UN/CEFACT Service-Oriented Architecture
Enabling Both Semantic And Application Interoperability

Christoph Schroth, Till Janner, Gunther Stuhec
{christoph.schroth, till.janner, gunther.stuhec} @ {sap.com}
SAP Research CEC St. Gallen, Switzerland
SAP AG, Walldorf, Germany
Institute for Media and Communications Management, University of St. Gallen, Switzerland
Executive Summary

| SOA State-of-the-Art and Interoperability Challenges |
| UN/CEFACT e-Business stack |
| UN/CEFACT meets SOA |

Conclusion
Executive Summary

USOA

SOA Challenges
- Business standards dilemma
- No central and harmonized service brokerage
- Undefined business information semantics

UN/CEFACT e-Business stack
- Novel set of modular BOV-centric specifications
- CCTS and UMM as key components for data and process modeling
- Evolution and Collaboration

The USOA approach
- Semantic unambiguity
- Trading partners access, use and contribute to a common understanding of processes and data
- Public availability and dissemination as success factors
Executive Summary

SOA State-of-the-Art and Interoperability Challenges

UN/CEFACT e-Business stack

UN/CEFACT meets SOA

Conclusion
Key Paradigms of Service-Oriented Architectures (SOAs)*

Coordination

Reuse

Collaboration

Composition

Agility

Decentralized ownership/control

Information hiding

Loose coupling

UDDI

BPEL

WSDL

SOAP

XML

HTTP

© SAP AG 2006, UN/CEFACT Service-Oriented Architecture/ Schroth, Janner, Stuhec /
SOAs Face Severe Interoperability Challenges

Business standards dilemma

• Numerous standards for business processes and data

• Industry consortia, non-profit standards organizations and academia involved

• Different description granularity, scope and degree of dissemination

Lack of interoperability

• Different naming for services due to non-harmonized brokerage

• Business information semantics not unambiguously defined and machine-readable

• Tight coupling of technical representation and semantics prevents flexibility
Executive Summary

SOA State-of-the-Art and Interoperability Challenges

UN/CEFACT e-Business stack

UN/CEFACT meets SOA

Conclusion
Focus on the so-called Business Operational View (BOV): Business processes and data shall be modeled in a syntax- and technology-independent manner.

UN/CEFACT desires to close the semantic gap in B2B which has emerged from a non-controlled definition of business libraries and the contempt of rules for describing semantics in a common way.

UN/CEFACT’s stack consists of several, modular specifications (some still in development).
CCTS and UMM are the Key Components

CCTS

Component based message assembly

Component based Business Documents

Core Component Library

UMM

Component based process assembly (process stereotypes and tagged values)

Component (process stereotypes and tagged values)

Initiating Role: Buyer

Responding Role: Seller

© SAP AG 2006, UN/CEFACT Service-Oriented Architecture/ Schroth, Janner, Stuhec /
UN/CEFACT e-Business Stack Maturity

<table>
<thead>
<tr>
<th>Name</th>
<th>Explanation</th>
<th>Current version</th>
<th>Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC Library¹</td>
<td>Core Component Library- first set of generic and CCTS based business information; contains the aggregated core components</td>
<td>V 06A</td>
<td></td>
</tr>
<tr>
<td>CCTS²</td>
<td>Technical syntax-independent model, conventions, and methodology for semantically based modeling of reusable business information</td>
<td>V 2.01</td>
<td></td>
</tr>
<tr>
<td>CDM³</td>
<td>Methodology for assigning context to business information using a number of context drivers</td>
<td>V 1.0</td>
<td></td>
</tr>
<tr>
<td>BMA⁴</td>
<td>Methodology for assembling higher level business information for Electronic messages</td>
<td>V 1.0</td>
<td></td>
</tr>
<tr>
<td>SBDH⁵</td>
<td>Determines application based logical routing requirements of business information</td>
<td>V 1.3</td>
<td></td>
</tr>
<tr>
<td>CDT⁶</td>
<td>Smallest and generic piece of information in a business data model with relevant characteristics</td>
<td>V 2.2</td>
<td></td>
</tr>
<tr>
<td>UMM⁷</td>
<td>UN/CEFACT Modeling Methodology: Unified approach to capture business logic and model business processes as well as CCTS compliant data</td>
<td>V 1.0</td>
<td></td>
</tr>
<tr>
<td>BCSS⁸</td>
<td>Business Collaboration Schema Specification: UML based representation of CCTS based conventions and artifacts</td>
<td>V 1.0</td>
<td></td>
</tr>
<tr>
<td>NDR⁹</td>
<td>Rules for XML Schema and XML based instance representation of CCTS based conventions and artifacts</td>
<td>V 2.0</td>
<td></td>
</tr>
<tr>
<td>Schema for CDT¹⁰</td>
<td>Smallest and generic piece of business information represented in XML schema</td>
<td>V 2.0</td>
<td></td>
</tr>
<tr>
<td>Registry Spec.¹¹</td>
<td>Specification defining scope and functionality of registries and repositories</td>
<td>V 1.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed: Only minor changes expected</td>
<td></td>
</tr>
<tr>
<td>Ready for implementation version available</td>
<td></td>
</tr>
<tr>
<td>First, comprehensive draft available</td>
<td></td>
</tr>
<tr>
<td>Specification efforts started recently</td>
<td></td>
</tr>
</tbody>
</table>

