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Abstract

In many empirical problems, the evaluation of treatment effects is complicated by sample

selection so that the outcome is only observed for a non-random subpopulation. In the absence

of instruments and/or tight parametric assumptions, treatment effects are not point identified,

but can be bounded under mild restrictions. Previous work on partial identification has

primarily focused on the “always observed” (whose outcomes are observed irrespective of

the treatment). This paper complements those studies by considering further populations,

namely the “compliers” (whose outcomes are observed if they are treated) and the observed

population. We derive sharp bounds under various assumptions (monotonicity and stochastic

dominance) and provide an empirical application to a school voucher experiment.
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1 Introduction

The sample selection problem, see for instance Gronau (1974) and Heckman (1974), arises

when the outcome of interest is only observed for a non-randomly selected subpopulation. This

may flaw causal analysis and is an ubiquitous phenomenon in many fields where treatment

effect evaluations are conducted, such as labor, health, and educational economics. E.g., in

the estimation of the returns to a training it is an issue when only a selective subgroup of

training participants and non-participants finds employment which is a condition for observing

earnings. Similar problems are inherent in clinical trials when some of the participants in

medical treatments pass away (“truncation by death”) before the health outcome is measured.

As a further example, consider the effect of randomly provided private schooling on college

entrance examinations. The sample selection problem arises if only a non-random subgroup

of students takes the exam.

In sample selection models in economics (see the seminal work of Heckman, 1974, 1976,

1979), identification commonly relies on tight functional form restrictions and the availability

of a valid instrument for selection. Albeit the literature has recently moved towards more

flexible models, see for instance Das, Newey, and Vella (2003) and Newey (2009), it typically

imposes strong assumptions on the unobserved terms unlikely to hold in many applications, see

Huber and Melly (2012), or uses invalid instruments, see Huber and Mellace (2011). Similar

arguments apply to many studies in the related field of missing data problems, which often use

regression or weighting adjustments (assuming selection on observables) to control for missing

outcomes, see for instance Hausman and Wise (1979), Robins, Rotnitzky, and Zhao (1995),

and Wooldridge (2007). In the absence of unattractive parametric restrictions or instruments

for sample selection, treatment effects are not point identified, but upper and lower bounds

can still be obtained under fairly mild restrictions.

Partial identification of economic parameters in general goes back to Manski (1989,

1994) and Robins (1989). In the context of the sample selection (or missing outcome data)

problem, several contributions in the fields of principal stratification, see Frangakis and

Rubin (2002), and econometrics derive bounds on treatment effects. Building on Horowitz

and Manski (1998), Horowitz and Manski (2000) consider the partial identification of the

average treatment effect in the entire population assuming a binary outcome and also

allowing for missing covariate information. Zhang and Rubin (2003) (see also Zhang, Rubin,
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and Mealli, 2008) bound the average treatment effects for one subpopulation, namely the

“always observed”, whose outcomes are observed both under treatment and non-treatment.

They impose two assumptions both separately and jointly: (i) monotonicity of selection in

the treatment and (ii) stochastic dominance of the potential outcomes of the always observed

over those of other populations. Imai (2008) shows that the bounds of Zhang and Rubin

(2003) are sharp and additionally considers the identification of quantile treatment effects.

Lee (2009) invokes monotonicity of selection (but not stochastic dominance) when assessing

the average earnings effects of Job Corps, a training program for disadvantaged youths in

the USA, on the always observed and proves the sharpness of the bounds. Blanco, Flores,

and Flores-Lagunes (2011) evaluate the same program, but add assumptions on the order

of mean potential outcomes within and across subpopulations to obtain tighter bounds. In

contrast to the aforementioned contributions, Lechner and Melly (2007) bound the effects on

those treated and observed, which is a mixed population consisting of always observed and

“compliers” who are observed under treatment, but would not be without treatment.1

The main contribution of this paper is the derivation of sharp bounds (the tightest feasible

bounds given the assumptions imposed and the information available) on average treatment

effects among compliers, “defiers” (outcomes observed if not treated and not observed if

treated), and the observed population, which have not been considered in previous work.

We show that under the monotonicity and/or stochastic dominance assumptions, informative

bounds can be derived even when the outcomes of particular subpopulations are only observed

in one treatment arm. For instance, one useful result is that under both assumptions, the

lower bound on the observed population coincides with that on the always observed. This

is relevant for many applications where particular interest lies in whether the lower bound

includes a zero effect. Thus, the assumptions may bear considerable identifying power, which

is demonstrated in an application to a school voucher experiment in Colombia previously

analyzed by Angrist, Bettinger, and Kremer (2006).

We argue that it is, depending on the evaluation problem at hand, useful to look at further

target populations than the ones covered in the literature so far, which can be done by the

methods proposed in this paper. E.g., it is the compliers whose selection state reacts on the

1This definition is not to be confused with the LATE framework (see Imbens and Angrist (1994)), where
compliers are those who are treated if assigned to treatment and not treated if assigned to control in a randomized
trial.
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treatment and it appears interesting in many applications whether this is observed along with

(and may be rooted in) a particular treatment effect. Taking the wage effects of a job training

program as an example, one might want to learn whether the change in the employment state

due to the training is accompanied by an increase in the potential wage. If yes, this points to

an increase in productivity that may be at least partly responsible for finding employment.

Furthermore, in particular applications, the compliers might also bear more policy relevance

than the always observed. E.g., consider a school voucher experiment investigating the effect of

private schooling on test scores in a college entrance exam which are only observed conditional

on taking the exam. As the compliers do so only under private schooling, they are likely to

come from educationally more disadvantaged families than the always observed. This might

exactly be the group policy makers want to target. As a further example which is related to

truncation by death, assume that a medical treatment reduces mortality but has detrimental

side effects on health. In this particular set-up, the always observed are clearly not of policy

interest: as these individuals always survive, one would in any case not expose them to a

treatment that may harm their health state. In contrast, the compliers are those who survive

thanks to the treatment and are therefore highly relevant. For this reason, one may want

to assess the magnitude of the adverse effect on this group, e.g. for developing alternative

treatments that are less harmful.

Furthermore, we might prefer to make causal statements rather for larger shares of the

entire population than for smaller groups. The largest possible group for which at least one

potential outcome (under treatment or non-treatment) is observed constitutes the observed

population, which is again a mixture of several subpopulations. E.g., policy makers might

want to learn about the average effects on all individuals whose outcomes are observed, with-

out thinking in terms of different latent subpopulations. Also Newey (2007) considers this

population, however, investigating point identification based on continuous instruments. As

an example, one might prefer to evaluate the returns to training for those working, who often

make up a substantial share of the entire population. Note that in some cases, the observed

population may even be more relevant than the entire population, because the latter also in-

cludes the never observed for which the evaluation of causal effects does not always appear

useful. E.g., under truncation by death, the potential health states of individuals that never

survive (under any treatment) are not defined and therefore, this group appears irrelevant
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when evaluating a medical treatment.2 In contrast, one might want to learn about one may

question whether the health effects on all survivors. Likewise, one could challenge the rele-

vance of assessing the effects of a schooling intervention (like school vouchers) on college en-

trance examinations in the entire population, given that the latter also includes individuals

who would never take these exams or enter college. In contrast, we may be interested in the

effects on those participating in the exams and thus expressing the desire to go to college.

Finally, there is also a statistical argument to look at populations other than the always

observed. In fact, if neither monotonicity nor unattractive parametric assumptions are im-

posed and if the share of “never observed” (whose outcomes are not observed irrespective of

the treatment state) is larger than the one of the always observed, no informative bounds can

be obtained for the latter. However, informative (albeit generally quite large) bounds are still

available for the observed population.

The remainder of this paper is organized as follows. Section 2 formally characterizes

the sample selection problem based on principal stratification. Section 3 discusses partial

identification of treatment effects for the compliers and the observed population under no

assumptions (worst case bounds) as well as under monotonicity and/or stochastic dominance.

Estimators are presented in Section 4. An empirical application to a school voucher experiment

in Colombia is provided in Section 5. Section 6 concludes.

2 The selection problem

Assume that we are interested in the effect of a binary treatment, Ti ∈ {1, 0}, on an outcome

Yi some time after assignment. Using the potential outcome framework, see for instance

Neyman (1923), Fisher (1935), and Rubin (1977), we will denote by Yi(1) and Yi(0) the two

potential outcomes that individual i would receive under treatment and non-treatment. Even

under randomization of the treatment, post-treatment complications might introduce selection

bias and flaw causal inference. One particular form of such complications is sample selection,

implying that the outcome of interest is only observed for a non-random subpopulation. To

address this problem let Si ∈ {1, 0} be an observed binary post-treatment selection indicator

which is 1 if the outcome of some individual is observed and 0 otherwise. Furthermore, we

denote by Si(1) and Si(0) the two potential selection states. Then, we can express the selection

2Note, however, that mortality could be a relevant outcome on its own.

4



indicator and the observed outcome as functions of the respective potential states:

Si = Ti · Si(1) + (1− Ti) · Si(0),

Yi = Ti · Yi(1) + (1− Ti) · Yi(0) if Si = 1 and not observed otherwise.

I.e., at best (if Si = 1) one of the two potential outcomes is observed. As at least one

potential outcome remains unknown, both point and partial identification of treatment effects

require further assumptions. The first restriction maintained throughout the discussion is the

so-called Stable Unit Treatment Value Assumption (SUTVA, e.g., Rubin, 1990), which rules

out interference between units and general equilibrium effects of the treatment:

Assumption 1:

Yi(t)⊥Tj ∀j 6= i,

Si(t)⊥Tj ∀j 6= i.

“⊥” denotes independence. This implies that the potential post-treatment variables of any

subject i are unrelated to the treatment status of any other individual.

