalance 21,682 0.105 0.421 -0.528 -0.200 0.175 0.447 0.613

Options Open Interest 21,682 101.888 219.035 0.975 2.188 11.058 72.061 486.642

Options Implied Volatility 21,682 0.305 0.097 0.208 0.238 0.283 0.346 0.438

Underlying Volume 21,682 1145.816 1395.593 15.741 57.065 459.680 1861.287 3221.273

Underlying Absolute Return 21,682 95.057 99.731 10.421 27.405 64.040 128.216 216.805

Underlying Daily Spread 21,682 153.221 110.891 54.949 80.660 122.925 189.118 283.163

Equity Options Count Mean Std 10% 25% 50% 75% 90%

Dealers Gamma Imbalance 1,015,168 0.158 0.470 -0.525 -0.200 0.215 0.547 0.743

Options Open Interest 1,015,168 1.637 8.267 0.016 0.108 0.463 1.394 3.302

Options Implied Volatility 1,015,168 0.505 0.241 0.278 0.343 0.445 0.595 0.814

Underlying Volume 1,015,168 2.601 24.152 0.003 0.027 0.187 0.821 2.587

Underlying Absolute Return 1,015,168 172.280 213.813 17.873 47.465 110.345 220.713 386.172

Underlying Daily Spread 1,015,168 298.302 255.041 100.908 148.415 230.403 363.636 560.012
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Table II. Gamma Imbalance and Volatility
The dependent variable of this panel regression is the absolute value of day-t return of asset j, expressed in
basis points. The main explanatory variable is ΓIB , i.e. the gamma imbalance of dealers on put and call
options written on j as of the close of day t − 1, expressed as a fraction of the average daily volume of the
underlying. We control for the option-implied volatility as of t− 1 and we saturate the model with asset and
month fixed effects. T-stats are reported in parentheses, based on robust standard errors double-clustered at
the asset and month level. Asterisks denote significance levels (***= 1%, **= 5%, *= 10%).

(1) (2) (3) (4)

Dependent Variable |Return| |Return| |Return| |Return|

Gamma Imbalance (lag) -11.902*** -12.212*** -6.276*** -7.777***

(-4.542) (-5.505) (-3.906) (-5.325)

Implied Volatility (lag) 391.172*** 430.140*** 360.607*** 331.316***

(18.849) (12.784) (24.034) (19.255)

Constant -22.493***

(-2.870)

Observations 1,018,199 1,018,199 1,018,199 1,018,199

R-squared 0.171 0.189 0.220 0.237

Asset Fixed Effects - Yes - Yes

Month Fixed Effects - - Yes Yes

Ses Clustered By Asset-Month Asset-Month Asset-Month Asset-Month
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Table III. Index Options
These specifications are the same as the ones presented in Table II, but we restrict to to options on market
indices. The universe includes S&P 500, Dow Jones, Nasdaq 100 and Russell 2000. We control for the
option-implied volatility as of t − 1 and we saturate the model with asset and month fixed effects. T-stats
are reported in parentheses, based on robust standard errors double-clustered at the asset and month level.
Asterisks denote significance levels (***= 1%, **= 5%, *= 10%).

(1) (2) (3) (4)

Dependent Variable |Return| |Return| |Return| |Return|

Gamma Imbalance (lag) -14.79*** -14.78** -6.62** -5.49**

(-4.42) (-3.75) (-3.64) (-3.33)

Implied Volatility (lag) 410.28*** 402.19*** 330.11*** 278.81***

(9.73) (7.57) (9.36) (6.88)

Abnormal Volume 155.77*** 155.98** 142.29** 147.11**

(6.23) (5.38) (5.49) (5.71)

Constant -138.77***

(-5.15)

Observations 21,434 21,434 21,434 21,434

R-squared 0.25 0.25 0.34 0.35

Asset Fixed Effects - Yes - Yes

Month Fixed Effects - - Yes Yes

Ses Clustered By Asset-Month Asset-Month Asset-Month Asset-Month
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Table IV. Control for Past Volatility
In this specification we add controls for past volatility, to account for the fact that volatility is a highly
persistence process. We include lagged values of the absolute value of returns by 1, 2 and 3 business days.
We also control for the option-implied volatility as of t− 1 and we saturate the model with asset and month
fixed effects. T-stats are reported in parentheses, based on robust standard errors double-clustered at the
asset and month level. Asterisks denote significance levels (***= 1%, **= 5%, *= 10%).

