
GEAR: Gaze-enabled augmented reality
for human activity recognition

Kenan Bektaş
kenan.bektas@unisg.ch
University of St. Gallen
St.Gallen, Switzerland

Jannis Strecker
jannisrene.strecker@unisg.ch

University of St. Gallen
St.Gallen, Switzerland

Simon Mayer
simon.mayer@unisg.ch
University of St. Gallen
St.Gallen, Switzerland

Kimberly Garcia
kimberly.garcia@unisg.ch
University of St. Gallen
St.Gallen, Switzerland

Jonas Hermann
jonas.hermann@student.unisg.ch

University of St. Gallen
St.Gallen, Switzerland

Kay Erik Jenss
kayerik.jenss@student.unisg.ch

University of St. Gallen
St.Gallen, Switzerland

Yasmine Sheila Antille
yasminesheila.antille@student.unisg.ch

University of St. Gallen
St.Gallen, Switzerland

Marc Elias Solèr
marcelias.soler@student.unisg.ch

University of St. Gallen
St.Gallen, Switzerland

Figure 1: The components of the GEAR. The collected gaze data is sent from the AR Application (1) to the Activity Recognition
component (2). The recognized activity is returned to the AR application which displays appropriate feedback. Both, the
collected gaze data and the recognized activity, can be stored in a privacy-friendly Personal Datastore (3).

ABSTRACT
Head-mounted Augmented Reality (AR) displays overlay digital
information on physical objects. Through eye tracking, they allow
novel interaction methods and provide insights into user attention,
intentions, and activities. However, only few studies have used
gaze-enabled AR displays for human activity recognition (HAR). In
an experimental study, we collected gaze data from 10 users on a
HoloLens 2 (HL2) while they performed three activities (i.e., read,
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inspect, search). We trained machine learning models (SVM, Ran-
dom Forest, Extremely Randomized Trees) with extracted features
and achieved an up to 98.7% activity-recognition accuracy. On the
HL2, we provided users with an AR feedback that is relevant to
their current activity. We present the components of our system
(GEAR) including a novel solution to enable the controlled sharing
of collected data. We provide the scripts and anonymized datasets
which can be used as teaching material in graduate courses or for
reproducing our findings.
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•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; Mixed / augmented reality; • Com-
puting methodologies→ Perception; Supervised learning.
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1 INTRODUCTION
Optical see-through head-mounted displays (HMDs) can augment
a user’s visual field by overlaying virtual information on their
physical environment. Early versions of HMDswere complex, bulky,
and expensive [Azuma et al. 2001; Billinghurst et al. 2015] (e.g.,
Sutherland’s well-known the Sword of Damocles [Sutherland 1968]).
Today, the form factor and usability of Augmented Reality (AR)
HMDs (e.g., Microsoft Hololens 2, Varjo XR-3, Magic Leap 1 and 2,
HTC Vive ProEye) have significantly improved, and they hold the
potential to become more than a visual interface. AR HMDs can
track the instant 3D position and movements of the user (including
their head, hands, and eyes), can detect objects in the environment
that appear in their camera feed through computer vision methods,
and allow novel ways of interaction with connected devices that
are close-by or remote [Strecker et al. 2022], bringing us closer
to Weiser’s vision [Weiser 1999] of pervasive computing. Across
various indoor and outdoor activities, these may provide users with
access to relevant information and services [Billinghurst et al. 2015;
Grubert et al. 2017; Orlosky et al. 2021; Plopski et al. 2022].

The eyes provide essential visual input to the brain, thus study-
ing eye movements provides insights into various cognitive pro-
cesses and activities of humans (and animals). Researchers are in-
terested in exploiting the potential of eye tracking for the creation
of novel opportunities in human-computer interaction [Jacob and
Stellmach 2016] and attention-aware computing [Vertegaal 2003],
for selection [Zhai et al. 1999], foveated rendering [Bektas et al.
2015], activity recognition [Bulling et al. 2011], or in retrospective
analysis [Salvucci and Goldberg 2000].