Causal inference requires the specification of the treatment assignment mechanism. If

randomly assigned, the treatment is independent of the potential values of the post-treatment

variables S, Y . However, in many observational studies randomization is assumed to hold

only conditional on some observed pre-treatment covariates X. This assumption is known

as conditional independence assumption (CIA), also referred to as “selection on observables”

or “unconfoundedness”, see for instance Imbens (2004) and Imbens and Wooldridge (2009).

As elsewhere in the sample selection literature, see for instance Lee (2009) and Mealli and

Pacini (2008b), we therefore assume that the joint distribution of the potential outcomes and

selection states is independent of the treatment given X: 3

Assumption 2:

Ti⊥(S(1)i, Si(0), Yi(1), Yi(0))|Xi = x, ∀x ∈ X ,

where X denotes the support of X. In the further discussion, conditioning on X will be

kept implicit. Therefore, all results either refer to the experimental framework, see also the

application further below, or to an analysis within cells with the same values of X.

3Assumption 2 may be replaced by Ti⊥(Si(1), Si(0), Yi(0))|Xi = x ∀x ∈ X , if the inference is conditional on
T = 1, i.e., if one is only interested in treatment effects on the treated.
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As shown in Table 1 and discussed in Zhang and Rubin (2003), the population can be

divided into four subpopulations or principal strata (denoted as G), according to the value

the selection indicator Si(t) takes under different treatment states. The terms “always/never

Table 1: Principal strata

Principal strata (Gi) Si(1) Si(0) appellation

11 1 1 Always observed
10 1 0 Compliers
01 0 1 Defiers
00 0 0 Never observed

observed”, “compliers”, and “defiers” are in the spirit of Imbens and Angrist (1994) and

Angrist, Imbens, and Rubin (1996), who, however, consider the conceptually different problem

of treatment endogeneity. Assumption 2 implies that the stratum G some individual belongs to

is independent of the treatment assignment and that the potential outcomes are independent

of the treatment conditional on the principal stratum. Therefore, any treatment effect defined

within a principal stratum is a well defined causal parameter. The problem for identification

is that either Si(1) or Si(0) but never both are known for any individual so that the principal

stratum to which a subject belongs is not directly observed. Without further assumptions

neither the principal strata proportions nor the distributions of the potential outcomes within

each stratum are identified. To see this, note that the observed values of Ti and Si generate

the following four observed subgroups, denoted as o(Ti, Si), which are all mixtures of two

principal strata.

Table 2: Observed subgroups and principal strata

Observed subgroups o(Ti, Si) principal strata Yi observed

o(1, 1) = {i : Ti = 1, Si = 1} subject i belongs either to 11 or to 10 yes
o(1, 0) = {i : Ti = 1, Si = 0} subject i belongs either to 01 or to 00 no
o(0, 1) = {i : Ti = 0, Si = 1} subject i belongs either to 11 or to 01 yes
o(0, 0) = {i : Ti = 0, Si = 0} subject i belongs either to 10 or to 00 no

Therefore, also the probability to belong to an observed subgroup is a mixture of principal

strata proportions, henceforth denoted as πss′ ≡ Pr(S(1) = s, S(0) = s′). Let Ps|t represent

the observed selection probability conditional on treatment, Pr(S = s|T = t), in the popula-

tion of interest. Under Assumption 2, which ensures that the strata proportions conditional

on the treatment are equal to the unconditional strata proportions, the relation between the
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observed Ps|t and the latent πss′ is as follows:

Table 3: Observed probabilities and principal strata proportions

Observed cond. selection prob. princ. strata proportions

P1|1 ≡ Pr(S = 1|T = 1) π11 + π10

P0|1 ≡ Pr(S = 0|T = 1) π01 + π00

P1|0 ≡ Pr(S = 1|T = 0) π11 + π01

P0|0 ≡ Pr(S = 0|T = 0) π10 + π00

Thus, point identification of causal effects can only be obtained by imposing unattractive

parametric assumptions, see for instance the discussion in Mealli and Pacini (2008b), Zhang,

Rubin, and Mealli (2009), and Heckman (1974, 1976, 1979). However, intervals of treatment

effects for particular strata that are consistent with the observed data can be derived under

milder assumptions. As mentioned before, treated and non-treated units are only observed

for the always observed (stratum 11), i.e. those observed irrespective of the treatment state.

For this reason, most of the literature on bounding treatment effects under sample selection

focuses on stratum 11, see Zhang and Rubin (2003), Grilli and Mealli (2008), Zhang, Rubin,

and Mealli (2008), and Lee (2009), with the exception of Lechner and Melly (2007).

We, however, argue that the always observed are generally not the only population of

interest and show that informative bounds can also be derived for other populations under

assumptions which seem plausible in many applications. In particular, we are interested in

the effects in stratum 10 and in the entire observed population (S = 1). Stratum 10 consists

of those individuals observed with and not observed without treatment. Thus, they can be

referred to as “compliers” in selection w.r.t. the treatment. This stratum is interesting in

many applications as it consists of the marginal population that changes the selection state

due to the treatment. Taking the wage effects of a job training program as an example, we

might be interested in whether the change in the employment state due to the training is

accompanied by an increase in the potential outcomes. If yes, this points to an increase in

productivity that may be at least partly responsible for finding employment. Furthermore,

in a school voucher experiment investing the effect of private schooling on college entrance

examinations, the compliers are those who take the test only under private schooling. They

are therefore likely to be more disadvantaged and academically less challenged at home than

the always observed., which may be exactly the population policy makers want to target.

The observed population is a mixture of always observed, compliers, and defiers (stratum
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01: observed under non-treatment, not observed under treatment) and therefore encounters

individuals with different “selection behaviors”. Still, policy makers might want to learn

about the effects on all individuals whose outcomes are observed irrespective of their stratum

affiliations. After all, the observed population contains all subjects for which at least one

outcome (under treatment and/or non-treatment) is observed so that reasonable bounds on

the effects may still be attained under the assumptions discussed below. In contrast, for the

never observed bounds are most likely very uninformative and in addition, this group does not

always appear policy relevant (e.g., under truncation by death, this is the group that never

survives so that their outcomes are not defined). Thus, the observed group appears to be the

largest possible subpopulation for which useful inference appears to be feasible.

To link principal stratification to the econometric literature on sample selection, we con-

clude this section by discussing the identification problem in a structural model (see also Hu-

ber, 2012, Mealli and Pacini, 2008a, and Mellace and Rocci, 2010):

Yi = ϕ(Ti, Ui),

Si = I{ς(Ti, Vi) ≥ 0},

Ti = I{ψ(ζi) ≥ 0}, (1)

where I{·} is the indicator function, ϕ, ς, ψ are unknown functions, and U, V, ζ are unobserved

terms. ζ⊥U, V by random assignment (or conditional on X by the conditional independence

assumption in observational studies). The selectivity of S depends on the relationship of

the unobserved terms U and V . Note that the sample selection problem disappears when

conditioning on V because then, S and U are conditionally independent. Even though V is

unknown, the problem can be controlled for if there exists a function G(V ) so that

U⊥S|G(V ).

Imbens (2006) calls such a function “type of unit”. Principal stratification is a natural choice

of G(·), as

G(v) = G(v′) if ς(t, v) = ς(t, v′) ∀ t, v 6= v′ ,

G(v) 6= G(v′) if ς(t, v) 6= ς(t, v′) for some t, v 6= v′ ,

8



and U⊥S|G(V ) by construction. Once we condition on the “type of unit”, selection becomes

ignorable. Principal stratification represents the coarsest possible choice of the type function.

As pointed out by Imbens (2006), the optimal type function is any functional that is constant

on sets of values of V which, for all values t, lead to the same value of S.

3 Assumptions and partial identification

3.1 Worst case bounds

We restrict the support of the potential outcomes to be bounded: Yi(1), Yi(0) ∈ Y ≡

[Y LB , Y UB ], where −∞ < Y LB < Y UB < ∞ are the values at the lower and upper end of

the support Y, respectively. This condition rules out infinite upper or lower bounds on the

ATE in any population even without imposing restrictions other than Assumptions 1 and 2.

We will also assume that Y is continuous, whereas the adaptation of our methods to discrete

outcomes is discussed in online appendix A.5.

Partial identification is obtained in three steps. In the first step, we derive sharp bounds

on the principal strata proportions using Assumption 2. As one can express three out of four

proportions as a function of the remaining one, we only need to bound the latter. Therefore, all

bounds are computed as functions of the defier proportion, but choosing any other principal

stratum would entail the same results. The second step (which is mostly discussed in the

online appendix) gives the bounds on the mean potential outcomes and the ATEs conditional

on the defier proportion. It makes use of the fact that each observed conditional mean outcome

is a mixture of the potential outcome distributions of two principal strata, with the mixing

probabilities corresponding to the relative principal strata proportions:

f(Y |T = 0, S = 1) =
π11

π11 + π01
· f(Y (0)|G = 11) +

π01
π11 + π01

· f(Y (0)|G = 01) (2)

and

f(Y |T = 1, S = 1) =
π11

π11 + π10
· f(Y (1)|G = 11) +

π10
π11 + π10

· f(Y (1)|G = 10), (3)

Given the defier proportion (and thus, the mixing probabilities, in our case π11

π11+π01
, π01

π11+π01

and π11

π11+π10
, π10

π11+π10
, respectively), the results of Horowitz and Manski (1995) (see Section
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3.2 and Proposition 4 therein) can be directly applied to derive sharp bounds on the mean

potential outcomes, as well as any functional of the potential outcomes that respects stochastic

dominance (e.g. quantiles), in equations (2) and (3). Finally maximizing the ATEs in the

second step over admissible defier proportions that satisfy Assumption 2 yields the sharp

upper (lower) bounds on the ATEs. Similarly, one can bound other parameters such as

quantile treatment effects4.

