Analyzing Active Investment Strategies Using Tracking Error Variance Decomposition

Manuel Ammann
Stephan Kessler
Jürg Tobler

Working Paper Series in Finance
Paper No. 18
Analyzing Active Investment Strategies Using Tracking Error Variance Decomposition

Manuel Ammann, Stephan Kessler and Jürg Tobler
University of St. Gallen*

May 15, 2006

Abstract

For investors it is important to know what trading strategies an asset manager pursues to generate excess returns. In this paper, we propose an alternative approach for analyzing trading strategies used in active investing. We use tracking error variance (TEV) as a measure of activity and introduce two decompositions of TEV for identifying different investment strategies. To demonstrate how a tracking error variance decomposition can add information, a simulation study testing the performance of different methods for strategy analysis is conducted. In particular, when investment strategies contain random components, TEV decomposition is found to deliver important additional information that traditional return decomposition methods are unable to uncover.

JEL code: G11

Keywords: Tracking Error, Decomposition, Investment Strategy, Mutual Fund Selection

*Manuel Ammann is professor of Finance, Stephan Kessler is research assistant and Jürg Tobler is a senior analyst at Zuercher Kantonalbank. Tel.: ++41-71-224-7004, Fax: ++41-71-224-7088, Email: manuel.ammann@unisg.ch, stephan.kessler@unisg.ch. An earlier version of this paper was titled "Measurement and Decomposition of Tracking Error Variance". We would like to thank Bernd Brommundt, Michael Genser, Philipp Halbherr, Karl Keiber, Ralf Seiz, Michael Verhofen, Roger Walder, Daniel Wydler, Rico von Wyss, seminar participants at University of St.Gallen and participants of the annual conference of the German Finance Association for helpful comments.
Analyzing Active Investment Strategies Using Tracking Error Variance Decomposition

Abstract

For investors it is important to know what trading strategies an asset manager pursues to generate excess returns. In this paper, we propose an alternative approach for analyzing trading strategies used in active investing. We use tracking error variance (TEV) as a measure of activity and introduce two decompositions of TEV for identifying different investment strategies. To demonstrate how a tracking error variance decomposition can add information, a simulation study testing the performance of different methods for strategy analysis is conducted. In particular, when investment strategies contain random components, TEV decomposition is found to deliver important additional information that traditional return decomposition methods are unable to uncover.

1 Introduction

For investment decisions it is important to know which investment strategies an asset manager uses. For mutual funds, for example, analysts such as Morningstar provide this information by classifying them into categories reflecting specific classes of investment strategies. Such classifications are mainly based on information provided by the fund itself, on subjective judgement by the fund analyst, or on style analysis. We propose a decomposition of the non-central tracking error variance as an additional and objective approach for identifying investment strategies of all asset managers.

Using non-central tracking error variance, the cumulative extent of deviation from the asset manager’s benchmark is determined, indicating how actively the assets are managed. Because this risk measure is computed from the squared return deviations between asset manager and benchmark, positive and negative returns are not averaged out as they are when returns are analyzed. Furthermore, using non-central instead of the usual central tracking error variance, a

\[ 1\text{ Compare, e.g., Sharpe (1992) and Wermers (2000)} \]

\[ 2\text{ There is a great deal of literature on the identification of performance factors. For a review of this literature see Ippolito (1993). However, we do not address performance issues in relation with differences in investment strategies. Furthermore, the decomposition of tracking error variance has been studied before (compare, e.g., Vardharaj, Fabozzi, and Jones (2004)), but the application of models from performance measurement for the decomposition is new.} \]
consistent underperformance of the asset manager will be recognized by the analysis of tracking errors. It can also be shown that non-central tracking error variance captures increased risk taking of the manager by leveraging.

A specific investment strategy can only be detected if the model used for the tracking error variance decomposition captures its main characteristics. In particular, the decomposition can show to what extent the tracking error variance is a result of systematic deviations from the benchmark, reflecting a specific investment strategy, or whether the observed tracking error variance is mainly generated by random deviations from the benchmark. In practice, a series of models can be employed to obtain reliable results. As examples, we apply two different decompositions: The first is based on the market model, which allows to divide the average deviations from the benchmark into an alpha and a beta component. The second model extracts selection and timing activity relative to the benchmark. Within the controlled environment of a simulation study, the two models are used on returns, active returns and tracking error variance to assess and compare the information content of these decompositions. Other or additional return models, such as an asset pricing model with macroeconomic risk factors or the models by Fama and French (1993) or Carhart (1997), could also be used.

This paper contributes to the tracking error literature in three ways. First, it uses non-central tracking error variance as a key measure for the analysis of an active investment strategy. It applies models well-known from performance measurement to the analysis of tracking error variance. While performance measurement focuses on the effects of an investment strategy on average excess returns, the decomposition of the non-central tracking error variance solely aims at the detection of specific investment strategies. Second, using a simulation study it shows how tracking error variance may be used to generate information that traditional methods are unable to uncover. Third, the paper assesses the usefulness of the regression approach for the decomposition of tracking error variance to evaluate a manager’s timing and selection abilities.

The remainder of the paper is organized as follows: Section 2 introduces the two models to detect investment strategies. Section 3 presents the simulation study. Section 4 offers some conclusions.

---

[3] Simulation studies in performance analysis have been used before. See, e.g., Kothari and Warner (2001).
2 Analysis of tracking error variance

The term tracking error refers to the imperfect replication of a given benchmark portfolio. Tracking errors can occur for various reasons. The two most common reasons are the attempt to outperform the benchmark by active portfolio management and the passive replication of the benchmark by a sampled portfolio. The main question arising in the case of active management is how much risk relative to the benchmark has to be taken to achieve the outperformance target. A tracking error measure gives an indication of this benchmark risk. Alternatively, for passive portfolio replication, tracking error measures are used to evaluate the success of the replicating portfolio strategy.