Eye tracking sensors can be readily integrated in HMDs for main-
taining explicit, implicit, and collaborative interactions in Mixed
Reality (MR) applications [Plopski et al. 2022] that can continu-
ously sense and adapt to the requirements and constraints of users’
context and activities [Bektaş 2020; Grubert et al. 2017; Orlosky
et al. 2021]. Milgram and Kishino presented a well accepted contin-
uum of MR [Milgram and Kishino 1994], focusing mainly on visual
experiences in real, augmented, and virtual environments. At the
virtual reality (VR) end of this continuum, users are exposed to
computer generated visual stimuli (among other stimuli). In VR en-
vironments, eye tracking can provide valuable insights about users
action planning and execution strategies (e.g., in [Keshava et al.
2021]). However, in VR experiences, users’ perception of the virtual
content is not necessarily strongly tied with the real environment
that they inhabit [Bektaş et al. 2021]. On the other hand, AR HMDs
provide users with a hybrid experience that is a synthesis of some
virtual content (i.e., often and desirably related) with the natural or
real scene. In natural settings (e.g., in daily personal or professional
activities), gaze enabled AR HMDs would allow both a better un-
derstanding of the cognitive processes of humans and provide them

with some assistance (e.g., visual, vocal, or haptic feedback) [Bektaş
2020; Bektaş et al. 2022; Grubert et al. 2017; Orlosky et al. 2021].

There is a growing interest in studying human activity recog-
nition (HAR), where researchers make use of various (wearable)
sensors that generate streams of data to train and test machine
learning models [Bulling et al. 2014]. In recent years, mobile video-
based eye trackers are also being used in HAR-research [Alinaghi
et al. 2021; Braunagel et al. 2015; Kiefer et al. 2013]. However, in
physical environments, the implications of using gaze-enabled AR
HMDs for HAR have not been explored in detail.

In Section 2, we present a systematic review of HAR from gaze
with mobile eye trackers and gaze-enabled HMDs. In Section 3, we
introduce our main contributions: We present the components of
our gaze-enabled AR (GEAR) system and detail an HAR experiment
that we conducted with GEAR. We present a benchmark of models
that we trained with the collected gaze data and introduce a solution
that allows users to retain fine-grained control over sharing of
their data and predicted activities. Section 4 re-casts the presented
research as an input to graduate teaching on gaze-enabled AR and
concludes the paper with a summary of findings and limitations,
and an outlook for future directions.

2 HUMAN ACTIVITY RECOGNITION (HAR)
FROM GAZE

Research on HAR is relevant for many applications in human-
computer interaction and ubiquitous computing [Bulling et al. 2014]
that focus on a seamless interaction between human users and
interconnected systems. In context-aware computing, the behavior
of a system can be adapted to environmental factors (e.g., location)
and other factors such as users’ expectations, psychophysiology,
and activities [Bulling and Zander 2014; Vertegaal 2003]. These
factors can be measured with various sensors (see [Bulling et al.
2014; Cornacchia et al. 2017] for reviews) which can be integrated
into the environment and objects or can be worn by users. For
example, head-mounted (or mobile) eye trackers pave the way
towards a pervasive assessment of users’ attention, intention, and
activities [Bulling and Gellersen 2010]. Since the 1960s (e.g., the
seminal work of Yarbus [Yarbus 1967]), eye trackers are used in
studying task-dependent cognitive processes, and many studies
have shown that it is possible to decode human activities from their
eye movements [Borji and Itti 2014].

2.1 Activity Recognition with Mobile Eye
Tracking

In mobile eye tracking, one of the most influential works on HAR
was presented by Bulling and colleagues [Bulling et al. 2011] who
followed a five-step procedure, which was also used by others. In
an office environment, they collected raw data (Step 1) with a 128
Hz electrooculography (EOG) system from N=8 participants for
recognition of six activities (copying, reading, writing, watching
a video, browsing, and resting). After the drift and noise removal
(Step 2), they computed a list of eye movement events (Step 3) such
as fixations, saccades, and blinks. In feature extraction (Step 4), they
calculated 62 features comprising descriptive statistics (e.g., mean,
variance, and maximum) of these eye movement events. Lastly,
in model training (Step 5), their Support Vector Machine (SVM)
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model was able to classify six activities with an average precision
of 76.1% and recall of 70.5%. Kiefer and colleagues used in their
setup (N=17), a 30 Hz mobile and video-based eye tracker (SMI Eye
Tracking Glasses) to recognize six activities on cartographic maps
(free exploration, global search, route planning, focused search, line
following, and polygon comparison) [Kiefer et al. 2013]. The au-
thors reported a 78% accuracy with an SVM model that was trained
with 229 blink-, fixation-, and saccade-based features. Kunze and
colleagues used the same eye tracker to detect reading activities of
N=8 participants on five different media with variable amount and
orientation of text: a comic book with images, a text book, fash-
ion magazine, a novel, and a newspaper [Kunze et al. 2013]. With
saccade- and fixation-based features, their decision tree classifier
achieved a 74% accuracy in recognizing the type of document. In an
outdoor wayfinding scenario, Alinaghi and colleagues studied the
recognition of turning activities (left-, right-, or no-turn) with N=52
participants who had variable familiarity with the test routes of
0.9 km and 1.3 km [Alinaghi et al. 2021]. The data was collected with
a 200 Hz PupilLabs Invisible eye tracker. They used feature impor-
tance ranking (on saccade- and fixation-based features) and tested
several models, including SVM and Random Forest, and reached a
91% overall accuracy with Gradient Boosted Decision Trees.