Concerning the bounds on the defier proportion, note that under Assumptions 1 and 2,

Table 3 provides us with the following equations:

P1|0 − π01 = π11 ⇒ π01 ≤ P1|0,

P0|1 − π01 = π00 ⇒ π01 ≤ P0|1,

P1|1 − P1|0 + π01 = π10 ⇒ π01 ≥ P1|0 − P1|1,

so that

π01 ∈ [max(0, P1|0 − P1|1),min(P1|0, P0|1)]. (4)

In the absence of further assumptions Zhang and Rubin (2003) derive the worst case

bounds of the ATE on the always observed (stratum 11), henceforth denoted as ∆11, which

are shown to be sharp in Imai (2008). For the sake of brevity, let Ȳt,s ≡ E(Y |T = t, S = s),

i.e., the mean of Y given T = t and S = s (which is only observed for S = 1). Furthermore, let

FYt,s(y) ≡ Pr(Y ≤ y|T = t, S = s) and F−1Yt,s
(q) ≡ inf{y : FYt,s(y) ≥ q}, i.e., the conditional

cdf and quantile function of Y given T = t and S = s. Finally, let Ȳt,s(min |q) ≡ E(Y |T =

t, S = s, Y ≤ F−1Yt,s
(q)) and Ȳt,s(max |q) ≡ E(Y |T = t, S = s, Y ≥ F−1Yt,s

(1−q)). The upper and

the lower bound of the ATE on the always observed ∆11 ≡ E(Y (1)− Y (0)|G = 11), denoted

as ∆UB
11 and ∆LB

11 , in Zhang and Rubin (2003), are

∆UB
11 = min

π01

[Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1(min |(P1|0 − π01)/P1|0)],

∆LB
11 = max

π01

[Ȳ1,1(min |(P1|0 − π01)/P1|1)− Ȳ0,1(max |(P1|0 − π01)/P1|0)]. (5)

4One can adapt the results of Stoye (2010) to our framework to also bound spread parameters, e.g. variances
of the treatment effects.
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Thus, the authors suggest to optimize over all possible values of the defiers’ share π01 that

are consistent with the data to obtain the upper and lower bound. A first contribution of

the present work is to show that numerical optimization is not necessary. As outlined in the

online appendix, ∆UB
11 and ∆LB

11 can be simplified to

∆UB
11 = Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1(min |(P1|0 − πmax
01 )/P1|0),

∆LB
11 = Ȳ1,1(min |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1(max |(P1|0 − πmax
01 )/P1|0), (6)

where πmax
01 ≡ min(P1|0, P0|1), as the highest feasible defiers’ share maximizes the upper bound

and minimizes the lower bound. Note that the bounds are only informative (i.e., tighter than

Y UB − Y LB) if P1|0 > P0|1, which has also been noticed by Lee (2009). This implies that

π11 > π00, i.e., that the share of always observed is larger than the share of never observed. In

this case, (P1|0− πmax
01 )/P1|1 = (P1|0−P0|1)/P1|1 and (P1|0− πmax

01 )/P1|0 = (P1|0−P0|1)/P1|0,

so that the bounds only depend on this ratio of observed proportions.

In contrast to previous work we will now also derive bounds for the compliers (stratum

10), the defiers (stratum 01), and the observed population. It is obvious from our previous

discussion that the share of compliers in o(1, 1) is π10/(π11 + π10) = (P1|1 − P1|0 + π01)/P1|1,

i.e., the fraction of those who are not always observed. This allows us to bound the upper

and lower values of the mean potential outcome under treatment by Ȳ1,1(max |(P1|1 − P1|0 +

πmin
01 )/P1|1) and Ȳ1,1(min |(P1|1−P1|0 +πmin

01 )/P1|1), respectively, where πmin
01 ≡ max(0, P1|0−

P1|1). However, nothing can be said about the mean potential outcome under non-treatment,

as there are no compliers in o(0, 1). This requires us to assume the theoretical upper and

lower bounds of the outcome Y UB and Y LB . Then, the sharp upper and lower bounds of the

ATE on the compliers ∆10 ≡ E(Y (1)− Y (0)|G = 10), denoted as ∆UB
10 and ∆LB

10 , are

∆UB
10 = Ȳ1,1(max |(P1|1 − P1|0 + πmin

01 )/P1|1)− Y LB ,

∆LB
10 = Ȳ1,1(min |(P1|1 − P1|0 + πmin

01 )/P1|1)− Y UB . (7)

These bounds are informative only if P1|0 − P1|1 < 0 ⇒ π10 > π01 (more compliers than

defiers). Then, (P1|1−P1|0 + πmin
01 )/P1|1 = (P1|1−P1|0)/P1|1. The proofs for the sharpness of

these and all other bounds proposed below are provided in the online appendix.

Similarly, the share of defiers in o(0, 1) is π01/(π11 + π01) = π01/P1|0. This allows us
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to bound the upper and lower value of the mean potential outcome under non-treatment

by Ȳ0,1(max |πmin
01 /P1|0) and Ȳ0,1(min |πmin

01 /P1|0), respectively. Since there are no defiers in

o(1, 1), we again need to invoke Y UB and Y LB . The sharp upper and lower bounds for the

ATE on the defiers ∆01 ≡ E(Y (1)− Y (0)|G = 01), denoted as ∆UB
01 and ∆LB

01 , are

∆UB
01 = Y UB − Ȳ0,1(min |πmin

01 /P1|0),

∆LB
01 = Y LB − Ȳ0,1(max |πmin

01 /P1|0). (8)

These bounds are only informative if P1|0 − P1|1 > 0⇒ π01 > π10, i.e., if the defiers’ share is

at least as large as the compliers’ share. If this is true, then πmin
01 /P1|1 = (P1|0 − P1|1)/P1|1.

This is, together with the identification result for the compliers, an interesting finding because

it implies that without imposing monotonicity of selection in the treatment (as outlined be-

low), bounds are informative either for the defiers or for the compliers, but never for both

populations. It also implies that unless P1|1 − P1|0 = 0, either positive (if P1|1 − P1|0 > 0) or

negative (if P1|0 − P1|1 > 0) monotonicity of S in T is consistent with the data, but not both

at the same time. See the discussion in the next subsection.

Finally, we derive the worst case bounds for the ATE on the observed population ∆S=1 ≡

E(Y (1)−Y (0)|S = 1), which is a mixed population of always observed, compliers, and defiers.

Since

Pr(S = 1) = Pr(S = 1|T = 1) · Pr(T = 1) + Pr(S = 1|T = 0) · Pr(T = 0)

= π11 + Pr(T = 1) · π10 + Pr(T = 0) · π01,

their respective shares in the observed population are given by

π11
π11 + Pr(T = 1) · π10 + Pr(T = 0) · π01

=
(P1|0 − π01)

Pr(S = 1)
,

Pr(T = 1) · π10
π11 + Pr(T = 1) · π10 + Pr(T = 0) · π01

=
Pr(T = 1) · (P1|1 − P1|0 + π01)

Pr(S = 1)
,

Pr(T = 0) · π01
π11 + Pr(T = 1) · π10 + Pr(T = 0) · π01

=
Pr(T = 0) · π01

Pr(S = 1)
.

Note that assuming the upper bound of the mean potential outcome under treatment for the

always observed, Ȳ1,1(max |P1|0/P1|1) implies assuming the lower bound of the mean potential
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outcome under treatment for the compliers, Ȳ1,1(min |1 − P1|0/P1|1), and vice versa, as the

weighted average of both must always yield Ȳ1,1. For the same reason, assuming the upper

bound of the mean potential outcome under non-treatment for the always observed is equiv-

alent to assuming the lower bound of the mean potential outcome under non-treatment for

the defiers. In online appendix A.1.4 we use this fact to obtain unambiguous expressions for

the bounds on the ATE on the observed population (∆S=1) for some fixed defiers’ share π01.

Furthermore, the online appendix also shows that we need not optimize over the range of all

the possible values of the defiers’ share. In fact, setting π01 = πmax
01 leads to sharp bounds on

∆S=1. Then, the upper bound is

∆UB
S=1 =

(P1|0 − πmax
01 ) · Pr(T = 0) · Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)

Pr(S = 1)

−
(P1|0 − πmax

01 ) · Pr(T = 1) · Ȳ0,1(min |(P1|0 − πmax
01 )/P1|0)

Pr(S = 1)

+
Pr(T = 1) · P1|1 · Ȳ1,1 − Pr(T = 0) · P1|0 · Ȳ0,1

Pr(S = 1)

+
Pr(T = 0) · πmax

01 · Y UB − Pr(T = 1) · (P1|1 − P1|0 + πmax
01 ) · Y LB

Pr(S = 1)
. (9)

The lower bound is given by

∆LB
S=1 =

(P1|0 − πmax
01 ) · Pr(T = 0) · Ȳ1,1(min |(P1|0 − πmax

01 )/P1|1)

Pr(S = 1)

−
(P1|0 − πmax

01 ) · Pr(T = 1) · Ȳ0,1(max |(P1|0 − πmax
01 )/P1|0)

Pr(S = 1)

+
Pr(T = 1) · P1|1 · Ȳ1,1 − Pr(T = 0) · P1|0 · Ȳ0,1

Pr(S = 1)

+
Pr(T = 0) · πmax

01 · Y LB − Pr(T = 1) · (P1|1 − P1|0 + πmax
01 ) · Y UB

Pr(S = 1)
. (10)

The identification region shrinks as the shares of compliers and/or defiers decreases. In the

special case that both shares are zero the ATE on the observed population is point identified.