Many different tracking error measures are in use to control relative benchmark risk of portfolios or mutual funds. We focus our analysis on the non-central tracking error variance and propose two decompositions for it.

2.1 Definition of Tracking Error Variance

All tracking error measures are based on the return difference between a tracking portfolio and its benchmark. The difference between portfolio and benchmark returns over a certain investment period follows some distribution, which we call tracking error distribution. In finance, the standard deviation (i.e. the square root of the second central moment) of the tracking error distribution is referred to as the tracking error. Thus, tracking error variance might be understood in some contexts as the second central moment of this distribution. However, with the term tracking error variance we refer to the second non-central moment of the tracking error distribution analyzed in this article. The tracking error variance is calculated according to

$$\hat{\tau}^2 = \frac{1}{n} \sum_{t=1}^{n} (r_{t,P} - r_{t,B})^2,$$

where $n$ is the number of observations and $r_{t,P}$ and $r_{t,B}$ are past observed portfolio and benchmark returns, respectively.\footnote{Because there is only one observable realisation of $r_{t,P} - r_{t,B}$ for each time period $t$, we need to use time series data for the estimation. We assume that all $r_{t,P} - r_{t,B}$ within the estimation interval are identically and independently distributed (i.i.d.) such that the realisations of all $r_{t,P} - r_{t,B}$ in the estimation interval can be used to estimate the true $\tau^2$. The effect of serial correlation in return deviations on tracking error estimation is examined in Pope and Yadav (1994).}
period. Note that using non-central variance ensures that systematic over- or underperformance increases the risk measure. This is not the case for central variance, where the mean is deducted.

In this paper, we use tracking error variance as an ex-post measure for identifying investment strategies. Of course, tracking error variance can also be used ex-ante to estimate portfolio risk. A discussion of the ex-ante use of tracking error (variance) and some of the estimation problems in that context can be found in Jorion (2003), Kuenzi (2004), Lawton-Browne (2001), Satchell and Hwang (2001) and Scowcroft and Sefton (2001).

2.2 Regression model

The decomposition of portfolio returns according to the regression model is obtained by regressing the returns on the benchmark return:

\[ r_P = \alpha + \beta r_B + \varepsilon, \]  

(2)

where \( \alpha \) is the expected uncorrelated outperformance and is called the *alpha component*, \( \beta r_B \) is the return part correlated to the benchmark and termed the *systematic component*, and \( \varepsilon \) is the unexpected uncorrelated outperformance. By the assumptions of the regression approach the average of the latter component is 0.

As selection and timing are closely related to the alpha and beta parameters of the regression model, the results from that decomposition model can be analyzed with respect to their ability in identifying timing and selection. Based on this regression, the active return (AR) decomposition is given as

\[ r_P - r_B = \alpha + (\beta - 1) r_B + \varepsilon. \]  

(3)

In this decomposition \((\beta - 1) r_B\) is the outperformance which is related to the portfolio’s correlation with the benchmark as measured by \( \beta \). If \( \beta > 1 \), the outperformance is positive if the benchmark return is positive and vice versa. This is the so-called *systematic component*. \( \alpha \) and \( \varepsilon \) are interpreted as in the return case. For reporting purposes the average of these two decompositions is computed.

The tracking error variance (TEV) can be decomposed into the following four terms (refer to appendix A.1 for a detailed derivation):

5If the portfolio benchmark is the market portfolio, the regression model corresponds to the market model by Sharpe (1963).
\[
\tau^2 = \alpha^2 + (\beta - 1)^2(\sigma_B^2 + \mu_B^2) + \sigma_e^2 + 2\alpha(\beta - 1)\mu_B, \tag{4}
\]

where \(\mu_B\) is the expected benchmark return, \(\sigma_B^2\) is the variance of the benchmark return, and \(\sigma_e^2\) is the variance of the regression residual. The terms can be described as follows:

- In the first line, the portion of the TEV that arises from the generated alpha - the *alpha component* of the decomposition - of the portfolio is shown.
- The second line shows the part of the TEV that is caused by the deviation from the benchmark; we call this component the *systematic component*, since it is caused by the systematic risk factor.
- The third line shows the variance of a random component. It is neither attributable to the generated \(\alpha\), nor is it attributable to the systematic deviation from the benchmark portfolio. It is termed the *variance of the residual*.
- The last line shows a *crossterm* that is caused by the interaction of the generated \(\alpha\) and the deviation from the benchmark.

This decomposition shows to which extent the outperformance is caused by correlation with the benchmark. For example, if the manager’s strategy is to outperform the benchmark by leveraging without choosing a portfolio structure different from the benchmark composition, the regression will bring up the following parameters: \(\alpha = 0, \beta \neq 1\) and \(\varepsilon = 0\). For passive index investing the regression model returns \(\alpha = 0\) and \(\beta = 1\), identifying the applied strategy perfectly. Alternatively, if the portfolio structure deviates from the benchmark composition, the regression shows existence and extent of systematic out- or underperformance \((\alpha \neq 0)\) and how the exposure to the portfolio benchmark measured by \(\beta\) is changed.

An asset *selection* strategy under perfect foresight returns \(\alpha > 0\), but nothing can be said about \(\beta\). A perfect *timing* in switching between a riskless asset and a benchmark investment is difficult to detect as well, since it returns \(\alpha > 0\) and \(\beta > 0\), influencing several parts of the TEV decomposition. Therefore, the regression approach does not always identify timing and
selection perfectly and unambiguously. The use of a simulation study enables us to evaluate how the different abilities are captured in the regression decomposition. This is particularly interesting, since the regression approach is developed for a different type of analysis than to detect timing and selection. With this analysis it can be assessed if it is a useful alternative for the timing and selection decomposition, which is more demanding in terms of input factors in identifying a managers ability.