2.2 Activity Recognition with Mobile Eye
Tracking and AR

Toyama and colleagues presented a gaze-enabled (with SMI Eye
Tracking Glasses) AR prototype [Toyama et al. 2015]. This proto-
type calculates whether the user’s eyes converge on a foreground
virtual screen or on the real scene (i.e., the background). While
the point of convergence dynamically changes, the system ana-
lyzes the user’s level of engagement in reading a text on the virtual
screen. The proposed system provides proactive assistance such as
highlighting, scrolling, and reminding the user about the last word
read. Eight out of 12 participants rated the system as beneficial,
however the system was tested only in a reading activity. Rook and
colleagues studied intent prediction in an immersive environment
with N=30 participants [Rook et al. 2019]. The 2 Hz data stream
included users’ head orientation (from Microsoft HoloLens 1) as an
approximation to their eye-gaze and auxiliary data from objects of
interest, and was used to train a hidden Markov Model (HMM) that
yielded an average of 42% precision and 55% recall on three activi-
ties (cooking, microwaving, exploring). With Microsoft HoloLens 2
(HL2), Seelinger and colleagues developed a solution to enable safer
navigation in a physical environment by presenting users with
context-adaptive visual cues [Seeliger et al. 2022]. They trained
a deep neural network (DNN) with features such as the angular
change of gaze direction and the fixated areas of interest (AOIs), and
also included task-specific features. The solution was not directly
addressing the question of HAR with a gaze-enabled AR HMD, but
their research provides evidence that a gaze-enabled AR display can
promote users’ autonomy and safety without compromising their
performance. In a virtual reality setup (i.e., no interaction with phys-
ical objects as in AR), David-John and colleagues used an HTC Vive
Pro Eye (with 60 to 120 Hz gaze sampling rate) to predict intentions
of N=15 users regarding the selection of items for a given recipe
(i.e., onset of interaction) [David-John et al. 2021]. Their logistic

regression model was trained with 61 saccade- and fixation-based
features as well as the K-coefficient (see [Krejtz et al. 2016]) and
showed an above-chance prediction of the onset of interaction. Re-
cently, Lan and colleagues addressed the creation of synthetic gaze
data [Lan et al. 2022]. Their solution, EyeSyn, synthesizes realistic
eye movement data for four activities (read, communicate, browse
a static scene, watch a dynamic scene) using generative models
and a range of image and video datasets. In an experimental study,
the researchers compared the similarity and activity-recognition
performance of EyeSyn-synthesized and actual gaze data collected
from N=8 participants. Four participants used a Magic Leap One
(30 Hz) and the others used Pupil Labs eye tracker (30 Hz). In all
activities, a comparison of the scatterplots showed that the actual
and synthetic data had similar spatial characteristics (e.g., reading
activity involves horizontal shifts of the gaze). A convolutional neu-
ral network was trained with the synthetic data and achieved a 90%
accuracy in the classification of the activities. Later, these authors
also demonstrated that their solution can provide some AR feedback
in two activities but with completely virtual stimuli [Scargill et al.
2022]. The developers of EyeSyn claim that it is a viable solution
that can address practical constraints of collecting eye movement
data and privacy-related concerns [Lan et al. 2022]. In Figure 2 we
present a comparison of the selected previous work on HAR with
mobile eye tracking devices and AR displays.

2.3 Data Privacy in Mobile Eye Tracking
Eye tracking data streams are invaluable sources of information,
as they can reveal sensitive attributes of individuals (e.g., gender,
age, ethnicity, personality traits, health, sexual preference, affect,
task focus) [Kröger et al. 2020; Liebling and Preibusch 2014]. Thus,
misusage of data from gaze-enabled devices can interfere with the
acceptability of eye tracking by the general public [Bozkir et al. 2020;
Orlosky et al. 2021] and, most importantly, infringe the privacy of
individuals. Now that eye tracking is becoming pervasive, it should
be added as a prominent privacy concern in ubiquitous computing
technologies [Gressel et al. 2023; Katsini et al. 2020; Langheinrich
2001; Liebling and Preibusch 2014]. In recent years, interest in
addressing privacy-related issues in eye tracking research (e.g., in
the ETRA, UbiComp, and CHI communities) is growing [Katsini
et al. 2020]. Privacy-preserving eye tracking can be maintained by
physically obscuring the recordings [Steil et al. 2019b], introducing
randomized encodings [Bozkir et al. 2020] or noise [Steil et al. 2019a]
to the data (without compromising their utility), or by several other
approaches and regulations [Liebling and Preibusch 2014].

