Item Type |
Conference or Workshop Item
(Paper)
|
Abstract |
The burning of fossil fuels produces large amounts of carbon dioxide (CO2), a major Greenhouse Gas (GHG) and a main driver of Climate Change.
Quantifying GHG emissions is crucial for accurate predictions of climate effects and to enforce emission trading schemes. The reporting of such emissions is only required in some countries, resulting in insufficient global coverage.
In this work, we propose an end-to-end method to predict power generation rates for fossil fuel power plants from satellite images based on which we estimate GHG emission rates. We present a multitask deep learning approach able to simultaneously predict: (i) the pixel-area covered by plumes from a single satellite image of a power plant, (ii) the type of fired fuel, and (iii) the power generation rate. We then convert the predicted power generation rate into estimates for the rate at which CO2 is being emitted.
Experimental results show that our model approach allows us to estimate the power generation rate of a power plant to within 139 MW (MAE, for a mean sample power plant capacity of 1177 MW) from a single satellite image and CO2 emission rates to within 311 t/h.
This multitask learning approach improves the power generation estimation MAE by 39% compared to a baseline single-task network trained on the same dataset. |
Authors |
Hanna, Joëlle; Mommert, Michael; Scheibenreif, Linus Mathias & Borth, Damian |
Research Team |
AIML Lab |
Language |
English |
Subjects |
computer science |
HSG Classification |
contribution to scientific community |
Date |
14 December 2021 |
Publisher |
Tackling Climate Change with Machine Learning workshop at NeurIPS. |
Depositing User |
Joëlle Hanna
|
Date Deposited |
29 Jun 2022 13:49 |
Last Modified |
02 Feb 2023 01:27 |
URI: |
https://www.alexandria.unisg.ch/publications/266585 |