(1) (2) (3) (4)

Dependent Variable |Return| |Return| |Return| |Return|

Gamma Imbalance (lag) -8.393*** -9.090*** -5.185*** -6.620***

(-5.253) (-6.387) (-4.359) (-5.879)

Implied Volatility (lag) 247.954*** 284.794*** 264.384*** 254.037***

(20.831) (15.215) (23.614) (20.101)

|Ret| (1 day lag) 0.140*** 0.129*** 0.107*** 0.093***

(16.208) (15.015) (11.525) (10.372)

|Ret| (2 days lag) 0.122*** 0.111*** 0.090*** 0.077***

(10.401) (9.439) (10.746) (9.682)

|Ret| (3 days lag) 0.096*** 0.085*** 0.065*** 0.051***

(18.548) (16.682) (11.124) (10.290)

Constant -13.037***

(-2.703)

Observations 1,018,199 1,018,199 1,018,199 1,018,199

R-squared 0.219 0.227 0.243 0.253

Asset Fixed Effects - Yes - Yes

Month Fixed Effects - - Yes Yes

Ses Clustered By Asset-Month Asset-Month Asset-Month Asset-Month
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Table V. Interaction with Illiquidity
In these specifications we further explore the heterogeneity of our baseline results conditional on the level of
liquidity of the underlying assets, proxied by the Amihud illiquidity ratio. We interact the negative gamma
imbalance dummy with a dummy indicating the most illiquid underlying assets, i.e. those below the median
Amihud ratio. For each underlying asset, the illiquidity ratio at time t is computed on a two-year rolling
window ending one month before day t and then averaged across the sample period. We control for the
option-implied volatility as of t − 1 and we saturate the model with asset and month fixed effects. T-stats
are reported in parentheses, based on robust standard errors double-clustered at the asset and month level.
Asterisks denote significance levels (***= 1%, **= 5%, *= 10%).

(1) (2) (3) (4)

Dependent Variable |Return| |Return| |Return| |Return|

Negative Gamma Imbalance X Low Liquidity 18.663*** 15.191*** 25.549*** 22.547***

(3.026) (2.813) (4.408) (4.360)

Negative Gamma Imbalance 50.833*** 50.758*** 20.424*** 17.404***

(6.520) (6.658) (6.270) (6.467)

Low Liquidity 50.866*** 52.975***

(8.164) (8.488)

Constant 126.793***

(28.671)

Observations 1,036,850 1,036,850 1,036,850 1,036,850

R-squared 0.038 0.106 0.128 0.200

Asset Fixed Effects - Yes - Yes

Month Fixed Effects - - Yes Yes

Ses Clustered By Asset-Month Asset-Month Asset-Month Asset-Month
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Table VI. Intra-day Auto-Correlation
In these specifications the dependent variable is the auto-correlation coefficient of intra-day returns of the
underlying assets at various frequencies (5, 10, 20, 30 and 60 minutes), computed from the TAQ dataset. In
every specification we control for the ex-ante level of autocorrelation of each asset, computed as the rolling-
average of the autocorrelation coefficient at the relevant frequency. The rolling average for day t is computed
over a 2-year window ending one month before day t. T-stats are reported in parentheses, based on robust
standard errors double-clustered at the asset and month level. Asterisks denote significance levels (***= 1%,
**= 5%, *= 10%).

