Decentralised Functional Signatures.

Item Type Journal paper
Abstract With the rapid development of the Internet of Things (IoT) a lot of critical information is shared however without having guarantees about the origin and integrity of the information. Digital signatures can provide important integrity guarantees to prevent illegal users from getting access to private and sensitive data in various IoT applications. Functional signatures, introduced by Boyle, Goldwasser and Ivan (PKC 2014) as signatures with a finegrained access control, allow an authority to generate signing keys corresponding to various functions such that a user with a signing key for a function f, can sign the image of the function f on a message mi.e., can sign f(m). Okamoto and Takashima (PKC 2013) firstly proposed the notion of a decentralized multi-authority functional signature (DMA-FS) scheme, which supports non-monotone access structures combined with inner-product relations. In this paper, we generalise the definition of DMA-FS proposed by Okamoto et al. (PKC13) for even more general policy functions, which support any polynomial-size boolean predicates other than the inner product relation and allow modifications of the original message. In our multi-authority functional signature (MAFS), there are multiple authorities and each one is able to certify a specific function and issue a corresponding functional signing key for each individual with some property, rendering them very useful in application settings such smart homes, smart cities, smart health care etc. We also provide a general transformation from a standard signature scheme to a MAFS scheme. Moreover, we present a way to build a function private MAFS from a FS without function privacy together with SNARKs.
Authors Liang, Bei & Mitrokotsa, Katerina
Journal or Publication Title Mobile Networks and Applications
Language English
Subjects computer science
HSG Classification contribution to scientific community
Refereed Yes
Date 18 October 2019
Publisher Springer
Volume 24
Page Range 934-946
Number of Pages 12
Publisher DOI
Official URL
Depositing User Prof. Dr. Katerina Mitrokotsa
Date Deposited 26 Jan 2021 19:22
Last Modified 20 Jul 2022 17:44


[img] Text

Download (842kB)


Liang, Bei & Mitrokotsa, Katerina (2019) Decentralised Functional Signatures. Mobile Networks and Applications, 24 934-946.

Edit item Edit item