Furthermore, the regression approach can be used to illustrate the ability of the non-central TEV to capture effects of an increased leverage. For this the decomposition of TEV in equation (4) has to be rearranged:

$$\tau^2 = \alpha^2 + (\beta - 1)^2 \mu_B^2 + 2\alpha(\beta - 1)\mu_B$$

$$+ (\beta - 1)^2 \sigma_B^2$$

$$+ \sigma^2_e.$$ (5)

In the first line, the portion of the TEV that arises from the expected outperformance, $\alpha + (\beta - 1)\mu_B$, is shown; we call this component expected tracking error variance. The second line shows the amount of TEV that stems from benchmark deviation exposure, $\beta - 1$, and the third line is the TEV not explained by the regression model (residual TEV). The second and the third lines combined can be interpreted as random TEV.

In addition to the regression model (3), the decomposition of tracking error variance in equation (5) shows how the investment strategy, described by systematic outperformance ($\alpha \neq 0$) and benchmark exposure $\beta \neq 1$, generates tracking error variance. The expected tracking error variance (first line of equation (5)) is caused by the use of non-central instead of central TEV. It is the result of a higher expected return of the fund and it becomes apparent that deterministic systematic outperformance only affects expected tracking error variance, as is seen from (5). This increase in TEV is the same for riskless and risky investments. The larger TEV caused by the expected outperformance is not perceived as risk by an investor - deterministic outperformance is well-liked. On the other hand, exposure to a stochastic benchmark not only generates expected outperformance, $(\beta - 1)\mu_B$, but also gives rise to random tracking error variance, $(\beta - 1)^2 \sigma_B^2$. This effect is analogous to the well-known leverage effect: by leveraging a portfolio, a higher expected return (or return deviation) may be earned but the variance of the portfolio (or return deviation) grows quadratically. This random TEV is a source of risk, since it is a stochastic deviation of the fund return from the benchmark return. This increased risk has to be compensated by a higher expected outperformance.
Some investors only consider the residual variance $\sigma^2_e$. By neglecting the other two components of total tracking error variance, it is implicitly assumed that the expected outperformance $(\beta - 1)\mu_B$ is large enough to justify the additional tracking error variance $(\beta - 1)^2\sigma^2_B$. An investor might not think this to be the case, or perhaps not for every $\beta$. To put it differently, declaring residual tracking error variance as the relevant risk measure allows the manager to take on a lot of $\beta$-risk that is not controlled for and might not generate enough expected out-performance. Consequently, the use of $\sigma^2_e$ alone for tracking error risk allows asset managers to manipulate the results of their performance evaluation because leverage is not controlled for. Therefore, non-central TEV has several advantages over the residual variance $\sigma^2_e$.

2.3 Timing and selection

A portfolio manager has essentially two ways of achieving outperformance, either by changing the structure of the portfolio, i.e., by overweighting assets expected to perform better than the benchmark and underweighting the other assets correspondingly (selection), or by leveraging the portfolio by changing the exposure to the benchmark return ($\beta$ in the regression approach) without changing the portfolio structure (benchmark timing). A benchmark exposure greater than one implies that the portfolio will earn a higher return than the benchmark, given that the latter is positive. Regression approaches such as Henriksson and Merton (1981) are designed to determine whether selection or timing activity generates statistically significant outperformance compared to the benchmark. However, as regressions focus on the average of time-series, such tests will signal no activity if a fund’s selection activity happens to cancel out over the data sample. We therefore introduce an additional model that is able to detect any selection or timing activity. The model relies on the availability of data for the portfolio and benchmark composition for each time period and therefore allows to compute a conditional tracking error variance.

The portfolio weights $n_{t,i}$ are determined as

$$n_{t,i} = b_t m_{t,i} + d_{t,i},$$ (6)

where $m_{t,i}$ denotes the benchmark weights in period $t$. The parameter $b_t$ is the same for all assets $i$ and determines the fraction of the benchmark held in the portfolio. $b_t$ can therefore be interpreted as a measure for benchmark timing. If $b_t > 1$, the portfolio is leveraged. The asset specific parameters $d_{t,i}$ define the selection component of the portfolio in period $t$; in other words, $d_{t,i}$ determines the deviation of the portfolio weight of asset $i$ from the corresponding
benchmark weight apart from pure timing. By regressing in period $t$ the weights $n_{t,i}$ on the benchmark weights $m_{t,i}$ without intercept, the parameter $b_t$ and $d_{t,i}$ are obtained.

This model allows the computation of tracking error variance for each point in time, conditional on current portfolio weights. In contrast, the regression decomposition of TEV proposed in section 2.2 is an average over time of an unknown, time constant tracking error variance, as in expression (1). Nonetheless, for reporting purposes it is useful to compute arithmetic averages of returns, active returns and tracking error variances for the timing and selection decomposition as well. Using expression (6) and

$$r_{t,P} = \sum_i n_{t,i} r_{t,i},$$

we obtain

$$E(r_{t,P}) = E(b_t r_{t,B}) + E(r_{t,S}),$$

where $r_{t,i}$ is the return of asset $i$ and $r_{t,S}$ denotes the return on the selection portfolio with weights $d_{t,i}$ in period $t$. In this way, the period $t$ portfolio return is decomposed into a pure timing component $E(b_t r_{t,B})$ and a pure selection component $E(r_{t,S})$. Next we construct active returns (AR) by subtracting the benchmark return from the portfolio return. Using equations (6) and (7), the expected active return (AR) in period $t$ can be represented by:

$$E(r_{t,P} - r_{t,B}) = E((b_t - 1) r_{t,B}) + E(r_{t,S}).$$

Return and active return decomposition have two parts:

- The first terms ($E(b_t r_{t,B})$ and $E((b_t - 1) r_{t,B})$, respectively) in equations (8) and (9) contain the part of the performance that is connected to the systematic market factor and is termed the timing component.
- The second term ($E(r_{t,S})$) in equations (8) and (9) contains the part of the return caused by a deviation from the market portfolio and is called the selection component.