(1) (2) (3) (4) (5)

Dependent Variable 5 Min AC 10 Min AC 20 Min AC 30 Min AC 60 Min AC

Gamma Imbalance (lag) -0.217 -0.244* -0.253** -0.346*** -0.262**

(-1.583) (-1.845) (-2.402) (-3.735) (-2.265)

Average AC 0.759*** 0.727*** 0.604*** 0.517*** 0.265***

(36.528) (33.989) (25.715) (22.881) (6.494)

Observations 767,773 767,773 767,773 767,773 767,773

R-squared 0.089 0.053 0.017 0.010 0.001

Asset Fixed Effects Yes Yes Yes Yes Yes

Ses Clustered By Asset-Month Asset-Month Asset-Month Asset-Month Asset-Month
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Table VII. Gamma Imbalance and Daily Spread
The dependent variable of this panel regression is the daily spread, an alternative measure of intra-day
volatility defined as S = (H − L)/(H + L) × 2 × 1000, where H is the highest ask price for asset j in day
t and L is the lowest bid price. We control for the option-implied volatility as of t − 1 and we saturate the
model with asset and month fixed effects. T-stats are reported in parentheses, based on robust standard
errors double-clustered at the asset and month level. Asterisks denote significance levels (***= 1%, **= 5%,
*= 10%).

(1) (2) (3) (4)

Dependent Variable Spread Spread Spread Spread

Gamma Imbalance (lag) -15.977*** -19.463*** -7.068*** -12.318***

(-3.571) (-5.083) (-2.648) (-4.901)

Implied Volatility (lag) 675.704*** 717.048*** 632.951*** 560.068***

(20.499) (12.843) (27.830) (19.711)

Constant -38.528***

(-3.161)

Observations 1,018,199 1,018,199 1,018,199 1,018,199

R-squared 0.349 0.385 0.448 0.479

Asset Fixed Effects - Yes - Yes

Month Fixed Effects - - Yes Yes

Ses Clustered By Asset-Month Asset-Month Asset-Month Asset-Month
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Table VIII. Gamma Imbalance and Flash Crashes
The dependent variable of this panel regression is a dummy variable Flash Crash(j, t) which equals to one if
stock j experiences a flash crash during day t. Flash crashes are identified applying the algorithm proposed
by Christensen, Oomen, and Reno’ (2017) to minute-by-minute prices constructed from the TAQ database.
The table reports results from a regression of Flash Crash(j, t) onto the Gamma Imbalance of dealers on put
and call options written on stock j as of the close of day t − 1, expressed as a fraction of the average daily
volume of the underlying. In specifications (2), (3) and (4) we saturate the model with day and stock fixed
effects. T-stats are reported in parentheses, based on robust standard errors double-clustered at the asset
and date level. Asterisks denote significance levels (***= 1%, **= 5%, *= 10%).

(1) (2) (3) (4)

Dependent Variable Flash Crash Flash Crash Flash Crash Flash Crash

Gamma Imbalance (lag) -1.89*** -1.97*** -0.56** -0.59**

(-5.99) (-5.90) (-2.07) (-1.99)

Constant 0.17***

(11.58)

Observations 375,061 375,061 375,061 375,061

R-squared 0.00 0.00 0.02 0.02

Stock Fixed Effects - Yes - Yes

Date Fixed Effects - - Yes Yes

SEs Clustered By Stock-Date Stock-Date Stock-Date Stock-Date
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Table IX. Order-flow Toxicity
In these specifications we re-run our baseline specifications from Table II and Table VII controlling for
the average daily order-flow toxicity (VPIN). The VPIN measure is computed from TAQ data following the
definition in O’Hara et al (2012) and is then averaged at the daily frequency. We control for the option-implied
volatility as of t − 1 and we saturate the model with asset and month fixed effects. T-stats are reported in
parentheses, based on robust standard errors double-clustered at the asset and month level. Asterisks denote
significance levels (***= 1%, **= 5%, *= 10%).

