Sustainable Enterprise Architecture with EAI –
An Empirical Study

Stephan Aier and Marten Schoenherr

Abstract—Today large companies often have to cope with complex and heterogeneous IT infrastructures. The main target of IT architects being responsible for those architectures is to align IT to business needs at the lowest costs possible.

A recent approach to this issue is Enterprise Application Integration (EAI). EAI provides a platform for business process oriented system integration. The aim of EAI is to consolidate the number of point to point interface of integrated applications in a rather centralized hub and spoke architecture. In contrast to former middleware approaches EAI provides integration not only on a technical level but on a business process level too.

According to this we consider EAI as an architectural element affecting IT as well as organizational issues. Thus EAI again raises the question for interdependencies between IT and organization.

Our study examines how EAI is used in large-scale companies and which effects it has on the organizational architecture of those companies. The results illustrate that EAI is a major component in complex IT infrastructures which has a significant influence on business processes. But the study also shows that there is a considerable gap between the importance of EAI in enterprise architecture and the way it is used in companies today.

Eventually this article points out what has to be done to come closer to what we call an internally sustainable enterprise architecture which takes technological as well as organizational aspects into consideration.

Index Terms—Enterprise Architecture, Sustainability, System Integration, Enterprise Application Integration

I. INTRODUCTION

During the last decades IT has been grown a determining success factor. As a result especially in large companies existing IT infrastructures can be described as extremely complex and heterogeneous. Therefore integration and interoperability is one of the main issues developing and operating these infrastructures. As a matter of fact the conventional way of using individually coded point to point interfaces to connect systems is getting beyond control due to increasing overall system complexity. On the one hand one has to consider the costs for IT operation and maintenance of up to thousands of interfaces and on the other hand adaptations caused by the introduction of new systems (or system upgrades) and/or procedural-organizational stipulations are almost non-manageable due to complexity of element interdependencies [1]. Enterprise Application Integration (EAI) introduces an approach which substitutes point to point interfaces by centralized integration features. EAI promises to extend middleware approaches by integration on business process level (Fig 1) [2-5].

The figure above differentiates two views on EAI:
• EAI as a technology subsumes technical solutions to solve integration issues.
• EAI as a concept describes a more abstract and comprehensive approach in general.

In the context of this paper a technology focused approach is not enough to meet the requirements of integration and interoperability on a business process level. Further aspects as methodologies, modeling and particularly architectural management components become very important. The used technology perhaps is EAI. However, it is not necessarily a specific EAI product or even a strict centralized integration approach. Depending on the individual requirements a mixture of different integration technologies as point to point interfaces or service oriented architecture are possible or even as likely as not.

The following chapter depicts EAI both as technology and concept to explain its impact on the overall Enterprise Architecture (EA). Afterwards the paper describes the research method and results of the empirical study analyzing the impact EAI has on EA. The paper concludes with recommendations how to increase interoperability in a sustainable EA.
II. ENTERPRISE ARCHITECTURE

The definition of EA is a central part of this paper. The term of (Enterprise) architecture is used in multiple meanings and suffers from a lack of consistent definition appropriate to specific research domains as Business Informatics, Computer Science or Management Science [7]. Therefore the following chapter describes the authors understanding of Enterprise Architecture and the role of EAI in this context. Afterwards we will discuss interdependencies between the architectural elements Organization and IT.

A. EAI and Enterprise Architecture

In a few words an architecture can be defined as an abstract and holistic concept of structures and patterns considering planning efforts [7-10]. Architectures are generally results of planning efforts [11] and offer by definition a master plan supporting holistic implementation for future actions [12]. These universal characteristics can be used for planning and designing of enterprise structures and strategies too. Furthermore an Enterprise Architecture considers organizational, technical and psychosocial aspects for planning and building Information Systems (IS) in a socio-technical manner [13]. The following study particularly focuses on organizational and technical dimensions of EA. Therefore we use the terms Organizational Architecture and IT Architecture (Fig. 2).

![Fig. 2: Enterprise Architecture [14]](image)

Organizational Architecture contains all non-technical elements of the EA and is best compared with the so called instrumental understanding of organizations which covers all general explicit regulations to define the operational and organizational structure [15]. Accordingly we differentiate the Organizational Architecture in Organizational Structure and Business Processes. On a par with the Organizational Architecture is the IT Architecture which contains all technical elements of the EA. In particular IT Architecture covers the IS which are described with their own architecture: the IS Architecture. Both architectures Organizational and IT Architecture will be considered being equivalents but observed separately to accommodate the fact that both architectures are extremely relevant for the organization’s efficiency and unfortunately do have complex interdependencies to each other [2].