If the share of only one population is equal to zero the bounds are equivalent to those under

monotonicity which we will derive in the next subsection. Another result worth noting is

that the bounds on the observed population are always informative. E.g., if P1|0 < P0|1, the
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bounds become

∆UB
S=1 =

Pr(T = 1) · P1|1

Pr(S = 1)
· (Ȳ1,1 − Y LB) +

Pr(T = 0) · P1|0

Pr(S = 1)
· (Y UB − Ȳ0,1)

and

∆LB
S=1 =

Pr(T = 1) · P1|1

Pr(S = 1)
· (Ȳ1,1 − Y UB) +

Pr(T = 0) · P1|0

Pr(S = 1)
· (Y LB − Ȳ0,1),

which happen to be equal to the bounds under π11 = 0, i.e., in the absence of always observed.

Thus, even though informative bounds cannot be derived for the always observed if P1|0 < P0|1,

they can still be derived for the observed population.

3.2 Monotonicity

A commonly imposed assumption in the literature on partial identification of treatment

effects under sample selection is weak monotonicity of selection w.r.t. the treatment:

Assumption 3:

Pr(Si(1) ≥ Si(0)) = 1 (monotonicity of selection).

In terms of the structural model in (1) this can be stated as

Assumption 3SM:

ς(1, Vi) ≥ ς(0, Vi) ∀ subjects i.

The monotonicity assumption requires that the potential selection state never decreases

in the treatment and, thus, rules out the existence of the defiers (stratum 01). A symmetric

result is obtained by assuming Pr(Si(0) ≥ Si(1)) = 1 which implies that stratum 10 does not

exist. As already mentioned before, assuming Pr(Si(1) ≥ Si(0)) = 1 (positive monotonicity)

is only consistent with the data if P1|1 − P1|0 ≥ 0 and Pr(Si(0) ≥ Si(1)) = 1 (negative

monotonicity) if P1|0 − P1|1 ≥ 0. These are necessary, albeit not sufficient conditions for the

respective monotonicity assumption. For the sake of brevity and due to the symmetry of the

argumentation, we will only focus on Assumption 3 (positive monotonicity) in the subsequent

discussion.

The plausibility of monotonicity depends on the empirical context. E.g., it is not necessarily
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satisfied in the evaluation of the returns to a job training. In fact, employment (S) might

react negatively on the training (T ) due to reduced job search effort while being trained, a

phenomenon known as “lock-in” effect. Monotonicity might therefore only be plausible in later

periods after the accomplishment of the training. The assumption seems more innocuous when

evaluating the effectiveness of private schooling on college entrance examinations, given that

private schooling offers a better education than public alternatives and affects the preferences

for academic achievement. It appears reasonable to assume that students are more likely to

take the test when receiving better education or motivation to pursue an academic career so

that defiers can be ruled out.

Monotonicity has been considered in Lee (2009), Zhang and Rubin (2003), and Zhang,

Rubin, and Mealli (2008) to bound the ATE on the always observed (stratum 11) and in

Lechner and Melly (2007) to derive bounds for the treated and observed population. Lee

(2009) shows that the following bounds are sharp for the ATE on the always observed:

∆UB
11 = Ȳ1,1(max |P1|0/P1|1)− Ȳ0,1,

∆LB
11 = Ȳ1,1(min |P1|0/P1|1)− Ȳ0,1. (11)

Under monotonicity, o(0, 1) consists only of individuals belonging to stratum 11 so that Ȳ0,1

is the mean potential outcome of the always observed under non-treatment. Furthermore,

P1|0 = π11. Therefore, the share of the always observed in o(1, 1) is π11/(π11+π10) = P1|0/P1|1.

In the most extreme cases, either the upper or lower P1|0/P1|1 share of the outcome distribution

in o(1, 1) represents the potential outcomes of the always observed under treatment, which

gives rise to the upper and lower bounds on ∆11 that are tighter than the worst case bounds.

Two points are worth noting. First, we have seen in the last section that if π00 > π11,

informative bounds are only obtained for the observed population and either compliers or

defiers without further assumptions. Introducing monotonicity also identifies informative

bounds for the always observed, which turn out to be tighter than under the stochastic

dominance assumption discussed below. Second, if P1|0 − P1|1 > 0, the bounds are not

informative, because π01 cannot be zero. As discussed before, the data can provide evidence

against (positive or negative) monotonicity.

We now derive the bounds on the ATE on the compliers, ∆10, which are just special cases
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of the worst case bounds given that π01 = 0. Therefore, they are sharp given the sharpness

of the worst case bounds. Thus, under monotonicity ∆10 is bounded by

∆UB
10 = Ȳ1,1(max |(P1|1 − P1|0)/P1|1)− Y LB ,

∆LB
10 = Ȳ1,1(min |(P1|1 − P1|0)/P1|1)− Y UB . (12)

Monotonicity does not shrink the bounds for the compliers, as the worst case bounds under

non-treatment are unaffected by ruling out defiers. However, the assumption assures that the

bounds are informative. Indeed, in the worst case scenario the bounds were only informative

if P1|0 − P1|1 < 0 which implies that the lower bound on the defiers’ share is zero (πmin
01 = 0),

see (4).

Assumption 3 has identifying power for the observed population, which is now only a

mixture of always observed and compliers. The respective proportions of these groups are

π11
π11 + Pr(T = 1) · π10

=
P1|0

Pr(S = 1)
,

Pr(T = 1) · π10
π11 + Pr(T = 1) · π10

=
Pr(T = 1) · (P1|1 − P1|0)

Pr(S = 1)
,

Again, the bounds are a special case of the worst case bounds under π01 = 0 and given by

∆UB
S=1 =

P1|0

Pr(S = 1)
· (Pr(T = 0) · Ȳ1,1(max |P1|0/P1|1)− Ȳ0,1)

+
Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ1,1 −

Pr(T = 1) · (P1|1 − P1|0)

Pr(S = 1)
· Y LB ,

(13)

∆UB
S=1 =

P1|0

Pr(S = 1)
· (Pr(T = 0) · Ȳ1,1(min |P1|0/P1|1)− Ȳ0,1)

+
Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ1,1 −

Pr(T = 1) · (P1|1 − P1|0)

Pr(S = 1)
· Y UB ,

(14)

The identification region shrinks as the complier population decreases and ∆S=1 is point

identified in the absence of compliers so that P1|1 − P1|0 = 0. Then, the observed population

consists only of always observed individuals.
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3.3 Stochastic dominance

Assumption 4 formalizes stochastic dominance which has been considered by Zhang and

Rubin (2003), Grilli and Mealli (2008), Zhang, Rubin, and Mealli (2008), and Lechner and

Melly (2007), see also Blundell, Gosling, Ichimura, and Meghir (2007) for a related, but

somewhat different form of dominance.

Assumption 4:

Pr(Yi(t) ≤ y|G = 11) ≤ Pr(Yi(t) ≤ y|G = 10), ∀ y ∈ [Y LB , Y UB ], t ∈ {0, 1},

and

Pr(Yi(t) ≤ y|G = 11) ≤ Pr(Yi(t) ≤ y|G = 01), ∀ y ∈ [Y LB , Y UB ], t ∈ {0, 1}

(stochastic dominance).

I.e., the potential outcome among the always observed at any rank of the outcome distri-

bution and in any treatment state is at least as high as that of the compliers or the defiers,

respectively.5 Taking the evaluation of the returns to a job training as example, it implies

that the always observed have potential wages that are at least as high as the ones of other

groups. To justify Assumption 4, note that the always observed are employed irrespective of

the training. Therefore, they are likely to be more motivated and/or able than other popu-

lations. Zhang, Rubin, and Mealli (2008) argue that ability tends to be positively correlated

with wages and thus, the stochastic dominance assumption (or “positive selection”) appears

to be plausible. Similar arguments hold for the evaluation of private schooling with regard

to the performance in college entrance examinations. As the always observed are those tak-

ing the exam with and without private schooling, it seems reasonable to assume that their

potential test scores are higher than those of other groups.

Under Assumption 4, Imai (2008) shows that the following bounds proposed by Zhang and

Rubin (2003) are sharp for the ATE on the always observed:

∆UB
11 = Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1,

∆LB
11 = Ȳ1,1 − Ȳ0,1(max |(P1|0 − πmax

01 )/P1|0). (15)

5For our purpose, which is the derivation of bounds on the ATE, the weaker mean dominance assumption, i.e.
E[Y (t)|G = 11] ≥ E[Y (t)|G = 10] and E[Y (t)|G = 11] ≥ E[Y (t)|G = 01], t ∈ {0, 1}, is sufficient. However,
stochastic dominance is required when considering other parameters as for instance the quantile treatment effect.
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As E[Y (t)|G = 11] ≥ E[Y (t)|G = 10], E[Y (t)|G = 11] ≥ E[Y (t)|G = 01] for t ∈ {0, 1},

the means Ȳ1,1, Ȳ0,1 constitute the lower bounds of E[Y (1)|G = 11] and E[Y (0)|G = 11],

respectively. Thus, Assumption 4 is likely to shrink the worst case bounds because

Ȳ0,1 ≥ Ȳ0,1(min |(P1|0 − πmax
01 )/P1|0) and Ȳ1,1 ≥ Ȳ1,1(min |(P1|0 − πmax

01 )/P1|1). Note that

width of the bounds is maximized if the share of the always observed is smaller than

the one of the never observed. Then, Ȳ1,1(max |(P1|0 − πmax
01 )/P1|1) = Ȳ1,1(max |0) and

Ȳ0,1(max |(P1|0 − πmax
01 )/P1|0) = Ȳ0,1(max |0) so that they are uninformative which requires

us to use the theoretical upper bound Y UB .