(1) (2) (3) (4)

Dependent Variable |Return| |Return| Spread Spread

Gamma Imbalance (lag) -15.552*** -8.921*** -22.385*** -14.515***

(-4.839) (-4.920) (-3.993) (-4.505)

VPIN -236.111*** -270.289*** -232.866*** -261.920***

(-8.631) (-15.568) (-5.335) (-14.141)

Implied Volatility (lag) 413.306*** 338.728*** 716.880*** 576.037***

(17.585) (15.411) (18.923) (16.153)

Constant 74.766*** 54.044***

(6.739) (3.238)

Observations 764,771 764,770 764,771 764,770

R-squared 0.182 0.244 0.360 0.481

Asset Fixed Effects - Yes - Yes

Month Fixed Effects - Yes - Yes

Ses Clustered By Asset-Month Asset-Month Asset-Month Asset-Month
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Table X. Order-flow Toxicity (AC)
In these specifications we re-run the specifications from Table VI controlling for the average daily order-flow
toxicity (VPIN). The VPIN measure is computed from TAQ data following the definition in O’Hara et al
(2012) and it is then averaged at the daily frequency. T-stats are reported in parentheses, based on robust
standard errors double-clustered at the asset and month level. Asterisks denote significance levels (***= 1%,
**= 5%, *= 10%).

(1) (2) (3) (4) (5)

Dependent Variable 5 Min AC 10 Min AC 20 Min AC 30 Min AC 60 Min AC

Gamma Imbalance (lag) -0.190 -0.222* -0.240** -0.334*** -0.261**

(-1.467) (-1.777) (-2.383) (-3.748) (-2.281)

VPIN -11.850*** -9.524*** -6.354*** -6.358*** -0.229

(-6.212) (-5.273) (-4.365) (-4.318) (-0.172)

Average AC 0.759*** 0.727*** 0.595*** 0.510*** 0.258***

(36.546) (33.992) (26.195) (23.426) (6.755)

Observations 764,770 764,770 764,770 764,770 764,770

R-squared 0.090 0.053 0.016 0.010 0.001

Asset Fixed Effects Yes Yes Yes Yes Yes

Ses Clustered By Asset-Month Asset-Month Asset-Month Asset-Month Asset-Month

50



Table XI. Excluding Fundamental News
We run our baseline regression from Table II on a subsample where which excludes days where fundamental
news on the underlying assets are released. To proxy for fundamental news we use the RavenPack dataset,
covering news about American market listed companies from a number of media outlets and employing a
machine learning algorithm is used to assign each news a continuous score based on its direction (0 for very
bad news and 1 for very good news). Specification (1) uses the subset of the sample for which the RavenPack
data is available, i.e. options on equity stocks from January 2000 to December 2012. In specifications (2)
we exclude asset-day observations (i, t) for which RavenPack reports at least one negative (score ≤ 0.25) or
positive (score ≥ 0.75) news within a window of 5 trading days centered around day t. This filter excludes
roughly 20% of the sample. In specifications (3) and (4) we interact a dummy variable indicating news with
the lagged gamma imbalance. In all specifications we control for the option-implied volatility as of t − 1
and we saturate the model with asset and month fixed effects. T-stats are reported in parentheses, based
on robust standard errors double-clustered at the asset and month level. Asterisks denote significance levels
(***= 1%, **= 5%, *= 10%).

(1) (2) (3) (4)

Dependent Variable |Return| |Return| |Return| |Return|

Gamma Imbalance (lag) -10.579*** -10.637*** -18.503*** -10.547***

(-5.293) (-5.082) (-4.889) (-5.292)

Implied Volatility (lag) 373.866*** 373.920*** 439.669*** 373.887***

(13.406) (13.160) (14.856) (13.405)

News 31.547*** 26.849***

(7.702) (7.158)

Gamma Imbalance (lag) X News -3.573 -3.230

(-0.641) (-0.593)

Constant -37.725***

(-3.392)