Scientific literature very often refers to the terms Organizational and IT Architecture but uses multiple term understandings. Depending on the authors scientific background the Organizational Architecture contains technical concepts too [16] and resp. the IT Architecture organizational aspects [11]. By definition EAI delivers not just concepts for connecting IS but reconcile IS and business processes. Both integration aspects are already considered in the technical definition of EAI which describes a business process driven IS integration. Therefore EAI could serve as a mediator between different elements of the EA.

First we will discuss some theoretical foundations about interdependencies between IS and organizational issues according to the fact that this is an important topic underlying the empirical study.

B. Interdependency IS and organizational issues

EAI as a technology claims to be business process oriented therefore it is assumable that there is an impact on the companies’ operational and organizational structure. Understanding EAI as a holistic concept makes it even more important to look at the interdependencies between organizational and technical aspects. The following considerations reflect the main aspects which have been discussed for many years already in this context by the community of Management Science [17].

The question of how the use of IT influences or even dominates organizational issues is as old as the first IS implementation in a company. There have been many approaches to analyze all dependencies. Despite many scientific efforts there is still no common understanding. Therefore it seems difficult to prove the evidence of stringent interdependencies between EAI and EA based on theoretical scientific statements. Particularly dependencies on the technology used, different methodologies and diverse underlying paradigms of organizational understanding are main reasons for the difficulties in establishing a common theory about the described interdependencies [17, 18].

MARKUS/ROBEY identified three basic assumptions examining interdependencies between IT and Organization: the technological imperative, the organizational imperative and the emergent perspective [19].

The technological imperative basically considers IT as an exogenous factor significantly influencing organizational structure and behavior. Organizational structure therefore is the dependent variable. A stringent causal determined dependency is assumed. Organizational structure is unidirectional depending on IT [19, 20].

The organizational imperative describes IT being determined by organizational requirements. The independent variable is the organization. IT is being used to fulfill organizational objectives. Costs and risks using IT in a specific organizational context are considered to be known or at least predictable [7, 19]. A stringent causal determined dependency is assumed too. IT is depending on organizational issues.

The basic assumption of the emergent perspective considers the use of IT being non-predictable depending on the complex socio-technical organizational interactions. To determine the impact of IT on an organization it is insufficient to know the IT characteristics and the organizational objectives only. In
fact it is furthermore indispensable to have a better understand-
ing of the dynamic organizational processes [19].

Compared to the two imperatives and their basics assumptions the emergent perspective does not imply a stringent causal determined dependency as a unidirectional interrelation. A more complex and multidirectional interdependency between IT and Organization is expected. Beside controversial technological and organizational objectives and strategies other factors as irrational human behavior are taken into consideration [7].

Most experts today decline the exclusive existence of unidirectional and stringent causal determined dependencies between IT and organization. As a matter of fact IT is considered to be an enabling factor which widens the optional scope of an organization [21, 22]. This is particularly obvious in case of organizational restrictions solved by technology.

III. THE EMPIRICAL STUDY – OBJECTIVES AND RESEARCH METHOD

There are no standards or even widely recognized best practices in planning and implementing EAI projects hence results or experiences are diverse and difficult to compare. Therefore we had to find out that unfortunately there is no common understanding of essential EAI aspects as tool evaluation, implementation methodologies or frameworks, business process orientation, strategic and sustainable positioning in the enterprise architecture. The study analyses how large organizations (companies) effectively implement and use EAI concepts to find out about the impact of EAI on the level of Enterprise Architecture and particularly organizational issues. While surveying a specific technology (EAI) and their interdependencies to the organization the study follows the tradition of [17, 19, 23-26]. Finally it has to be argued whether the pronounced capabilities of EAI are just marketing slogans used by vendors and consultants or meeting the requirements to create an integrated EA.

These research issues have been analyzed in a descriptive and explorative manner. The study is designed as a non-experimental cross section enquiry over a short period of time primarily using a written standardized questionnaire. Based on the results of the predominant descriptive and quantitative analysis a second questioning has been made mostly by oral expert interviews hold individually or in small groups. This second evaluation was meant to verify the quantitative results and possibly underlying theses. The study addresses three different groups. The first step was to analyze organizations which use EAI already and hence are able to prove experiences in planning, implementing and/or operating the according technical integration infrastructure. This group is called EAI User.