Today we have access to mobile eye trackers, AR HMDs, and ma-
chine learning models that can be used in individual steps of HAR
starting from data collection to activity recognition and providing
feedback or assistance to users. To the best of our knowledge, no
previous work provides a HAR solution in gaze-enabled AR HMDs
where users perform different activities with physical objects. In Sec-
tion 3, we introduce GEAR, that combines a (5-step) gaze-enabled
activity recognition pipeline with an AR app for activity-based feed-
back. GEAR additionally integrates the Solid specification [Sambra
et al. 2016] for storing and sharing data. This empowers users to
control who accesses and manipulates their data. Hence, our work
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Paper Activities
Eye tracking

(sampling 
rate in Hz)

N=
Stimuli / 
Display

AR?
HAR 

Model
Features Performance

Feedback 
to User?

Bulling et al. 
2011

6 (copying, reading, 
writing, watching a video, 

browsing, and resting)
128 Hz EOG 8

Digital / 
Desktop

NO SVM

62 (fixations, 
saccades, blinks, 

wordbook 
analysis)

76.1% precision 
and 

70.5% accuracy
NO

Kiefer et al. 
2013

6 (free exploration, 
global search, route 

planning, focused search, 
line following, and 

polygon comparison)

30 Hz SMI 17
Digital / 
Desktop

NO SVM
229 (fixations, 
saccades, and 

blinks)
78% accuracy NO

Kunze et al. 
2013

1 reading different 
documents

(comic book, text book, 
magazine, novel, and 

newspaper)

30 Hz SMI 8 Physical NO Decision Tree
saccade and 

fixation
74% accuracy NO

Alinaghi et al. 
2021

1 wayfinding (turn left 
right, and no turn)

200 Hz Pupil 
Invisible

52 Physical NO

Gradient Boosted 
Decision Trees (also 

SVM & Random 
Forest)

saccade and 
fixation (feature 

importance 
ranking)

91% NO

Toyama et al. 
2015

1 reading 30 Hz SMI 12
Physical & 

Digital / 
HMD

YES
NO 

machine learning 
model

Convergence of 
the eyes on 

foregorund (AR 
overlay) or 
background 
(real scene)

8 of 12 liked YES

Rook et al. 
2019

1 intent prediction in 
smart environments 

(cooking, microwaving, 
exploring)

2 Hz Head-gaze 
from HoloLens 

1
30

Physical & 
Digital / 

HMD
YES

Hidden Markov 
Model

only point of 
interest

42% precision 
and 

55% recall
NO

Seelinger et al. 
2022

1 navigation in a physical 
environment

30 Hz 
HoloLens 2

15
Physical & 

Digital / 
HMD

YES
Deep Neural 

Network

angular change 
of gaze direction 
and the fixated 

areas of interest

participants 
prefer the 
solution

YES

David-John et 
al. 2021

1 prediction of the onset 
of item during selection 

of items for a given 
recipe

60 - 120 Hz 
HTC Vive Pro 

Eye
15

Digital / 
HMD

NO Logistic Regression
61 (saccade, 

fixation and the 
K-coefficient)

above chance 
prediction

NO

Lan and Scargill 
et al. 2022

Scargill and Lan 
et al. 2022

4 (read, communicate, 
browse a static scene, 

watch a dynamic scene)

30 Hz Magic 
Leap One

30 Hz Pupil 
Labs 

8
Digital / 

HMD
YES

Convolutional 
Neural Network

fixation and 
saccade based 

features
90% accuracy YES

Bektaş et al. 
2023

3 (read, inspect, search)

30 Hz HoloLens 
2

200 Hz 
PupilCore

10
Physical & 

Digital / 
HMD

YES

SVM, 
Random Forest, 

Extremely 
Randomized Trees

19 (fixation and 
saccade based 

features)
98.7% accuracy YES

Figure 2: A comparison of the selected previous work on HAR with mobile eye tracking devices and AR displays.
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provides a blueprint for a more privacy-friendly approach to the
storing, processing, and sharing of gaze data.

3 GEAR: A GAZE-ENABLED AR SYSTEM FOR
HUMAN ACTIVITY RECOGNITION

GEAR has three main components. The first one is an AR applica-
tion that collects raw gaze data in real time from an AR HMD and
renders activity-based feedback on top of a user’s visual field (Fig-
ure 1-1.). The second component – Activity Recognition (Figure 1-2.)
– implements a procedure for the real-time recognition of three ac-
tivities (Reading a text, the Inspection of an object, and the Search for
an object) from collected gaze data. The last component – Personal
Datastore (Figure 1-3.) – implements a solution for the privacy-
friendly sharing of such collected data.