The expectation of the conditional tracking error variance is given by
\[ \tau^2 = E \left[ (b_t - 1)^2 \left( \sigma_{t,B}^2 + \mu_{t,B}^2 \right) \right] \\
+ E \left[ \sigma_{t,S}^2 + \mu_{t,S}^2 \right] \\
+ E \left[ 2(b_t - 1)(\sigma_{t,BS} + \mu_{t,B} \mu_{t,S}) \right], \quad (10) \]

with

\[ \sigma_{t,S}^2 = \sum_i \sum_j d_{t,i}d_{t,j} \sigma_{t,ij} \]
\[ \mu_{t,S} = \sum_i d_{t,i} \mu_{t,i} \]
\[ \sigma_{t,BS} = \sum_i d_{t,i} \sigma_{t,Bi}, \]

where the expectation is estimated by calculating the arithmetic average across time. The formal derivation of this result can be found in appendix A.2. This formula is used for the decomposition of (expected) tracking error variance in the simulation study. Again, the decomposition can be attributed to different activities of the manager:

- The first line in expression (10) denotes the **timing component**.
- The second line mirrors the part of the return caused by a deviation from the benchmark - the **selection component**.
- The third line is the comoment between timing and selection and is termed the **crossterm**.

This decomposition directly relates tracking error variance to the two basic abilities of a manager, timing and selection. The definition of timing and selection has one noteworthy implication. Since the two abilities are determined by a regression of the portfolio weights on the benchmark weights without intercept, \( b_t > 0 \) for all strategies. Thus, the decomposition is biased towards indicating more timing ability than the manager might have. Even a manager who uses 100% selection has at least some timing ability according to this decomposition. This effect has to be kept in mind when interpreting the results of the simulation study in the next section. A disadvantage of the approach is the data requirement. To carry out the proposed analysis, the weights of the assets in the fund have to be known. Today such data is available via databases like CDA/Spectrum Mutual Funds Holdings by Thomson Financial, but access
to this data is costly. However, in general investment analysts can obtain data on fund holdings from such databases and the proposed analysis can be performed easily with standard computer software.

3 Tracking error variance analysis with simulated asset returns

In this section, we investigate the performance of the TEV decomposition using a simulation study. Based on simulated asset returns, we analyze simple selection and timing strategies.

The simulation is performed in a simple setting. The parameters used and the setup of the simulation are chosen to be a good approximation for real-world asset markets. For simplicity only the results for a simulation with three assets are reported. An analysis with up to 80 assets delivers similar results. The geometric random walk is used as process for the stock price behavior. We construct an index serving as benchmark asset. The assets have a weight of 20%, 30% and 50% for assets one, two and three, respectively.

For the simulation, the assets are assumed to have a rate of return of $\mu = 0.05$, a volatility rate of $\sigma = 0.20$, and a correlation matrix of

$$C = \begin{pmatrix}
1 & 0.5 & 0.5 \\
0.5 & 1 & 0.5 \\
0.5 & 0.5 & 1
\end{pmatrix}.$$

For each asset, 20,000 returns are simulated. Based on these simulated asset returns, the performance of TEV in detecting simple investment strategies is analyzed, results for five of these strategies are reported here. The investment strategies are designed to reflect basic selection and timing strategies.

The first and second strategy, denoted best selection and best timing, respectively, assume perfect foresight by the investor. The best selection strategy therefore always selects the asset that will perform best in the next time period. The best timing strategy invests in the benchmark asset whenever the benchmark earns a positive return and remains uninvested otherwise.

6 Alternative specifications show that the asset return specification is not critical to our analysis.

7 Because we limit the investment universe to three assets, being uninvested means earning no return at all on the capital. Alternatively, a strategy could be devised that invests in the benchmark if the benchmark return exceeds the riskless rate and invests in the riskless asset otherwise.
The third strategy, denoted *random selection*, randomly invests all available capital in one of the three assets for one period at a time. At the end of the period, the dice are rolled again and the asset to be held in the following period is determined. The fourth strategy, denoted *random timing*, either invests in the benchmark asset or remains uninvested, the choice being made randomly and independently for each period. *Mixed strategies* are designed to test the performance of the decomposition strategies under more realistic assumptions. Fund managers usually apply a mix of different investment strategies, for example a blend of timing and selection. The *mixed strategies* are designed by blending *perfect timing*, *perfect selection* and *random selection*, thus modeling managers with different strengths and abilities.

We start with the analysis of the performance of the regression decomposition, which is simple to use in practice (results in table 1). Afterwards the performance of the timing and selection model decompositions is analyzed (results in table 2). Finally, the performance of the two decompositions is compared. It is also discussed if the regression approach, which is less demanding in terms of inputs, is a useful substitute for the timing and selection decomposition in detecting a fund manager’s abilities.

### 3.1 Decomposition of TEV according to the regression model

The simulation study is applied to evaluate the performance of different strategy analyses in detecting the abilities of a fund manager. The advantage of the simulation approach is that the abilities of the fund manager are known and, therefore, the performance of the different types of analyses (return, AR and TEV decomposition) in characterizing the manager can be tested. The results for the regression model can be found in table 1.