Stochastic dominance implies the following bounds for the ATE on the compliers:

∆UB
10 = Ȳ1,1 − Y LB ,

∆LB
10 = min

π01

[
Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1)− Ȳ0,1(max |(P1|0 − π01)/P1|0)

]
. (16)

The intuition is that any mean potential outcome of the compliers is at best as high as that

of the always observed, so that Ȳ1,1 and Ȳ0,1(max |(P1|0 − π01)/P1|0) are upper bounds for

E[Y (1)|G = 10] and E[Y (0)|G = 10], respectively. Thus, the bounds are likely tighter than

the worst case bounds since Ȳ1,1 ≤ Ȳ1,1(max |(P1|1 − P1|0 + π01)/P1|1) and Ȳ0,1(max |(P1|0 −

π01)/P1|0) ≤ Y UB . In particular, stochastic dominance in general raises the lower bound of the

effect, since it does not depend on Y UB anymore. This is relevant for empirical applications,

where the lower bound is often more interesting than the upper bound, as it provides evidence

on the existence of a positive effect. Note that since Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1) is

minimized for π01 = πmin
01 and Ȳ0,1(max |(P1|0 − π01)/P1|0) is maximized for π01 = πmax

01 , we

need to minimize ∆LB
10 over all possible values of π01.

In an analogous way, the bounds of the ATE on the defiers can be derived as

∆UB
01 = max

π01

[
Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1(min |π01/P1|0)

]
,

∆LB
01 = Y LB − Ȳ0,1. (17)

As for the compliers, any mean potential outcome of the defiers can be at best as high as the

one of the always observed so that Ȳ1,1(max |(P1|0 − π01)/P1|1) constitutes the upper bound

under treatment and Ȳ0,1 the upper bound under non-treatment. These bounds are likely

to be narrower than the worst case bounds since Ȳ1,1(max |(P1|0 − π01)/P1|1) ≤ Y UB and
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Ȳ0,1 ≤ Ȳ0,1(max |π01/P1|0). Since Ȳ1,1(max |(P1|0 − π01)/P1|1) is maximized for π01 = πmax
01

and Ȳ0,1(min |π01/P1|0) is minimized for π01 = πmin
01 , we need to maximize ∆UB

01 over all

possible values of π01.

Finally, the bounds of the ATE on the observed population are identified by

∆UB
S=1 =

Pr(T = 0) · P1|0

Pr(S = 1)
· Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)

−
P1|0 − Pr(T = 1) · πmax

01

Pr(S = 1)
Ȳ0,1

+
Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ1,1 −

Pr(T = 1) · (P1|1 − P1|0 + πmax
01 )

Pr(S = 1)
· Y LB

∆LB
S=1 =

Pr(T = 1) · P1|1 + Pr(T = 0) · (P1|0 − πmax
01 )

Pr(S = 1)
· Ȳ1,1

−
Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ0,1(max |(P1|0 − πmax

01 )/P1|0)

+
Pr(T = 0) · πmax

01

Pr(S = 1)
· Y LB −

Pr(T = 0) · P1|0

Pr(S = 1)
· Ȳ0,1 (18)

For both the upper and the lower bound of ∆S=1, stochastic dominance eliminates Y UB

present in the worst case scenario. The identification region shrinks since the bounds for

always observed, compliers, and defiers become narrower. However, if the never observed

outnumber the always observed, the bounds correspond to the worst case ones. Interestingly,

the bounds on ∆S=1 are tighter than those on ∆11. Again, we obtain more informative bounds

for the observed population than for the always observed if π00 > π11.

3.4 Monotonicity and stochastic dominance

We subsequently investigate the identifying power of combining Assumptions 3 and 4. This

was first considered by Zhang and Rubin (2003) who derive the following bounds for the

always observed, which were shown to be sharp by Imai (2008):

∆UB
11 = Ȳ1,1(max |P1|0/P1|1)− Ȳ0,1,

∆LB
11 = Ȳ1,1 − Ȳ0,1. (19)

These bounds are a simplification of those under stochastic dominance for π01 = 0. The upper

bound is the same as under monotonicity and is, thus, not affected by additionally assuming

stochastic dominance, which does not change the conditional means to be compared. However,
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the lower bound is tightened by the fact that Ȳ1,1 now constitutes the lower bound of the mean

potential outcome of the always observed under treatment.

In the same manner, the bounds on the compliers simplify to

∆UB
10 = Ȳ1,1 − Y LB ,

∆LB
10 = Ȳ1,1(min |1− P1|0/P1|1)− Ȳ0,1. (20)

The upper bound is the same as under stochastic dominance and unaffected by adding

monotonicity, because ruling out defiers does not change the comparison outcome under

non-treatment, which is still the theoretical lower bound (as compliers are not observed

under non-treatment). Also for the lower bound, monotonicity does not bring any benefits

for the same reasons as under Assumption 3: For all admissible values π01 ≥ 0, π01 = 0

minimizes the lower bound of the mean potential outcome under treatment. Therefore,

setting π01 = 0 by assumption does neither increase the lower bound of the mean potential

outcome, nor of ∆10.

The bounds of the ATE on the observed population are identified by

∆UB
S=1 =

P1|0

Pr(S = 1)
· (Pr(T = 0) · Ȳ1,1(max |P1|0/P1|1)− Ȳ0,1)

+
Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ1,1 −

Pr(T = 1) · (P1|1 − P1|0)

Pr(S = 1)
· Y LB ,

∆LB
S=1 =

P1|0

Pr(S = 1)
· (Ȳ1,1 − Ȳ0,1) +

Pr(T = 1) · (P1|1 − P1|0)

Pr(S = 1)
· (Ȳ1,1 − Ȳ0,1)

= Ȳ1,1 − Ȳ0,1. (21)

Compared to just invoking monotonicity, the upper bound of ∆S=1 is unaffected by the

introduction of stochastic dominance. This is due to the fact that Ȳ1,1 still represents the

weighted average of the mean potential outcomes under treatment of the always observed

and the compliers (even if the potential outcomes are now restricted in a particular way by

stochastic dominance). Nor does the assumption change the bound of any other potential

outcome relevant to the upper bound. Stochastic dominance does, however, change the lower

bound on ∆S=1. Ȳ0,1 now represents the mean potential outcome under non-treatment for all

observed individuals because it constitutes the upper bound on the compliers’ mean potential

outcome. Therefore, an interesting result of imposing both assumptions is that the lower
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bound now coincides with the one for the always observed.

4 Estimation

This section briefly sketches estimation, which is mostly based on the sample analogs of

the bounds derived under the various assumptions (even though the lower bound for the

compliers and the upper bound for the defiers under stochastic dominance deserve particular

consideration, as discussed below). To this end, we define the following sample parameters:

P̂1|1 ≡
∑n
i=1 Si · Ti∑n
i=1 Ti

, P̂0|1 ≡ 1−
∑n
i=1 Si · Ti∑n
i=1 Ti

,

P̂1|0 ≡
∑n
i=1 Si · (1− Ti)∑n
i=1(1− Ti)

, P̂0|0 ≡ 1−
∑n
i=1 Si · (1− Ti)∑n
i=1(1− Ti)

,

ˆ̄Y1,1 ≡
∑n
i=1 Yi · Si · Ti∑n
i=1 Si · Ti

, ˆ̄Y0,1 ≡
∑n
i=1 Yi · Si · (1− Ti)∑n
i=1 Si · (1− Ti)

,

ˆ̄Yt,s(max |q) ≡
∑n
i=1 Yi · I{Si = s} · I{Ti = t} · I{Y ≥ ŷ1−q}∑n
i=1 I{Si = s} · I{Ti = t} · I{Y ≥ ŷ1−q}

,

ˆ̄Yt,s(min |q) ≡
∑n
i=1 Yi · I{Si = s} · I{Ti = t} · I{Y ≤ ŷq}∑n
i=1 I{Si = s} · I{Ti = t} · I{Y ≤ ŷq}

,

ŷq ≡ min

{
y :

∑n
i=1 Si · Ti · I{Yi ≤ y}∑n

i=1 Si · Ti
≥ q
}
,

where I{·} is the indicator function. Using these expressions instead of the population

parameters in the formulas for the bounds immediately yields feasible estimators.

However, note that depending on the parameters considered, particular common support

conditions have to be satisfied. E.g., the estimation of P̂1|1, P̂0|1 and P̂1|0, P̂0|0 requires that

Pr(T = 1) > 0 and Pr(T = 1) < 1, respectively (or that 0 < Pr(T = 1) < 1 for the joint

estimation of P̂1|1, P̂0|1, P̂1|0, P̂0|0). Likewise, ˆ̄Y1,1 demands that E(S · D) > 0 and ˆ̄Y0,1 that

E(S ·D) < 1.

√
n-consistency and asymptotic normality of the estimators of the bounds for the compli-

ers and the observed population under both monotonicity and stochastic dominance directly

follows from the results of Lee (2009). To see this, first consider the estimators of ∆UB
11 ,∆LB

11

under monotonicity alone:

∆̂UB
11 = ˆ̄Y1,1(max |P̂1|0/P̂1|1)− ˆ̄Y0,1,

∆̂LB
11 = ˆ̄Y1,1(min |P̂1|0/P̂1|1)− ˆ̄Y0,1.
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In his appendix, Lee (2009) shows
√
n-consistency and asymptotic normality using a GMM

framework based on Theorems 2.6 and 7.2 of Newey and McFadden (1994). It suffices to

show the desirable properties for ˆ̄Y1,1(max |P̂1|0/P̂1|1) and ˆ̄Y1,1(max |P̂1|0/P̂1|1) (or just one of

them due to the symmetry of the problem) because these estimators are independent of the

observed mean outcome under non-treatment ˆ̄Y0,1.