Observations 596,289 475,404 596,289 596,289

R-squared 0.247 0.252 0.186 0.247

Asset Fixed Effects Yes Yes - Yes

Month Fixed Effects Yes Yes - Yes

Ses Clustered By Asset-Month Asset-Month Asset-Month Asset-Month

Subsample Full Sample Excluding News Full Sample Full Sample
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VIII. Figures
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Figure 4. Gamma Imbalance – Panel Variation
The figure displays cross-sectional and time-series variation of gamma imbalance ΓIB(t) for the assets in our
sample, defined as

ΓIB(t) =
(

Γ$
Call(t)− Γ$

Put(t)
)
/ADV(t)× 100. (9)

The blue line is the cross-sectional average for day t, while the light-blue area represents the interval between
the 10th and 90th percentiles in the day-level distributions of the variable, while the darker blue area represents
the interval between the 25th and 75th percentiles.
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Figure 5. Gamma Inflection Point
This Figure shows how the aggregate Gamma changes as a function of the level of the underlying asset. The
figure refers to November 15th (“Before”) and 16th 2018 (“After”) for options on the SP500. The “Inflection”
is defined as the level of the SP500 at which aggregate Gamma is zero.
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Figure 6. Distribution of t-statistics
The top panel in the figure shows the distribution of the t-statistics on the beta coefficient from the following
time-series regressions run on each of the 280 assets in our sample:

| Rt |= α+ β ΓIB
t−1 + εt,

where | Rt | is the absolute value of the asset return on day t and ΓIB
t−1 is our proxy for the degree of gamma

imbalance of dealers as-of the previous day closure, defined in Section B. T-statistics are computed using the
heteroskedasticity and autocorrelation consistent (HAC) standard errors from Newey and West (1986). The
bottom panel is a scatter plot that summarizes the relation between the implied t-statistics and the log open
interest of the options written on the corresponding security.
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Figure 7. Distribution of Autocorrelation Coefficients
The figure shows the distribution of intraday autocorrelation coefficients for equity returns sampled at the
5-minutes frequency, computed at the stock-hour level.
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Figure 8. Flash Crashes Drawdowns
The figure presents the event-time average price drop during flash crashes, for two distinct groups of events.
The first group (blue solid line) consists of events for which the gamma imbalance for the stock subject to the
flash crash was positive, as measured at the previous-day closure. The second group (red dashed line) consists
of events for which the gamma imbalance for the stock subject to the flash crash was negative, as measured
at the previous-day closure. Flash crashes are identified applying the algorithm proposed by Christensen,
Oomen, and Reno’ (2017) to minute-by-minute prices constructed from the TAQ database. Time t = 0
represents the minute on which the algorithm identifies that a flash crash is starting at t = −30.
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Figure 9. Gamma Imbalance during 2010 Flash Crash
The top panel of the figure shows the time-series evolution of market-wide gamma imbalance, that is the daily
cross-section average of stock-level gamma imbalances in standard deviation units, around the flash crash of
May 6, 2010. On that date, the total market-wide dollar imbalance was negative at roughly −431 million
US Dollars. The bottom panel presents the distribution of market-wide gamma imbalance, with the vertical
dashed line representing the value on May 6, 2010.
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Figure 10. Flash Crashes and Circuit Breakers
The figure presents the event-time average price drop during flash crashes before and after the introduction
of circuit reakers (June 2010), for two distinct groups of events. The first group (blue solid line) consists
of events for which the gamma imbalance for the stock subject to the flash crash was positive, as measured
at the previous-day closure. The second group (red dashed line) consists of events for which the gamma
imbalance for the stock subject to the flash crash was negative, as measured at the previous-day closure.
Flash crashes are identified applying the algorithm proposed by Christensen, Oomen, and Reno’ (2017) to
minute-by-minute prices constructed from the TAQ database. Time t = 0 represents the minute on which
the algorithm identifies that a flash crash is starting at t = −30.
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