3.1 AR Application
We developed an AR application for the HL2 with the Unity Game
Engine1 using building blocks from the Mixed Reality Toolkit
(MRTK)2. The application has two main functions. In Gaze Data
Collection, it fetches and sends the gaze data to the GEAR Activ-
ity Recognition component. The User Feedback prompts a visual
feedback that is relevant to the recognized activity (Figure 3).

The HL2’s eye tracker has a sampling rate of 30 Hz with an accu-
racy of approximately 1.5°3. In Unity, gaze samples can be accessed
using the MRTK or the underlying API for the Universal Windows
Platform (UWP)4. In GEAR, we use the open-source Augmented
Reality Eye Tracking Toolkit (ARETT) 5 [Kapp et al. 2021]. ARETT
operates on top of the UWP API, reliably delivers gaze samples
at a fixed sampling rate (30 Hz) and can be readily included in
Unity projects. It also provides a Web interface for storing gaze
data in CSV files. The data stream provided by ARETT includes a
list of time, gaze, and AOI data, and some auxiliary information. In
GEAR’s HAR, we make use of the following ARETT data: eyeData-
Timestamp, isCalibrationValid, gazeHasValue, gazeOrigin_(x/y/z),
gazeDirection_(x/y/z), gazePoint_(x/y/z). The last three vectors are
defined in Unity’s global coordinate system. When we plotted these
different values, we saw that gazeDirection might be the most suit-
able candidate to calculate gaze events and features, respectively.
In Figure 3-(1-a), the gazeDirection data for Reading clearly shows
the individual lines of the underlying text.

3.1.1 Gaze Data Collection. In a controlled study, we collected
gaze data with the AR application (Subsection 3.1) for training and
testing HAR models (Subsection 3.2). Our study is informed by the
suggestions in [Holmqvist et al. 2022].

Participants: We recruited N=10 participants (3 female) from
our lab, with an average age of 30.1 years. 4 participants reported
wearing prescription glasses often or all of the time; 40% indicated
being extremely familiar with AR headsets and 10% with VR head-
sets, while 40%/30% reported not being familiar with AR glasses/VR
headsets. Most participants (80%, including all participants with

1http://unity.com
2https://github.com/microsoft/MixedRealityToolkit-Unity/
3https://learn.microsoft.com/en-us/windows/mixed-reality/design/eye-tracking
4https://learn.microsoft.com/de-de/uwp/api/windows.perception.people.eyespose
5https://github.com/AR-Eye-Tracking-Toolkit/ARETT

Figure 3: Example 3D-Plots of the normalized gazeDirec-
tion_(x,y,z) data points which are collected from one par-
ticipant in the Reading (1-a), Inspection (2-a), and Search
(3-a) activities. GEAR can display an AR feedback that is rel-
evant to the recognized activity (1-b, 2-b , and 3-b).

moderate or extreme familiarity) reported that they could imagine
wearing an AR headset for up to 2 hours in their daily lives.

Apparatus and Material: The gaze data was collected with the AR
application and an HL2 as described in Subsection 3.1. Furthermore,
in the same setup we collected gaze data with a Pupil Core tracker
(200Hz). The Pupil Core data was not used in this study, however,
we make it available as supplementary material for further analysis.
Our study includes three different physical materials for each to-be-
recognized activity. First, a text in English on an A4 paper vertically
positioned at a distance of 70cm covering 40◦ of participants’ visual
field. Second, we used a toy robot that was positioned at a distance of
approximately 40cm covering 20◦ of participants’ visual field. Third,
we used a small red pin (about the size of a die) and a workpiece-
cabinet (1x1m) with three shelves.

Procedure: During the experiment, we simulated three realistic
tasks that comprise three main activities: reading instructions, in-
specting a device, and searching for a missing piece of the device.
The procedure started with an introduction of the HL2, comfort-
ably adjusting it on the head of the participant, and running the

http://unity.com
https://github.com/microsoft/MixedRealityToolkit-Unity/
https://learn.microsoft.com/en-us/windows/mixed-reality/design/eye-tracking
https://learn.microsoft.com/de-de/uwp/api/windows.perception.people.eyespose
https://github.com/AR-Eye-Tracking-Toolkit/ARETT
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default 9-point eye calibration. Then, each participant was asked
to read some text, inspect a robot, and search for a missing pin in a
cabinet. The reading and inspection activities were performed in a
sedentary position. When searching, participants were standing in
front of a cabinet. Each activity included a gaze recording of about
one minute and participants took short breaks of few seconds be-
tween the activities. Finally, we asked each participant to complete
a short demographic questionnaire. According to the guidelines of
the University of St. Gallen Ethics Committee, all participants gave
written consent stating that the collected data can be anonymously
used.