The *best selection* case leads to high alpha, attributing most of return and active return to this non-systematic part. This goes along with most of the TEV being attributed to alpha and the residual, i.e. to the parts uncorrelated with the benchmark. Overall, *best selection* results by far in the largest TEV. The AR decomposition performs best (12.15% of the 11.96% total active return), with the TEV decomposition returning the second best results (0.0148 of total TEV of 0.0198). *Random selection* results in a high variance of the residual, which makes up for

---

8 The *random selection* strategy used for the mixed strategies is different from the one used on a stand-alone basis. The stand-alone *random selection* approach selects one asset randomly for 100% investment to compare the results to best selection. In the mixed case *random selection* means that the investment weights are chosen randomly.
Table 1: Results of the Regression Model in the Simulation Analysis

<table>
<thead>
<tr>
<th></th>
<th>Best Selection</th>
<th>Best Timing</th>
<th>Random Selection</th>
<th>Random Timing</th>
<th>Mixed Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Portfolio Return</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (2)</td>
<td>17.02%</td>
<td>9.50%</td>
<td>4.90%</td>
<td>2.64%</td>
<td>10.56%</td>
</tr>
<tr>
<td>Alpha (2)</td>
<td>12.15%</td>
<td>6.36%</td>
<td>0.03%</td>
<td>0.07%</td>
<td>6.90%</td>
</tr>
<tr>
<td>Systematic (2)</td>
<td>4.87%</td>
<td>3.14%</td>
<td>4.87%</td>
<td>2.57%</td>
<td>3.66%</td>
</tr>
<tr>
<td><strong>Active Return</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (3)</td>
<td>11.96%</td>
<td>4.44%</td>
<td>-0.15%</td>
<td>-2.41%</td>
<td>5.50%</td>
</tr>
<tr>
<td>Alpha (3)</td>
<td>12.15%</td>
<td>6.36%</td>
<td>0.03%</td>
<td>0.07%</td>
<td>6.90%</td>
</tr>
<tr>
<td>Systematic (3)</td>
<td>-0.19%</td>
<td>-1.92%</td>
<td>-0.19%</td>
<td>-2.49%</td>
<td>-1.40%</td>
</tr>
<tr>
<td><strong>Tracking Error</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (4)</td>
<td>0.0198</td>
<td>0.0083</td>
<td>0.0143</td>
<td>0.0149</td>
<td>0.0066</td>
</tr>
<tr>
<td>Alpha (4.1)</td>
<td>0.0148</td>
<td>0.0040</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0048</td>
</tr>
<tr>
<td>Systematic (4.2)</td>
<td>0.0000</td>
<td>0.0044</td>
<td>0.0000</td>
<td>0.0074</td>
<td>0.0023</td>
</tr>
<tr>
<td>Var. of Resid. (4.3)</td>
<td>0.0054</td>
<td>0.0023</td>
<td>0.0142</td>
<td>0.0076</td>
<td>0.0014</td>
</tr>
<tr>
<td>Crossterm (4.4)</td>
<td>-0.0005</td>
<td>-0.0024</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0019</td>
</tr>
</tbody>
</table>

Table includes the results of the regression model in the simulation analysis under certainty. The columns contain the results for the different investing strategies. For the regression model the decomposition of returns, active return (AR) and tracking error variance (TEV) are shown. The mixed strategy models a manager investing 20% according to best selection, 70% according to best timing and 10% according to random selection. The crossterms are displayed for completeness, but cannot be interpreted reasonably and are thus left out in the discussion. The numbers in parentheses indicate the number of the equation and the line of this equation that was used to calculate the number in the respective row of the table.
0.0142 of a total TEV of 0.0143. Thus, random selection is captured in the TEV decomposition mainly by the variance of the regression residual. The traditional return decomposition performs badly for the random selection strategy, showing a rather systematic investing strategy by falsely attributing 4.87 percentage points of the total performance of 4.90% to the systematic component. The active return decomposition gives no clear signals, attributing 0.03% and -0.19% to alpha and the systematic component, respectively. Hence, the TEV decomposition is superior in detecting selection activity: random selection is identified by the high variance of the residual, whereas best selection is correctly identified by the alpha part of the decomposition (the latter is a benefit of using non-central TEV). A manager’s skill in selection activity is detected by a high generated alpha. Random timing, on the other hand, is more difficult to detect. Alpha, and consequently the active return caused by alpha, are close to zero (0.0007 and 0, respectively), which shows that there is no persistent non-systematic outperformance as in pure selection. Most of the negative expected tracking error is attributed to the systematic factor, further supporting the observation of timing activity. The randomness of timing leads to a TEV that is caused to almost equal parts by the correlation of returns to the benchmark and the variance of the residual (0.00736 vs. 0.00759, respectively). This finding is in contrast to random selection, where TEV is caused predominantly by the variance of the residual. The best timing strategy is difficult to detect and leads to a much smaller total TEV than the best selection strategy. Just as for the best selection case, a large amount of the return (6.36 percentage points of the 9.50% total performance) and active return (6.36 percentage points of the 4.44% total performance) is attributed to the generated alpha. This is a misleading result since a larger influence of the systematic factor would be expected for this benchmark oriented strategy. In particular the AR decomposition performs badly attributing a negative proportion to the systematic factor (-1.92 percentage points). Only the TEV decomposition shows a relatively large impact of 53.0% of the systematic factor on total TEV. As the timing component of the investment strategy increases, total TEV decreases (compare, e.g., best selection and best timing with TEV of 0.0198 and 0.0083, respectively) and the TEV part attributed to the benchmark correlation becomes larger - in absolute terms as well as in relative terms. Thus, TEV is the superior indicator for good timing, resulting not only in the most accurate decomposition, but also indicating timing by a lower TEV.

