Statically Aggregate Verifiable Random Functions and Application to E-Lottery

Item Type Journal paper
Abstract Cohen, Goldwasser, and Vaikuntanathan (TCC’15) introduced the concept of aggregate pseudo-random functions (PRFs), which allow efficiently computing the aggregate of PRF values over exponential-sized sets. In this paper, we explore the aggregation augmentation on verifiable random function (VRFs), introduced by Micali, Rabin and Vadhan (FOCS’99), as well as its application to e-lottery schemes. We introduce the notion of static aggregate verifiable random functions (Agg-VRFs), which perform aggregation for VRFs in a static setting. Our contributions can be summarized as follows: (1) we define static aggregate VRFs, which allow the efficient aggregation of VRF values and the corresponding proofs over super-polynomially large sets; (2) we present a static Agg-VRF construction over bit-fixing sets with respect to product aggregation based on the q-decisional Diffie–Hellman exponent assumption; (3) we test the performance of our static Agg-VRFs instantiation in comparison to a standard (non-aggregate) VRF in terms of costing time for the aggregation and verification processes, which shows that Agg-VRFs lower considerably the timing of verification of big sets; and (4) by employing Agg-VRFs, we propose an improved e-lottery scheme based on the framework of Chow et al.’s VRF-based e-lottery proposal (ICCSA’05). We evaluate the performance of Chow et al.’s e-lottery scheme and our improved scheme, and the latter shows a significant improvement in the efficiency of generating the winning number and the player verification.
Authors Liang, Bei; Banegas, Gustavo & Mitrokotsa, Aikaterini
Journal or Publication Title Cryptography
Language English
Subjects computer science
HSG Classification contribution to scientific community
Refereed Yes
Date 13 December 2020
Publisher MDPI
Volume 4
Number 4
Page Range 37
Number of Pages 20
Publisher DOI https://doi.org/10.3390/cryptography4040037
Official URL https://www.mdpi.com/2410-387X/4/4/37
Depositing User Prof. Dr. Katerina Mitrokotsa
Date Deposited 23 Dec 2020 19:12
Last Modified 20 Jul 2022 17:44
URI: https://www.alexandria.unisg.ch/publications/261812

Download

[img] Text
cryptography-04-00037-v2 (1).pdf - Published Version

Download (449kB)

Citation

Liang, Bei; Banegas, Gustavo & Mitrokotsa, Aikaterini (2020) Statically Aggregate Verifiable Random Functions and Application to E-Lottery. Cryptography, 4 (4). 37.

Statistics

https://www.alexandria.unisg.ch/id/eprint/261812
Edit item Edit item
Feedback?