During the evaluation of the EAI User group the next step was to adapt the questionnaire to two other groups: the EAI Vendors and the EAI Consultants. These groups are usually directly participating in EAI projects of EAI Users. Hence being a service provider they have relevant experiences in the context of the study described above. After finishing the questioning of the EAI Users the other two groups had been evaluated.

Altogether 104 EAI User, 109 EAI Consultants and 84 EAI Vendors has been chosen to be contacted and questioned. Finally there was a feedback of 30,8% within the EAI Users, 21,4% within the EAI Vendors and 8,3% within the EAI Consultants. The second evaluation has been done two month after the first round was finished and first results were examined. The workshop and the expert interviews started with an explanation of the first round results, have been discussed for at least 2 hours at each event and have been extensively recorded.

The extracted conclusions from the first and the second evaluation have been analyzed in an explorative and qualitative manner to be condensed in the following results.

IV. RESULTS

First the common understanding of EAI is described to show EAI implementation and operation and its interdependencies with the operational and organizational structure afterwards.

A. Common understanding of EAI

EAI is generally understood as an established technology particularly used in large organizations to substitute individually coded point to point interfaces and/or conventional middleware concepts. It is considered to be a strategic long term element of the IT Architecture providing a modular toolset basically subsuming software adapters (connectors), data transforming tools (mapping), monitoring and workflow features and business process management functionality.

The importance as a relevant part of the IT-Architecture can be shown particularly by the following two results. About two third of all IS are going to be connected via EAI and more than half of them are already connected today (Fig. 3).

![Fig.3: IS connected or to be connected via EAI](image-url)

Most of the EAI projects started in 2000–2002 there is an up and down but no stringent development (Fig. 4).
The gradient of EAI starting projects over the years 1998–2004 affirms statements about the similar development of EAI and E-Business (e.g. [4]). Particularly technology driven approaches are pushed by an initial euphoria followed by a disillusioning crisis and after all picking up a steady growth [27].

B. Implementing and operating EAI

The introduction (initial implementation) of EAI is always project oriented and usually supported by external consultancy. Due to the need of extensive technological and methodological EAI knowledge external support is the only solution for managing the challenges of an EAI project.

To operate implemented EAI entities even huge organizations employ just a small number of technically well educated people (less than 10). Compared to the immense effort accepted during the implementation phase it astonishes that just a few people are carrying the relevant knowledge according to a very expensive infrastructural (EAI) investment.

This circumstance speaks for itself hence many organizations do not pay as much attention as necessary to an integrated understanding of the EA. Even if the EAI responsibility is located in an existing Enterprise Architecture Department usually there are too few people to manage the challenge.

Unfortunately the common understanding of EAI is technology driven hence the IT department operates EAI. They have enough manpower but not the organizational understanding of business processes nor the authority to influence organizational issues. Therefore the IT Department is usually not the right instance to be responsible for EA issues in the manner of a holistic conception.

63% of the questioned companies (EAI User) operate EAI centralized in their IT department. 22% have given EAI responsibility to the business departments which use the integrated IS or own the according business processes integrated with EAI. Only 9% define EAI as a central staff function and further 6% as a central function in the meaning of line management (Fig. 5).

About a third of the evaluated companies widen responsibility for the EAI infrastructure with non technical tasks of the Enterprise Architecture as modeling and business process re-engineering (Fig. 6).

The majority of the EAI entities are part of the IT department thus usually IT architects with a very technology driven understanding are responsible. Enterprise Architects – in case the job profile exists – do not influence or even take responsibility for EAI issues. This statement is not surprising due to the fact that EAI as a new technology had been of interest particularly to IT experts a few years ago [4, 5].

But very soon after the introduction of EAI as a technology many scientists and strategic consultants pointed out the importance of a holistic and integrated approach considering business process orientation and management issues as monitoring or life cycle aspects. This challenge has not been taken so far even if the advantages are obvious and widely communicated. Details are described in the following chapter.

C. Business process orientation and EAI

The objective to design and run EAI conceptions in a business process oriented fashion has rarely been reached in practice yet. Implementations done in a process oriented way usually mean technical processes as message queuing not business processes (Fig. 7).
Nevertheless EAI implementations cause changes in business processes. 20% of the EAI Users affirm that they have changed business processes to be able to use EAI features. 76% described reasons for business process adaptations being changed business processes to be able to use EAI features. 20% of the EAI Users affirm that they have changed business processes to be able to use EAI features.