Now consider the estimators for the compliers under monotonicity:

∆̂UB
10 = ˆ̄Y1,1(max |1− P1|0/P1|1)− Y LB ,

∆̂LB
10 = ˆ̄Y1,1(min |1− P1|0/P1|1)− Y UB . (22)

Y LB , Y UB are constants not relevant for the properties of the estimators. Furthermore, note

that the problem of estimating ˆ̄Y1,1(max |1 − P1|0/P1|1) is symmetric to ˆ̄Y1,1(max |P̂1|0/P̂1|1)

(and ˆ̄Y1,1(min |1 − P1|0/P1|1) to ˆ̄Y1,1(max |P̂1|0/P̂1|1)). Therefore, Lee’s results immediately

apply to the estimators of the bounds for the compliers. This in turn implies
√
n-consistency

and asymptotic normality of ∆̂UB
S=1, ∆̂

LB
S=1, as the observed population is just a weighted average

of the always observed and compliers. Finally, note that imposing stochastic dominance in

addition to monotonicity replaces some parameters in the estimators by simple conditional

means, which again entails
√
n-consistency and asymptotic normality of all estimators.

However, under stochastic dominance alone, the latter result does not apply to the lower

bound of the ATE on the compliers and the upper bound of the ATE on the defiers, because

they contain min and max operators, respectively. Hirano and Porter (2012) show that for

parameters that are non-differentiable functionals of the data (such as min/max operators),

asymptotically unbiased estimators do not exist. Therefore, the sample analog estimators

of ∆LB
10 = minπ01

[
Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1)− Ȳ0,1(max |(P1|0 − π01)/P1|0)

]
and

∆UB
01 = maxπ01

[
Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1(min |π01/P1|0)

]
are likely downward and

upward biased, respectively, due to optimizing over the defier proportion. This yields overly

conservative (i.e. too large) intervals for the ATEs as well as confidence regions that are

based on standard asymptotics or bootstrapping. In our application (see the next section),

we in addition to bootstrap-based inference also consider the method of Chernozhukov, Lee,

and Rosen (2009) to obtain half-median-unbiased point estimates and confidence intervals

for the lower bound of the compliers. The procedure is described in online appendix A.6.
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5 Application

In this section, we use our methods to re-evaluate the school voucher experiment of Angrist,

Bettinger, and Kremer (2006). As mentioned before, the authors investigate the effects

of school vouchers provided to high school students in the course of Colombia’s PACES

program (taking place between 1991 and 1997). The outcome we focus on are the reading

scores achieved in the centralized college entrance examinations, the ICFES, several years

later. Many of the vouchers that covered half the cost of private secondary schooling were

randomly assigned by a lottery among applicants so that Assumption 2 appears likely to

hold. The experimental estimates in Angrist, Bettinger, and Kremer (2006) suggest that

vouchers increase reading test scores on average by roughly 0.7 points (or roughly 0.12

standard deviations) and this result is significant at the 5% level.

However, only 30.2% (or 1223 students) of the 4044 applicants actually took the test.

Therefore, the experimental estimates might be flawed by selection bias. E.g., if the treatment

positively affects the likelihood to take the test so that also a priori less motivated students

are induced to participate, then the distribution of motivation differs across treated and non-

treated students conditional on being tested. If motivation positively affects the test scores,

this entails a (downward) bias of the estimated effect. For this reason, Angrist, Bettinger,

and Kremer (2006) use both censored regression to control for sample selection and derive

nonparametric bounds on the ATE of the always observed population based on Assumptions

3 (monotonicity of selection) and 5 (monotone treatment response). On balance, they still

find substantial gains from the PACES program.

We complement their analysis by estimating the ATE under different sets of assumptions

and for several populations. To be specific, we invoke Assumption 3 (monotonicity of selec-

tion) and/or Assumption 4 (stochastic dominance) to bound the ATE on the always observed,

compliers, and the observed population. Both assumptions appear to be plausible in this con-

text. Monotonicity roots in the presumption that the treatment weakly increases participa-

tion in the exam because private schools are plausibly more committed to the academic suc-

cess of their (paying) students, which may serve as measure of school quality. Stochastic dom-

inance seems reasonable because the always observed are those taking the exam irrespective of

the treatment and are, thus, likely to have higher potential test scores than other groups, for

instance due to ability or motivation. We do not consider Assumption 5 (monotone treatment
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response) which restricts the direction of the effects.

Estimation is based on the approach outlined in online appendix A.5. Concerning inference,

we compute the confidence intervals based on the method described in Imbens and Manski

(2004), which contains the treatment effect of interest with a probability of at least 95%:

(
∆̂LB − 1.645 · σ̂LB , ∆̂UB + 1.645 · σ̂UB

)
,

where ∆̂LB , ∆̂UB are the estimated bounds and σ̂LB , σ̂UB denote their respective estimated

standard errors.6 We compute the latter by bootstrapping the original sample 1999 times and

estimating ∆̂LB , ∆̂UB in each bootstrap replication in order to estimate their distributions. As

worst case bounds Y UB and Y LB , we take the maximum and minimum test scores observed

among test takers.

The estimates of the conditional selection probabilities, P̂1|1 = 0.328, P̂1|0 = 0.267,

P̂0|1 = 0.672, and P̂0|0 = 0.733, allow us to bound the strata proportions. Table 4 reports

these bounds and shows that the lower bound on the share of the never observed is larger

than the upper bound on the share of any other population and in particular than the one of

the always observed. Therefore, without monotonicity the bounds on this population will

be uninformative in the worst case scenario and quite large under stochastic dominance.

Moreover, the lower bound of the compliers’ share is larger than zero so that positive

monotonicity is consistent with the data whereas negative is not. In Table 4 we also

provide the estimated strata proportions and the mixture probabilities under Assumption 3

(monotonicity), which are then point identified.

Table 4: Estimated (bounds on the) proportions of latent strata

Latent strata Bounds without monotonicity Proportions under monotonicity

Always observed [0.000, 0.267] 0.267
Compliers [0.061, 0.328] 0.061
Never observed [0.406, 0.672] 0.672
Defiers [0.000, 0.267] -
Always observed among observed 0.897
Compliers among observed 0.103

Table 5 presents the results for the always observed, compliers, and the observed popula-

tion under various assumptions. The bounds of the ATE estimates are given in square brack-

6The confidence intervals apply to cases where the distance between the upper and lower bound of the effect is
bounded away from zero, see the discussion in Stoye (2009).
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ets, the 95% confidence intervals in round brackets. The worst case bounds are not informa-

tive for the always observed and very wide for any other population. Monotonicity narrows

the bounds substantially for the always observed and the observed population, even though

the identification region still includes the zero. As discussed before, monotonicity has no iden-

tifying power for the compliers as a zero proportion of π01 implies the widest bounds possible.

Stochastic dominance entails narrower bounds than the worst case scenario for all three

populations. However, for the always observed, the identification region is substantially larger

than under monotonicity. Using both assumptions jointly brings important improvements.

The lower bounds of the ATEs on the always observed and the observed population are now

significantly larger than zero and point to a positive effect of private schooling. Also the

upper bounds do not appear unreasonably high. For the observed population, this is due to

the small share of compliers (10.28%) to which the theoretical upper bound Y UB applies. For

the compliers alone, the bounds are not more informative than under stochastic dominance,

as monotonicity does not further narrow the bounds for reasons discussed in Section 3.

Table 5: ATE estimates and confidence intervals

Assumptions Always observed Compliers Observed

Worst case [ -31.000, 32.000] [ -24.593, 25.432] [ -16.587, 17.413]
Not informative ( -26.503, 27.086) ( -17.483, 18.276)

Monotonicity [ -1.113, 2.547] [ -24.593, 25.432] [ -7.736, 8.645]
( -1.892, 3.308) ( -26.503, 27.086) ( -8.529, 9.450)

Stochastic dominance [ -13.396, 17.079] [ -13.396, 17.604] [ -14.676, 17.413]
( -15.064, 18.344) ( -15.042, 18.754) ( -15.856, 18.276)

Mon. + stoch. dom. [ 0.683, 2.547] [ -7.514, 17.604] [ 0.683, 3.369]
( 0.140, 3.308) ( -9.132, 18.754) ( 0.140, 4.423)

Note: Bounds in square brackets and confidence intervals in round brackets. Confidence inter-
vals are based on 1999 bootstraps. All results are based on the estimators for discrete outcomes
discussed in online appendix A.5. Applying the procedure of Chernozhukov, Lee, and Rosen
(2009) to the lower bound of the ATE on the compliers under stochastic dominance gives an
estimate of -12.428 with a lower confidence bound of -13.796. In the algorithm described in
online appendix A.6, we set α = 0.05, m = 100, B = 1999 and R = 200000. We thank Xuan
Chen and Carlos Flores for providing us with the Matlab code of their paper Chen and Flores
(2012), which implements the Chernozhukov, Lee, and Rosen (2009) procedure, and for their
helpful advice about its use.

All in all our results give support to the conclusions of Angrist, Bettinger, and Kremer

(2006) suggesting that the PACES program in Colombia had a positive effect on the reading

scores in college entrance examinations. The lower bounds of the ATEs on those who would

take the test irrespective of private schooling (supposedly the most able and motivated) and

on all test takers are positive when invoking both monotonicity and stochastic dominance.
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Furthermore, the Imbens and Manski (2004) confidence intervals suggest that these ATEs are

significantly different from zero. For the compliers alone, however, we cannot reject the null

hypothesis of a zero effect based on our assumptions.

6 Conclusion

This paper discusses the partial identification of average treatment effects (ATE) in the pres-

ence of sample selection, implying that outcomes are only observed for a non-random subpop-

ulation. The previous work considering this problem has predominantly focussed on bounding

the ATE on the “always observed”, whose outcomes are observed irrespective of the treatment

received. Here, we also derived sharp bounds for other populations such as the “compliers”

(observed under treatment, not observed under non-treatment) and the observed population

(all individuals whose outcomes are observed), which is a mixture of several groups.