3.1.2 User Feedback. The AR application collects gaze data in
chunks of ten seconds (i.e., consecutive and non-overlapping time
windows) and sends them to theActivity Recognition component (de-
tails in Subsection 3.2). Each chunk includes the columns of eyeData-
Timestamp, isCalibrationValid, gazeHasValue, gazeOrigin_(x/y/z),
gazeDirection_(x/y/z), gazePointHit, and gazePoint_(x/y/z). The data
is sent via HTTP to a computer executing the Activity Recognition
component. The response of the Activity Recognition component
(Figure 1), including the predicted activity and its probability, is
then sent back to the AR application. Thus, to close the activity-
recognition and user-feedback loop, a user had to perform any of
the three activities for at least ten seconds. Then, on the HL2, a panel
displays the current activity (see Figure 3) along with contextually
relevant suggestions. For example, during Reading activities, the ap-
plication suggests a translation of the read text [Strecker et al. 2022].
During Inspection activities, the application suggests displaying a
technical drawing of the inspected device. To help users find the
missing item in Search activities, the application suggests whether
it should open a semantic hypermedia search engine [Ciortea et al.
2020].

3.2 Activity Recognition
The activity recognition component of GEAR implements a proce-
dure that is similar to those used in previous HAR research [Ali-
naghi et al. 2021; Bulling et al. 2011; Kiefer et al. 2013]. The pro-
cedure starts with the collection of raw gaze data as described in
Section 3.1.1. The remaining steps include preprocessing of the raw
data, detecting eye movement events, feature calculation, feature
selection, and finally training and evaluation of selected machine
learning model(s).

3.2.1 Pre-processing and Event Detection. We calculated eye move-
ment events (fixations and blinks) from raw spatio-temporal gaze
data (x,y,z,t). We did not compute saccades because of the lim-
ited sampling rate of the HL2. In a pre-processing step, before the
fixation calculation, we excluded the data where gazeOrigin and
gazeDirection were empty. With the remaining valid data, we calcu-
lated the fixations using the I-DT algorithm [Salvucci and Goldberg
2000] with a dispersion threshold of 1.6◦ and a minimum duration
of 100 ms. For the dispersion, we used gazeDirection as the spa-
tial input, which describes the normal of the gaze, i.e., the gaze
direction in the global coordinate system. Our implementation of
the fixation detection is based on a tutorial by Pupil Labs 6, which
we adapted to our HL2 setup. Thus, the scripts that we provide in

6https://github.com/pupil-labs/pupil-tutorials

the supplementary material can be used to analyze data collected
with the PupilCore [Kassner et al. 2014] or the HL2. To accurately
detect blinks (see Chapter 5.7 in [Holmqvist et al. 2011]), the HL2’s
eye tracking sampling rate is low. Thus, we took the highly sim-
plifying assumption that all missing gaze data were due to closed
eyes/blinks.

3.2.2 Feature Calculation. We calculated 19 features from the de-
scriptive statistics (minimum, maximum, mean, variance, and stan-
dard deviation) of the fixation duration (5 features) and of the
fixation dispersion (5 features), the fixation frequency per second,
and the fixation density. Additionally, we calculated the direction
of successive fixations for x- and y-directions (2 features). Further-
more, we calculated the following blink-related features: number
of blinks, mean, maximum, and minimum blink duration, and the
blink rate per second.

In the reading activity, direction of successive fixations is deci-
sive because the horizontal eye movements show a pattern that
goes from left to right but then exhibits a larger jump from right
to left when the participant finishes reading one line and proceeds
to the next (similar to carriage-return and line-feed). However, in
inspection and search activities, the eye movements do not necessar-
ily follow a regular pattern, because typically there is no specific
scene layout. In scene viewing (e.g., inspection or search activi-
ties), people may scrutinize different parts of the stimuli in variable
duration [Holmqvist et al. 2011, 2022], thus the visual and spatial
properties of targets and distractors may affect features extracted
from fixations.