The study proves that there are business process adaptations due to EAI projects which supports the paradigm of an organizational imperative described above (Fig. 8).

EAI Users describe a higher level of process automation and an improvement of process quality with 79% as the main issue in EAI impact on business process adaptations. 71% reached shorter processing times due to EAI implementations.

To categorize process adaptations the organizational structure dimensions by KESER/WALGENBACH can be used. They describe specialization, coordination, configuration, delegation of decisions and formalization [28]. Specialization means a wider responsibility assignment to the company's employees in the meaning of division of work, coordination describes the regulation of the work division interrelations, configuration subsumes all general rules of the managerial system, delegation of decisions means the allocation of competence in the organization and formalization defines the manner of communication through documents.

Using these dimensions the majority of business process adaptations caused by EAI are in the dimensions division of work and formalization. Changes in the dimension delegation of decisions are relatively rare.

Considering changes in division of work tasks the EAI Users mainly answer that the fulfillment of some specific tasks has become possible due to EAI the first time. Picking up the discussion about interdependencies between IT and Organization again many authors emphasize that the state of IT is a contingency factor with impact on the organizational architecture hence the business processes. Usually this is called the enabling factor of IT which means that IT provides features which enable process innovation or other strategies and adaptations in Enterprise Architectures. Even though this aspect has been always contrary discussed it is undeniably relevant [28].

Therefore the result described above confirms the 'IT being an enabler' perspective. According to the authors experiences this perspective should differentiate between direct and indirect enabling as described in [29]. IT with direct impact would enable organizational issues straight. In the study's context there is an indirect enabling impact only.

D. Organizational structure and EAI

There is almost no EAI impact on the organizational structure. The only structural adaptations are a stronger formalization and a documentation of organizational structures (Fig. 9).

V. CONCLUSIONS

Recapitulating the results subsume that EAI as a central integration technology meet the technological requirements. But EAI fails with the actual new challenge to integrate heterogeneous IS on the business process level. Thus EAI is not the ultimate reconciliation between IT and Organization in the understanding of an integrated Enterprise Architecture yet. Considering the mainly technology driven understanding of
EAI it is not due to deficits of the approach itself but the poor manner organizations use EAI. The majority designs and operates EAI as an exclusively technical infrastructure. Hence IT departments are responsible for the issue. We suggest the following points to solve the problems described above:

1) **Introduction of an integrative architectural management approach:** An Architecture Management is a communication broker between IT and other departments improving an integrated understanding of business and technology issues. The role of an enterprise architect is neither in the IT nor any other department implemented yet. An Architecture Management needs to be provided with power, resources and direct assignment by the top management to assure the enforcement of architectural guidelines all over the organization. Only an institutional instance is able to implement an integrated Enterprise Architecture to reconcile business and technology driven issues.

2) **Clear definition of objectives:** Starting an EAI initiative needs a prior definition of objectives to be fulfilled. Integration methods and tools are absolutely different for data oriented integration or business process oriented integration. There is no soft merging later on. Defining clear project objectives is the only way of measuring project success. One of the most important criteria is the integration level.

3) **Life Cycle based Implementation Methodology:** EAI projects are different from most other initiatives. Complexity, costs, duration, long term architectural impact and a large number of heterogeneous participants involved are very demanding conditions [31]. Different life cycle phases of elements (IS, partial processes, people, structures etc.) are even more demanding because time line effects are not particularly considered in project methodologies but definitely have to be modeled.

4) **Integrative Enterprise Architecture Model:** Complexity caused by multiple architectural levels as IS, technical and business processes, people, diverse aspects of operational and organizational structures etc. is not manageable by written descriptions or even without a structured documentation method. Modeling notations, methods and tools to document the diverse Enterprise Architecture elements and their interdependencies in an integrated way are basic requirements to handle this complexity.

5) **Accept the fact:** The only constant is change: There is no final EAI system or architecture at the end of a project. The objective is to shape a sustainable Enterprise Architecture with the right EAI components to enable the organization managing steady change which means particularly to modularize the IT Architecture to avoid IS being a barrier for organizational change. It is much more a value guiding change than a specific architectural structure.

The suggestions made above do not guaranty an integrative Enterprise Architecture but give some further aspects to improve the situation which has been described as a result of the empirical study discussed in this paper. There are already some successful approaches in practice but definitely no common understanding or even solutions [1].

REFERENCES