© SAP AG 2006, UN/CEFACT Service-Oriented Architecture/ Schroth, Janner, Stuhec /
Executive Summary

SOA State-of-the-Art and Interoperability Challenges

UN/CEFACT e-Business stack

UN/CEFACT meets SOA

Conclusion
The Multi-Layer USOA Concept

UMM compliant cross-organizational business process network

CCTS compliant business data

SOA system landscape and document exchange

SOA System A

Core Component Library

CCTS based business documents

SOA System B

SOA System C
Executive Summary
SOA State-of-the-Art and Interoperability Challenges
UN/CEFACT e-Business stack
UN/CEFACT meets SOA
Conclusion
Outlook and future work: Context-Driver Principle

Context-driver principle
- Key concept of UN/CEFACT CCTS
- Description of business semantics of data entities
- Not fully specified, need for standardization

Standardization
- Adoption of the context-driver principle to the UN/CEFACT e-Business stack
- Contribution to UN/CEFACT Unified Context Methodology (UCM) project

Implementation projects
- CCTS conform data modelling methodology and tool-support developed (EU project GENESIS)
The BOV-centric UN/CEFACT approach can be leveraged to increase SOA interoperability.

CCTS: Exchanged business messages are correctly understood by all applications due to the common and also "living" repository of basic data building blocks. **UMM**: cross-organizational processes can be defined in an interoperable way.

USOA depends on the provision and dissemination of publicly accessible repositories for modeling building blocks.
Core Component Library represents the repository for the generic, Core Component Technical Specification (CCTS) based business information.

CCTS is designed to tackle the lack of cross-organizational interoperability on data level.

Semantic building blocks that are syntax-agnostic and represent the general business data entities.

CCL can help to dynamically create even new business vocabulary.

CCTS based data leverages:
- Reusability
- Modularity
- Semantic interoperability
- Flexibility
Full horizontal integration of all possible industries: UN/CEFACT Core Components Library and the related CCTS offer a fundamental vocabulary that enables process and data modeling in all different domains.

UN/CEFACT aims at a “living”, collaborative and evolutionary platform that is accessible to all users and thus provides a maximum degree of flexibility.

Significant parts of the UN/CEFACT e-Business stack are mature.

All core components defined by UN/CEFACT are envisioned to be stored in one single common repository that is freely accessible by all users.

In terms of comprehensiveness, the UN/CEFACT stack mainly tries to approach the Business Operations View (BOV), but not the Functional Service View (FSV).

Ease of implementation and operation significantly improved.

Degree of dissemination still relatively low.
BCSS used to make UML UMM compliant

- BCSS used to impose certain restrictions on UML modeling such that resulting models comply with the UMM standard
- Fostering of enterprise interoperability through common basis

BOV-centric modeling methodology for B2B scenarios

- Technology and syntax independency
- Enables users to leverage diverse implementation frameworks
- Abstracts scenarios and facilitates complexity hiding

Facilitation of reuse through template- and repository orientation

- Provision of basic process building blocks that can be used to assemble overall processes
- Starting process modeling activities from scratch thus becomes superfluous
- Incorporation of the CCTS methods to model business data

UML as basis for the notation

- Use of the diverse forms of UML charts for capturing business logic (activity charts, sequence diagrams)
- Definition of a set of stereotypes, tagged values and constraints defined to customize UML meta model
Novel possibility to adapt generic business data core components to the current users’ contexts. In this way, only the data parts that are of high relevance for the users are pre-selected for data modeling purposes.

Approach for assembling higher level business information for complete, electronic messages. By defining one standard for the composition of business messages, enterprise interoperability is facilitated.

Supports the determination of application based logical routing requirements of business information.

Defines the smallest pieces of information in a business data model with relevant characteristics. In this way, UN/CEFACT has created an unambiguous basis of atomic business information.

The so-called Business Terms are used to translate Core Components into all the different industry-specific terminology domains.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG. The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400, iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner, WebSphere, Netfinity, Tivoli, and Informix are trademarks or registered trademarks of IBM Corporation.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®. World Wide Web Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and in several other countries all over the world. All other product and service names mentioned are the trademarks of their respective companies.

Data contained in this document serves informational purposes only. National product specifications may vary.

The information in this document is proprietary to SAP. No part of this document may be reproduced, copied, or transmitted in any form or for any purpose without the express prior written permission of SAP AG.

This document is a preliminary version and not subject to your license agreement or any other agreement with SAP. This document contains only intended strategies, developments, and functionalities of the SAP® product and is not intended to be binding upon SAP to any particular course of business, product strategy, and/or development. Please note that this document is subject to change and may be changed by SAP at any time without notice.

SAP assumes no responsibility for errors or omissions in this document. SAP does not warrant the accuracy or completeness of the information, text, graphics, links, or other items contained within this material. This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

SAP shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of these materials. This limitation shall not apply in cases of intent or gross negligence.

The statutory liability for personal injury and defective products is not affected. SAP has no control over the information that you may access through the use of hot links contained in these materials and does not endorse your use of third-party Web pages nor provide any warranty whatsoever relating to third-party Web pages.