3.2.3 Feature Selection. Before selecting a subset of features for
the classification, we formulated several assumptions for each ac-
tivity. In the reading activity, we hypothesized that the successive
fixations of the participants should be aligned with the lines of
text they were reading. Furthermore, we expected the fixations to
be more scattered and of shorter duration in the search activity,
as participants probably looked quickly at many different places.
In the inspection activity, we expected fewer fixations but with a
longer duration, which are less scattered than those in the search.
Based on these assumptions we trained our initial classifier (i.e., a
support vector machine as described in 3.2.4) with the following
six features: mean fixation duration, maximum fixation duration,
variance of the fixation duration, x- and y-fixation direction and
the fixation density per area. We then normalized these features
and trained three different classifiers to predict the activities.

3.2.4 Model Evaluation. We trained three different machine learn-
ing models with the selected features. The performance benchmark
of the Support Vector Machine, Random Forest Classifier, and Ex-
tremely Randomized Trees Classifier is presented in Table 1.

Support Vector Machine (SVM) Classifier: First, we applied an
SVM classifier to the selected features, because SVMs were used in
most of the related work on HAR that we documented in Section 2.
We implemented the SVM using the sklearn.svm.SVC function
in the Python package scikit-learn7 and with Linear, Polynomial,
Gaussian Radial Basis Function, and Sigmoid kernels. We split the
data in 80% training and 20% testing data. As the recorded data

7https://scikit-learn.org
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Table 1: Performance benchmark of the threemodels that are
trained with 19 features. The number in each cell presents
the accuracy (%) of the model (the first column of the table)
for a 5, 10, 15, 20 seconds time window.

Model 5sec 10sec 15sec 20sec
Support Vector Machine 78.7 93.3 85.0 100

Random Forest 93.2 96.6 94.4 94.9
Extremely Randomized Trees 89.3 98.7 96.2 96.6

for each participant and activity was approximately one minute
long, we trained the model with different time windows. With a ten-
seconds window for the feature calculation we found the first three
kernels to all predict with an accuracy of 93.3% and the Sigmoid
kernel to achieve an accuracy of 30%. All kernels achieved lower
prediction accuracies when using window sizes of five (L: 65.8%, P:
78.7%, R: 72.1%, S: 26.2%) and 15 seconds (L: 85%, P: 85%, R: 85%, S:
20%). A window size of 20 seconds, however, resulted in an accuracy
of up to 100% (L: 86.6%, P: 93.3%, R: 100%, S: 33.3%) which might
indicate overfitting to the small sample size.

Random Forest (RF) Classifier: Second, we developed a model
with the sklearn.ensemble.RandomForest function from the above-
mentioned scikit-learn library. To select the best subset of the pre-
computed features for this classifier, forward and backward feature
selection was performed. The results of our experiments show that
the Random Forest classifier outperforms all SVM kernels by at
least 4 percentage-points regarding accuracy. The best result (96.6%
accuracy) was achieved using all of the 19 possible features. To be
comparable to the SVM approach, a window of 10 seconds was
used for the feature calculation. Other window sizes did not further
improve the result (93.2% for 5 seconds, 94.4% for 15 seconds, 94.9%
for 20 seconds).

Extremely Randomized Trees (ET) Classifier: Finally, we applied
sklearn.ensemble.ExtraTreesClassifier while using all 19 features and
a window size of 10 seconds. This classifier achieved an accuracy
of 98.7% on our test data. As with RF, other window sizes did not
improve accuracy (89.26% for 5 seconds, 96.25% for 15 seconds and
96.6% for 20 seconds). The ET classifier improves on the accuracy
of the RF classifier while also being significantly faster, requiring
0.639s ±0.035s versus 0.844s ± 0.020s to classify 149 samples, i.e.,
24% less time per sample. The difference between the ET and RF
classifiers can be characterized as follows: While RF computes
the most discriminative decision boundary for each feature, ET
chooses the most discriminative boundary among several random
boundaries and with different features subsets [Pedregosa et al.
2011]. As a consequence, variance is reduced, mitigating overfitting
of the classifiers. Furthermore, by choosing the decision boundary
randomly, the ET is computationally less expensive, leading to
faster execution times.

3.3 Privacy-Friendly Personal Datastore
To handle the storage of gaze data and of recognized activities in
a more privacy-friendly manner (compared to traditional means),