In the preceeding discussion only pure strategies are considered. It is possible that the decompositions work differently when the strategies are mixed. Such mixed strategies model the real world in a more realistic way since managers always apply a mix of stock picking and changing of the exposure to the broad market as well as "random" (although no manager would
admit this) stock picking when investing. From the large number of different simulated strategies, a strategy that relies heavily on timing is chosen for discussion, since it gives important insights. Specifically, a manager is modelled who chooses 20% of his assets by best selection, 70% by best timing, and 10% by random selection. Since return, active return, and tracking error variance are now determined by various factors, it might be more difficult for the measures to filter out the abilities of the manager. This mixed strategy reveals that timing and selection are difficult to detect using return and active return decompositions. According to the return decomposition, the manager realizes about one third of his returns with benchmark exposure (3.66 percentage points) and two thirds with alpha generation (6.90 percentage points), making it impossible to identify the managers strong timing ability. This is caused by the described inability of the regression approach to detect pure timing. The AR decomposition performs even worse by assigning a negative part of the AR to the systematic factor (-1.4% of 5.5% total AR). Only the TEV decomposition is able to detect the abilities of the manager reasonably well. Random selection is mirrored in the variance of the residual with a proportion of about 25% of TEV (0.0014 of 0.0066 total TEV). In the decompositions the part caused by the benchmark correlation is rather small, but with one third of TEV (0.0023 of 0.0066 total TEV) comparably large.

Summing up the preceding discussion, the TEV decomposition can be used to obtain valuable and additional information on the abilities of the manager that cannot be obtained by other means, such as return or AR decomposition. In particular when timing is present in the investment strategy, random selection is used, or mixed strategies are applied, the TEV decomposition provides additional insights. Furthermore, the regression approach proved to be useful for strategy analysis, but needs to be applied carefully since timing effects are not easy to filter out. The value of the TEV decomposition is also confirmed by its success in identifying random investing by showing a large variance of the residual.

3.2 Decomposition according to the timing and selection model

In this section the simulation analysis is applied to the timing and selection model decompositions introduced in section 2.3 in assessing the abilities of fund managers. It is shown how tracking error variance can improve the evaluation of fund managers on the basis of a strategy analysis. The crossterm of the TEV decomposition is neglected in the discussion because it cannot be attributed accurately to either timing or selection.

Overall, a normal strategy analysis is able to detect the drivers of a strategy, as can be
seen in table 2. The return decomposition in a timing and a selection component delivers good information on the true abilities of a manager. However, as already discussed, this measure tends to overestimate the timing ability of a fund manager. For best selection, 30.4% (i.e., 5.17 percentage points of total expected return of 17.02%) of the positive return component is attributed to timing. The decomposition of the active return (AR) delivers similar results as the return decomposition. But using active return, the proportions of timing or selection in active return are closer to the true ability of the manager. The AR ratio of timing to selection for managers that use best selection is about 1:100 (0.11% and 11.85% for timing and selection, respectively), showing that the manager is essentially a stock picker. As in the return case, best and random timing are determined perfectly, allocating 100% of the active return to timing (4.44% and -2.41%, respectively). The TEV decomposition performs similarly to the AR decomposition, but the results are not as close to the true abilities of the manager. For example for best selection 0.0232 of the TEV of 0.0269 (i.e. 86.2%) is allocated to selection, whereas for the AR decomposition it is 99.1%. Using the TEV decomposition, the random timing and the best timing strategy are determined perfectly. Thus, in the case of best and random timing strategies, the decompositions of all measures are able to identify the abilities of the managers perfectly and there is no superior measure.

The TEV is the best-performing measure if the manager follows a random selection strategy, i.e., has no selection ability. The return decomposition falsely signals a strong positive timing ability (4.46 percentage points of total return of 4.90%), whereas the AR decomposition is not so informative, indicating bad timing (-0.60%) and a somewhat weaker, but positive selection ability (0.44%). Only the TEV is able to correctly attribute most of the fund performance to selection (0.0160 of 0.0191 total TEV). Since the purpose of the analysis is to distinguish managers with good investing skills from those without skills, this is an important feature of the TEV. This can be attributed partially to the TEV being a second moment determined by squaring tracking errors. Subsequently, positive and negative deviations cannot compensate each other, as is the case with normal AR. Thus, in the random selection case, the AR is close to zero (-0.15%), since the benchmark has the same expected return as the random selection strategy. A higher number of assets in the simulation does not affect the effectiveness of the TEV decomposition. In contrast, the decomposition can even produce better results. If a similar simulation is performed using 80 assets instead of three, the return decomposition allocates 90.9% to selection, the AR decomposition 104.5% to selection and the TEV decomposition 5.7% to timing, 106.6% to selection and -12.3% to the crossterm. This effect can be attributed to the decreasing weight of single assets in the benchmark portfolio as the asset universe is enlarged because deviations from the benchmark by picking out a small number of stocks for investment (i.e., applying a selection strategy) tend to be larger and are easier to detect.
strategy, whereas the expected TEV is larger than zero (0.0191).

This far, the simulation study concentrated on pure selection, timing or random investing activities. In the rest of this section, the mixed strategy from the last section is discussed (20% best selection, 70% best timing, 10% random selection). The return decomposition performs well in characterizing the true abilities of the manager. It attributes 8.13% of total expected return towards timing and 2.44% towards selection. The active return does not perform as well, showing only a slightly stronger timing ability on active returns (3.07%) than selection (2.44%). The TEV decomposition assigns 85.7% (0.0066) of the variation of tracking errors to timing and 14.3% (0.0011) to selection. Hence, it does not characterize the true abilities of the manager as well as the return decomposition, but fares still better than the method using AR. Other mixed strategies analyzed, but not reported here, confirm our results, indicating that the results are robust.

Skillful and random investment strategies can be distinguished by combining the analysis of AR with the timing and selection decomposition of TEV (see table 2). In general, high expected ARs mean good abilities and the TEV decomposition can be used to examine the managers’ strengths more closely: A strong selection ability leads to high TEVs and a high proportion of selection. A strong timing ability on the other hand results in a much smaller overall TEV but also a high timing proportion of TEV. In other words, AR is used to determine if there is ability (best versus random) and TEV to see the relative skills of the manager in investing (total timing versus total selection strategies).