These populations appear to be relevant for policy recommendations in many empirical

contexts. Taking, for instance, the compliers, one might be interested whether switching the

selection state as a reaction on the treatment comes along with (and may be rooted in) a

particular treatment effect. An example is the effect of a training on wages, which might

induce formerly unemployed individuals to work because their potential wage surpasses their

reservation wage after the training. Furthermore, it might be preferable to make causal

statements rather for larger than for smaller shares of the total population. The largest

subgroup for which outcomes are observed is the observed population, so that results obtained

for these individuals are likely to have more external validity than those based on smaller (and

unobservable) subgroups.

In the discussion on identification, we have argued that the combination of monotonicity

(of selection in the treatment) and stochastic dominance (of the potential outcomes of the

always observed over those of others) assumptions may bear considerable identifying power

even for populations whose outcomes are, in contrast to the always observed, only observed

in one treatment state. In particular, it has been shown that the lower bound of the ATE on

the observed population coincides with the lower bound for the always observed. This is an

important result, as we are often most interested in the lower bound, which gives evidence

about the existence of a positive effect. Its practical relevance has been demonstrated by

means of an empirical application to a school voucher experiment.
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Finally, the paper also shows that principal stratification provides an adequate framework

for a better understanding of the identifying assumptions involved, because they are expressed

in terms of individual selection behavior rather than the less tangible relation of error terms

in some structural model. For example, we have found that if the share of the always observed

is smaller than the one of never observed, bounds on the always observed are not informative

if we do not assume monotonicity of selection in the treatment. In contrast, we can still

bound the ATE on the observed population. This might be hard to see from the equations

characterizing a structural model.

A Appendix

A.1 Worst case scenario

A.1.1 Proof of the sharpness of the simplified bounds on ∆11

The bounds in Zhang and Rubin (2003) are

∆UB
11 = min

π01

[Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1(min |(P1|0 − π01)/P1|0)],

∆LB
11 = max

π01

[Ȳ1,1(min |(P1|0 − π01)/P1|1)− Ȳ0,1(max |(P1|0 − π01)/P1|0)]. (A.1)

Imai (2008) shows that these bounds are sharp, but they can be simplified so that optimization is

not required: Ȳ1,1(max |(P1|0 − π01)/P1|1) ≡ E(Y |T = 1, S = 1, y ≥ F−1
Y1,1

(1 − (P1|0 − π01)/P1|1)) is

maximized if 1− P1|0−π01

P1|1
=

P1|1−P1|0+π01

P1|1
is maximized. Since

P1|1−P1|0+π01

P1|1
is increasing in π01, it

is maximized for π01 = πmax
01 . Similarly Ȳ0,1(min |(P1|0 − π01)/P1|0) is minimized if

P1|0−π01

P1|0
, which

is decreasing in π01, is minimized, namely if π01 = πmax
01 . Therefore, noticing that

P1|0−π01

P1|1
and

1− P1|0−π01

P1|0
= π01

P1|0
are decreasing and increasing in π01, respectively, entails the simplified bounds

∆UB
11 = Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1(min |(P1|0 − πmax
01 )/P1|0),

∆LB
11 = Ȳ1,1(min |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1(max |(P1|0 − πmax
01 )/P1|0). (A.2)

A.1.2 Proof of the sharpness of the bounds on ∆10

Lemma 1 together with Proposition 1 in Imai (2008) shows that Ȳ1,1(max |(P1|1 − P1|0 + π01)/P1|1)

and Ȳ1,1(min |(P1|1−P1|0 +π01)/P1|1) are the sharp upper and lower bounds of E(Y |T = 1, G = 10).

Since the sampling process does not impose any restrictions on the distribution of Y given T = 0

and G = 10 for a fixed value of π01, the bounds are sharp. Finally, since π01 is unknown, the bounds

27



are obtained by maximizing (minimizing) the upper (the lower) bound w.r.t. to its admissible values.

However, as 1 − P1|1−P1|0+π01

P1|1
and

P1|1−P1|0+π01

P1|1
are decreasing and increasing in π01, respectively,

πmin
01 is the optimal choice in both cases.

A.1.3 Proof of the sharpness of the bounds on ∆01

Lemma 1 together with Proposition 1 in Imai (2008) shows that Ȳ0,1(max |π01/P1|0) and

Ȳ0,1(min |π01/P1|0) are the sharp upper and lower bounds of E(Y |T = 0, G = 01). Since the

sampling process does not impose any restriction on the distribution of Y given T = 1 and G = 01

for a fixed value of π01, the bounds are sharp. Finally, since π01 is unknown, the bounds are

obtained by maximizing (minimizing) the upper (the lower) bound w.r.t. to its admissible values.

However, since 1 − π01
P1|0

and π01
P1|0

are decreasing and increasing in π01, respectively, πmin
01 is the

optimal choice in both cases.

A.1.4 Proof of the sharpness of the bounds on ∆S=1

We will show the sharpness of the upper bound, the proof for the lower bound is analogous. First of

all, notice that if w is a random variable which is distributed as a two components mixture

f(w) = p · f1(w) + (1− p) · f2(w) p ∈ [0, 1],

the expectation of the first component E(w1) is bounded by

E(w|w ≤ F−1
w (p)) ≤ E(w1) ≤ E(w|w ≥ F−1

w (1− p)).

Similarly, the expectation of the second component E(w2) is bounded by

E(w|w ≤ F−1
w (1− p)) ≤ E(w2) ≤ E(w|w ≥ F−1

w (p)).

Then by the law of total probability we have

E(w) = p · E(w|w ≥ F−1
w (1− p)) + (1− p) · E(w|w ≤ F−1

w (1− p)). (A.3)

Given (A.3), the observed outcomes can be written as

Ȳ1,1 =
P1|0 − π01

P1|1
· Ȳ1,1(max |(P1|0 − π01)/P1|1) +

P1|1 − P1|0 + π01

P1|1
· Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1)(A.4)
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or

Ȳ1,1 =
P1|0 − π01

P1|1
· Ȳ1,1(min |(P1|0 − π01)/P1|1) +

P1|1 − P1|0 + π01

P1|1
· Ȳ1,1(max |(P1|1 − P1|0 + π01)/P1|1)(A.5)

and

Ȳ0,1 =
P1|0 − π01

P1|0
· Ȳ0,1(min |(P1|0 − π01)/P1|0) +

π01

P1|0
· Ȳ0,1(max |π01/P1|0) (A.6)

or

Ȳ0,1 =
P1|0 − π01

P1|0
· Ȳ0,1(max |(P1|0 − π01)/P1|0) +

π01

P1|0
· Ȳ0,1(min |π01/P1|0). (A.7)

Moreover, notice that

∆S=1 =
P1|0 − π01

Pr(S = 1)
·∆11 +

Pr(T = 1) · (P1|1 − P1|0 + π01)

Pr(S = 1)
·∆10 +

Pr(T = 0) · π01

Pr(S = 1)
·∆01. (A.8)

For the upper bound, substituting ∆11 by ∆UB
11 , ∆10 by ∆UB

10 and ∆01 by ∆UB
01 in (A.8) would give a

sharp upper bound on ∆S=1. However, such a bound would contradict (A.3) since it is impossible to

have the upper bounds for the always selected and the compliers and the lower bounds for the always

selected and the defiers at the same time in the mixture. This, however, shows that the admissible

sharp upper bound would be the maximum of

∆UB
S=1 =

(P1|0 − π01)

Pr(S = 1)
· (Ȳ1,1(min or max |(P1|0 − π01)/P1|1)− Ȳ0,1(min or max |(P1|0 − π01)/P1|0))

+
Pr(T = 1) · (P1|1 − P1|0 + π01)

Pr(S = 1)
· (Ȳ1,1(min or max |(P1|1 − P1|0 + π01)/P1|1)− Y LB)

+
Pr(T = 0) · π01

Pr(S = 1)
· (Y UB − Ȳ0,1(min or max |π01/P1|0)). (A.9)
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From (A.4),(A.5), (A.6) and (A.7) we have, respectively,

Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1) =
P1|1

P1|1 − P1|0 + π01
· Ȳ1,1 −

P1|0 − π01

P1|1 − P1|0 + π01

· Ȳ1,1(max |(P1|0 − π01)/P1|1) (A.10)

Ȳ1,1(max |(P1|1 − P1|0 + π01)/P1|1) =
P1|1

P1|1 − P1|0 + π01
· Ȳ1,1 −

P1|0 − π01

P1|1 − P1|0 + π01

· Ȳ1,1(min |(P1|0 − π01)/P1|1) (A.11)

Ȳ0,1(min |π01/P1|0) =
P1|0

π01
· Ȳ0,1 −

P1|0 − π01

π01

· Ȳ0,1(max |(P1|0 − π01)/P1|0) (A.12)

Ȳ0,1(max |π01/P1|0) =
P1|0

π01
· Ȳ0,1 −

P1|0 − π01

π01

· Ȳ0,1(min |(P1|0 − π01)/P1|0) (A.13)

Substituting these expressions in (A.9), we obtain after some simple algebra

∆
UB
S=1 =

(P1|0 − π01) · (Pr(T = 0) · Ȳ1,1(min or max |(P1|0 − π01)/P1|1)− Pr(T = 1) · Ȳ0,1(min or max |(P1|0 − π01)/P1|0))

Pr(S = 1)

+
Pr(T = 1) · P1|1 · Ȳ1,1 − Pr(T = 1) · (P1|1 − P1|0 + π01) · Y LB + Pr(T = 0) · π01 · Y UB − Pr(T = 0) · P1|0 · Ȳ0,1

Pr(S = 1)
.