we integrated GEAR with Solid. Solid is a specification for the cre-
ation of a decentralized data platform for Web applications [Sambra
et al. 2016]– its main objective is to decouple applications from
the data they use. To achieve this, a user is provided with a (per-
sonal) Pod, which is a repository that can contain her personal and
non-personal data. A Pod is implemented as a Web server with
standardized authentication, authorization, and sharing procedures.
Through Access Control List (ACL) resources8, a user can grant
(and revoke) read, write, and append rights to Solid applications (or
to people) to her full Pod or specific resources (i.e., individual files);
access grantees and Pod owners are recognized through a unique
identifier (i.e., aWebID). In the Solid system, applications that access
user data do not keep a copy of this data, but rather access it (and
possibly modify it) transiently, where access rights are checked on
every access. Hence, given the sensitivity of users’ gaze data, and of
the predictions that our approach is capable of making on the cur-
rent activity that a user might be performing, we set up an instance
of the Solid community server, which is an open-source implemen-
tation of the Solid specification, developed and maintained by the
research community9. Moreover, we added to our AR application
the capability of writing the collected gaze data directly into a user’s
Pod in the form of a CSV file (see Figure 1 - GazeData.csv). Like-
wise, the Activity Recognition component stores the recognized
activity in the user’s Pod as an RDF file (see Figure 1 - Activity.ttl),
which is expressed using well-known schemas (e.g., schema.org10
and the PROV-O ontology11). The Personal Datastore component
allows users to decide who to share their gaze and activity data
with, which can be also done through the AR application.

4 CONCLUSIONS AND OUTLOOK
In this article, we presented GEAR, a system that allows human ac-
tivity recognition in a gaze-enabled AR HMD. Using an Extremely
Randomized Trees model, GEAR achieved an accuracy of 98.7%
when recognizing three different activities in real time, using a win-
dow size of 10s of gaze data. The current implementation of GEAR
updates user feedback at regular time intervals which is suitable
for constrained experimental setups where users may perform the
pre-trained activities in a particular order (i.e., read the instructions,
inspect the robot, search for the missing piece). However, users
have to deliberately continue performing an activity (i.e., without
any interruption) to be able to receive some feedback that is rele-
vant to that activity. In more realistic settings, various factors may
affect users’ mental state that can change from losing attention (e.g.,
a state of mind-wandering [Christoff et al. 2016]) to fully engaging
with the current activity (i.e., the state of flow [Csikszentmihalyi
2014]). Thus, in a next step, GEAR can be extended with models
(e.g., [Huang et al. 2019]) to better estimate users’ mental state.

The work presented in this paper was conducted in the context
of a graduate course on Ubiquitous Computing, where one of three
assignments focused on Gaze-enabled AR. In addition to the code
and data that is required to reproduce the results of this paper,
we furthermore provide all teaching materials and their sources

8https://solid.github.io/web-access-control-spec/
9https://github.com/CommunitySolidServer/CommunitySolidServer
10https://schema.org/
11https://www.w3.org/TR/prov-o/
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for reuse by others.12 In the assignment, students gained experi-
ence working with gaze-enabled AR and different machine learning
models by building on top of GEAR components. In Task 1 of this
assignment, students worked on offline HAR using a Jupyter note-
book that they were required to extend and improve to analyze our
gaze dataset; in Task 2, they were required to extend a provided
software framework for the HL2 to enable the close-to-real-time
classification of user activities with the help of the model from
Task 1, as described in this paper. Finally, Task 3 focused on the
provisioning of AR feedback to the user, where we required stu-
dents to provide contextual suggestions to users using any feedback
modality (simple audio, spatial audio, visual feedback, etc.). In a
subsequent assignment, the students were then required to enable
the more privacy-friendly processing of gaze data through Solid
by extending their applications and making use of our setup. As
done in this paper, we motivated that assignment with a discus-
sion on the high sensitivity of this data from a privacy perspective
and that it may be used to not only estimate the activity that a
user currently performs, but can also be used to estimate other
users’ personal information, from drug consumption to cultural
background [Kröger et al. 2020]. Students were then required to
implement a gaze-enabled activity recognition pipeline that made
use of their Web-accessible personal Pods with the Solid specifica-
tion, where access rights were granted based on WebID (concretely:
Solid OpenID Connect) together with Solid Access Control Lists.

As a next step, we will implement the activity recognition classi-
fier in C# instead of Python so that it can run directly on the HL2.
The SharpLearning13 library for C# provides implementations for
RandomForest and Extremely Randomized Trees classifiers, while
the event detection algorithms can be implemented analogously to
the Python implementation. Using C#’s concurrency support, the ac-
tivity classifier can be run concurrently with the data collection and
feature extraction. We will also extend the user feedback part with
other modalities (e.g., audio cues, or speech interfaces), relevant
Web-based services (e.g., Optical Character Recognition [Strecker
et al. 2022], Object Detection [Spirig et al. 2021]) and by defining
dynamic AOIs to make it more useful for users. Additionally, we
will explore how we can include the Extended Eye Tracking API14
for collecting gaze data on the HL2 with a higher frame rate. Lastly,
we will test an extended list of features with our system in the
recognition of other activities.
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