Summarizing, the TEV decomposition allows a fairly good characterization of the manager although in some rare circumstances the return or the AR decomposition perform slightly better. However, the TEV decomposition is the most stable measure, which never delivers completely wrong results, as the return and active return decomposition sometimes do. Thus, the TEV decomposition can improve the strategy analysis and its reliability significantly. The strengths of the TEV decomposition are particularly in the detection of random selection.

3.3 Regression decomposition versus timing and selection decomposition

This section summarizes and compares the key results of sections 3.1 and 3.2. The results in these two sections illustrate failures in the identification of the managers true abilities using
Table 2: Results of the Timing and Selection Model in the Simulation Analysis

<table>
<thead>
<tr>
<th></th>
<th>Best Selection</th>
<th>Best Timing</th>
<th>Random Selection</th>
<th>Random Timing</th>
<th>Mixed Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Portfolio Return</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(7)</td>
<td>17.02%</td>
<td>9.50%</td>
<td>4.90%</td>
<td>2.64%</td>
</tr>
<tr>
<td>Timing</td>
<td>(7)</td>
<td>5.17%</td>
<td>9.50%</td>
<td>4.46%</td>
<td>2.64%</td>
</tr>
<tr>
<td>Selection</td>
<td>(7)</td>
<td>11.85%</td>
<td>0.00%</td>
<td>0.44%</td>
<td>0.00%</td>
</tr>
<tr>
<td><strong>Active Return</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(8)</td>
<td>11.96%</td>
<td>4.44%</td>
<td>-0.15%</td>
<td>-2.41%</td>
</tr>
<tr>
<td>Timing</td>
<td>(8)</td>
<td>0.11%</td>
<td>4.44%</td>
<td>-0.60%</td>
<td>-2.41%</td>
</tr>
<tr>
<td>Selection</td>
<td>(8)</td>
<td>11.85%</td>
<td>0.00%</td>
<td>0.44%</td>
<td>0.00%</td>
</tr>
<tr>
<td><strong>Tracking Error Variance</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(10)</td>
<td>0.0249</td>
<td>0.0116</td>
<td>0.0191</td>
<td>0.0150</td>
</tr>
<tr>
<td>Timing</td>
<td>(10.1)</td>
<td>0.0037</td>
<td>0.0116</td>
<td>0.0037</td>
<td>0.0150</td>
</tr>
<tr>
<td>Selection</td>
<td>(10.2)</td>
<td>0.0232</td>
<td>0.0000</td>
<td>0.0160</td>
<td>0.0000</td>
</tr>
<tr>
<td>Crossterm</td>
<td>(10.3)</td>
<td>-0.0020</td>
<td>0.0000</td>
<td>-0.0006</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Table includes the results of the timing and selection model in the simulation analysis under certainty. The columns contain the results for different investing strategies. For the regression model the decomposition of returns, active return (AR) and tracking error variance (TEV) are shown. The mixed strategy models a manager investing 20% according to best selection, 70% according to best timing and 10% according to random selection. The crossterms are displayed for completeness, but cannot be interpreted reasonably and are thus left out in the discussion. The numbers in parentheses indicate the number of the equation and the line of this equation that was used to calculate the number in the respective row of the table. The given numbers are averages taken over the decompositions performed at every period in the studied time frame.
expected returns (failure for the random selection case using the timing and selection decomposition and for the best timing case using the regression approach) and ARs (failure for the random selection strategy using the timing and selection as well as the regression approach and for best timing using the regression approach) with the timing and selection model as well as the regression model. Thus, the decomposition of expected returns and ARs with both models regularly leads to misclassifications.

Only for the decomposition of the TEV no material defects are found in the simulation analysis. By delivering a perfect identification (100% of a total TEV of 0.0116 and 0.0150 for best and random timing, respectively), the timing and selection approach is clearly dominant in the TEV decomposition of the timing strategies. The regression approach is less efficient in identifying timing (e.g. for best timing a total TEV of 0.0083 is split into 0.0040 for the alpha, 0.0044 for the systematic, 0.0023 for the variance of the residual and -0.0024 for the crossterm part). For best selection the regression model delivers a fairly well characterization of the asset managers true abilities. However, 0.0054 of a 0.0198 total TEV is attributed to the variance of the residual, indicating a fairly strong stochastic component which is not present in the asset manager’s actions. The timing and selection decomposition correctly allocates most of the total TEV of 0.0249 to selection (0.0232). For random selection the regression decomposition has an advantage by uncovering the randomness in the variance of the residual (0.0142 of 0.0143 total TEV). However, it remains unclear if this is the result of random timing or random selection. Only the knowledge that random timing is captured by the systematic component (0.0074) and the variance of the residual (0.0142) alike allows the conclusion that the investor uses random selection. In contrast, the timing and selection decomposition clearly indicates selection activity (0.0160 of 0.0191). Together with the low active return (-0.15%) this is a clear indication for random selection. Finally, for the mixed strategy, the regression decomposition of TEV attributes the largest part of the TEV (0.0048) to alpha, not reflecting the systematic component of this strategy (70% of the mixed strategy is best timing). The timing and selection decomposition of the mixed strategy is more precise by attributing 0.0066 of total TEV to timing and 0.0011 to selection. Thus, in total, a timing and selection decomposition of the TEV delivers superior results.

Summarizing, the regression approach is interesting for analysts because it needs less inputs than the timing and selection decomposition. Another advantage of the regression approach is

\[10\]

When stress testing this result by increasing the number of assets (up to 80) in the simulation, we find that the identification of the best selection strategy using the regression approach to TEV decomposition improved.
that random selection is mirrored accurately in the variance of the regression’s residual. However, timing is reflected in the alpha and the systematic part of the decompositions, complicating the identification of timing. The detection of the different timing and selection strategies is easier and more precise using the timing and selection decomposition. The proportions of the timing and selection induced parts of total TEV reflect the true abilities of the managers more closely than when measured by the regression approach. In addition, the random strategies can be attributed more accurately to their respective category (i.e. random timing to timing and random selection to selection). These advantages justify the use of the more data intensive timing and selection decomposition. Nevertheless, if no information about the asset weights is available, the simulation analysis shows that the regression approach is an informative alternative measure to the timing and selection decomposition of TEV for identifying timing and selection. The TEV decomposition delivers more robust and precise results than the decomposition of returns or active returns.

4 Conclusion

In this paper we use simple return models known from performance measurement for the decomposition of non-central tracking error variance. For the exposition, we use two models: a regression decomposition and a timing-selection decomposition. To investigate whether the tracking error variance decomposition provides useful information, we conduct a simulation study comparing tracking error variance decomposition with traditional return and active return decomposition.

The simulation study shows that tracking error variance decomposition is helpful in the performance evaluation of investment managers. For the timing and selection decomposition, the tracking error variance analysis is superior and delivers important additional information. Most importantly, it allows to identify random behavior. The tracking error variance is particularly helpful when the regression approach is used and when the manager uses mixed strategies or random selection. In contrast, the traditional decomposition of returns and active returns delivers misleading results when the investment manager has no skills or uses a mix of investment strategies.

The tracking error variance can also be decomposed using other performance measurement models than presented here. In particular, multifactor models could be applied to characterize the abilities of an investment manager even more accurately.
A Appendix

A.1 Proof for the decomposition of the regression model

Proof. Based on the regression model for portfolio and benchmark returns, the tracking error variance from expression (1) is given as

\[\tau^2 = E \left[ (r_P - r_B)^2 \right] = E \left[ ((\beta \cdot 1)r_B + \varepsilon)^2 \right] = (\beta - 1)^2 E \left( r_B^2 \right) + E \left( \varepsilon^2 \right) + 2(\beta - 1)E(r_B\varepsilon).\]

Using \(\sigma_{xy} = E(xy) - E(x)E(y)\) on each term gives

\[\tau^2 = (\beta - 1)^2 \left( \sigma_B^2 + \mu_B^2 \right) + \sigma^2 + \alpha^2 + 2\alpha(\beta - 1)\mu_B.

The tracking error variance from expression (5) can be derived as follows. By expressing the first and second moments of the portfolio return as functions of the benchmark return and the residual return, namely,

\[\mu_P = \alpha + \beta \mu_B \]
\[\sigma_P^2 = \beta^2 \sigma_B^2 + \sigma^2 \]
\[\sigma_{PB} = \beta \sigma_B^2\]

the tracking error variance can be expressed as

\[\tau^2 = E \left[ (r_P - r_B)^2 \right] = E \left( r_P^2 \right) + E \left( r_B^2 \right) - 2E(r_Pr_B) = \sigma_P^2 + \mu_P^2 - 2(\sigma_{PB} + \mu_P\mu_B) = \beta^2 \sigma_B^2 + \sigma^2 + (\alpha + \beta \mu_B)^2 + \sigma_B^2 + \mu_B^2 - 2(\beta \sigma_B^2 + (\alpha + \beta \mu_B)\mu_B) = (\beta - 1)^2 \sigma_B^2 + \sigma^2 + \alpha^2 + 2\alpha(\beta - 1)\mu_B + (\beta - 1)^2 \mu_B^2 = \alpha^2 + (\beta - 1)^2(\sigma_B^2 + \mu_B^2) + \sigma^2 + 2\alpha(\beta - 1)\mu_B.\]
This completes the proof. ■

A.2 Proof for the decomposition of the timing and selection model

Proof. Using the definition of the portfolio weights and the regression model for the asset returns, the portfolio return for period $t$ can be written as

$$r_{t,P} = \sum_i n_{t,i} r_{t,i},$$

where $r_{t,i}$ is the return of asset $i$ in period $t$. By expression (6) we obtain

$$r_{t,P} = b_t \sum_i m_{t,i} r_{t,i} + \sum_i d_{t,i} r_{t,i} = b_t r_{t,B} + r_{t,S}$$

and

$$r_{t,P} - r_{t,B} = (b_t - 1) r_{t,B} + r_{t,S}.$$

The conditional TEV for period $t$ is then given as

$$\tau_t^2 = E_u \left[ (r_{t,P} - r_{t,B})^2 \right] \quad \text{for } u < t$$

$$= E_u \left[ ((b_t - 1) r_{t,B} + r_{t,S})^2 \right],$$

where $E_u$ is the expectation conditioned on information available at time $u$. Evaluating the expectation yields the formula:

$$\tau_t^2 = (b_t - 1)^2 \left( \sigma_{t,B}^2 + \mu_{t,B}^2 \right) + \sigma_{t,S}^2 + \mu_{t,S}^2 + 2(b_t - 1) \left( \sigma_{t,BS} + \mu_{t,B} \mu_{t,S} \right), \quad (11)$$

with

$$\sigma_{t,S} = \sum_i \sum_j d_{t,i} d_{t,j} \sigma_{t,ij}$$

$$\mu_{t,S} = \sum_i d_{t,i} \mu_{t,i}$$

$$\sigma_{t,BS} = \sum_i d_{t,i} \sigma_{t,Bi}.$$
For reporting purposes, the average of $\tau_i^2$ across time is calculated to estimate the expected unconditional $\tau^2$ and we arrive at

$$\tau^2 = E[\tau_i^2] = E \left[ (b_t - 1)^2 (\sigma_{t,B}^2 + \mu_{t,B}^2) \right] + E \left[ \sigma_{t,S}^2 + \mu_{t,S}^2 \right] + E \left[ 2(b_t - 1)(\sigma_{t,B} \sigma_{t,S} + \mu_{t,B} \mu_{t,S}) \right].$$

This completes the proof. ■
References