This is maximized by Ȳ1,1(max |(P1|0 − π01)/P1|1) and Ȳ0,1(min |(P1|0 − π01)/P1|0). For a given

value of π01, this bound is sharp. Finally, we again need to maximize w.r.t. π01. However, we will

show that ∆UB
S=1 is maximized for π01 = πmax

01 . Indeed, by taking its derivative w.r.t. π01, defining

∆Y ≡ Pr(T = 0)·Ȳ1,1(max |(P1|0−π01)/P1|1)−Pr(T = 1)·Ȳ0,1(min |(P1|0−π01)/P1|0), and performing

some simple algebra one obtains

Pr(T = 0) · Y UB − Pr(T = 1) · Y LB + P1|0 ·
∂∆Y

∂π01
≥ π01 ·

∂∆Y

∂π01
+ ∆Y . (A.14)

This is always satisfied, because Pr(T = 0) · Y UB −Pr(T = 1) · Y LB is generally larger than ∆Y and

P1|0 ≥ π01. (A.14) holds as an equality only if π01 = P1|0 = πmax
01 . This ends the proof.

A.2 Monotonicity

Any bounds derived under monotonicity are special cases of the worst case bounds given π01 = 0 and,

therefore, they are sharp.
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A.3 Stochastic dominance

First of all, we will prove the following lemma:

Lemma 1: Let w be a random variable distributed as a two components mixture

f(w) = p · f1(w) + (1− p) · f2(w) p ∈ [λ0, λ1],

so that F1(w ≤ t) ≥ F2(w ≤ t) ∀t ∈ (−∞,+∞), and let g(·) be a function that respect stochastic

dominance, the following bounds on g(F1(w ≤ t)) are sharp:

g(F (w1 ≤ t)) ∈ [g(Lλ1), g(U)],

where

Lγ =


F (w≤t)

γ
if t < F−1

w (γ),

1 if t ≥ F−1
w (γ),

U = F (w ≤ t).

Proof : The proof is similar to the proof of Lemma 2 of Imai (2008). Let (F1(w ≤ t), F1(w ≤

t)) ∈ {(ψ1, ψ2) ∈ Ψ × Ψ : F = λ1 · ψ1 + (1 − λ1) · ψ2, ψ2(w ≤ t) ≤ ψ1(w ≤ t) ∀t ∈

(−∞,+∞)}, so that the identification region of F1(w ≤ t) can be written as Ψ1(λ1) ∈{
F (w≤t)−(1−λ1)ψ2(w≤t)

λ1
: ψ2(w ≤ t) ≤ F (w ≤ t)

}
. It is easy to see that U ≡ F (w ≤ t) ≤ ψ1(w ≤ t)

stochastically dominates every admissible member of the identification region of F1(w ≤ t), Ψ1(λ1).

Following the same reasoning as in the proof of Proposition 4 of Horowitz and Manski (1995) one

can show that Lλ1 is stochastically dominated by every admissible member of Ψ1(λ1). Since g(·)

respects stochastic dominance the expressions for the bounds on g(F1(w ≤ t)) given above follow

immediately.

A.3.1 Proof of the sharpness of the bounds on ∆10

Lemma 1 shows that Ȳ1,1 and Ȳ1,1(min |(P1|1−P1|0 +π01)/P1|1) are the sharp upper and lower bounds

on E(Y |T = 1, G = 10). Under Assumption 4 the lower bound of E(Y |T = 0, G = 10) remains Y LB .

On the other hand, the upper bound cannot be larger than Ȳ0,1(max |(P1|0−π01)/P1|0). This implies

that the upper bound is sharp while the lower bound is sharp for any fixed value of π01. The sharp

lower bound is obtained minimizing over all possible values of π01.
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A.3.2 Proof of the sharpness of the bounds on ∆01

Lemma 1 shows that Ȳ0,1 and Ȳ0,1(min |πmin
01 /P1|0) are the sharp upper and lower bounds for E(Y |T =

0, G = 01). Under Assumption 4 the lower bound of E(Y |T = 1, G = 01) remains Y LB . On the other

hand, the upper bound cannot be larger than Ȳ1,1(min |(P1|0−π01)/P1|1). This implies that the lower

bound is sharp while the upper bound is sharp for any fixed value of π01. The sharp upper bound is

obtained maximizing over all possible values of π01.

A.3.3 Proof of the sharpness of the bounds on ∆S=1

We only prove the sharpness of the upper bound, the proof for the lower bound is analogous. The

sharp upper bound would be obtained substituting ∆11 with ∆UB
11 , ∆10 with ∆UB

10 and ∆01 with ∆UB
01

in (A.8). Again, such a bound would contradict (A.3). Therefore, we have four admissible solutions:

1. ∆UB
11 , Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1)− Y LB and Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1. After

some algebra we have

∆UB1
S=1 =

Pr(T = 0) · P1|0

Pr(S = 1)
· Ȳ1,1(max |(P1|0 − π01)/P1|1)−

P1|0 − Pr(T = 1) · π01

Pr(S = 1)
Ȳ0,1

+
Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ1,1 −

Pr(T = 1) · (P1|1 − P1|0 + π01)

Pr(S = 1)
· Y LB ,

2. Ȳ1,1 − Ȳ0,1, ∆UB
10 and Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1.

∆UB2
S=1 =

Pr(T = 0) · π01

Pr(S = 1)
· Ȳ1,1(max |(P1|0 − π01)/P1|1)−

P1|0 − Pr(T = 1) · π01

Pr(S = 1)
Ȳ0,1

+
Pr(T = 1) · P1|1 + Pr(T = 0) · (P1|0 − π01)

Pr(S = 1)
· Ȳ1,1 −

Pr(T = 1) · (P1|1 − P1|0 + π01)

Pr(S = 1)
· Y LB ,

3. Ȳ1,1(max |(P1|0−π01)/P1|1)− Ȳ0,1(max |(P1|0−π01)/P1|0), Ȳ1,1(min |(P1|1−P1|0 +π01)/P1|1)−

Y LB and ∆UB
01

∆UB3
S=1 =

Pr(T = 0) · P1|0

Pr(S = 1)
· Ȳ1,1(max |(P1|0 − π01)/P1|1)−

Pr(T = 0) · P1|0

Pr(S = 1)
· Ȳ0,1

+
Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ1,1 −

Pr(T = 1) · (P1|1 − P1|0 + π01)

Pr(S = 1)
Y LB

−
Pr(T = 1) · (P1|0 − π01)

Pr(S = 1)
· Ȳ0,1(max |(P1|0 − π01)/P1|0),
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4. Ȳ1,1 − Ȳ0,1(max |(P1|0 − π01)/P1|0), ∆UB
10 and ∆UB

01

∆UB4
S=1 =

Pr(T = 0) · π01

Pr(S = 1)
· Ȳ1,1(max |(P1|0 − π01)/P1|1)−

Pr(T = 0) · P1|0

Pr(S = 1)
· Ȳ0,1

+
Pr(T = 1) · P1|1 + Pr(T = 0) · (P1|0 − π01)

Pr(S = 1)
· Ȳ1,1 −

Pr(T = 1) · (P1|1 − P1|0 + π01)

Pr(S = 1)
· Y LB

−
Pr(T = 1) · (P1|0 − π01)

Pr(S = 1)
· Ȳ0,1(max |(P1|0 − π01/P1|0).

To show that ∆UB
S=1 = ∆UB1

S=1 is the sharp upper bound it is sufficient to show that

Pr(T = 0) · P1|0

Pr(S = 1)
· Ȳ1,1(max |(P1|0 − π01)/P1|1) +

Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ1,1 ≥

Pr(T = 0) · π01

Pr(S = 1)
· Ȳ1,1(max |(P1|0 − π01)/P1|1) +

Pr(T = 1) · P1|1 + Pr(T = 0) · (P1|0 − π01)

Pr(S = 1)
· Ȳ1,1

and

P1|0 − Pr(T = 1) · π01

Pr(S = 1)
Ȳ0,1 ≤

Pr(T = 1) · (P1|0 − π01)

Pr(S = 1)
· Ȳ0,1(max |(P1|0 − π01/P1|0) +

Pr(T = 0) · P1|0

Pr(S = 1)
· Ȳ0,1.

Simple algebra shows that the two inequalities are always satisfied. In order to show that we do not

need to maximize ∆UB
S=1 over all possible values of π01, it is sufficient to see that its first derivative

w.r.t. π01, given by

Pr(T = 1) · (Ȳ0,1 − Y LB) + Pr(T = 0) · P1|0 ·
∂Ȳ1,1(max |(P1|0 − π01)/P1|1)

∂π01
,

is always positive, since Pr(T = 1)·(Ȳ0,1−Y LB) > 0 and Pr(T = 0)·P1|0 ·
∂Ȳ1,1(max |(P1|0−π01)/P1|1)

∂π01
> 0.

Therefore ∆UB
S=1 is maximized for π01 = πmax

01 .

A.4 Monotonicity and stochastic dominance

All bounds derived under monotonicity and stochastic dominance are special cases of the bounds

derived under stochastic dominance alone given that π01 = 0. Therefore, the bounds are sharp.

A.5 Discrete outcomes

A.5.1 Identification

If the outcome Y is discrete, the bounds based on Proposition 4 in Horowitz and Manski (1995) are

generally not valid. This is due to the presence of ties in the outcome, i.e. the occurrence of mass

points with equal outcome values, which entails a non-unique quantile function so that a particular

outcome value is observed at several ranks. The quantile function is required to construct (i) a
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distribution which is stochastically dominated by any feasible distribution that is consistent with the

identification region of some mixture component (i.e., stratum) of interest to determine the lower

bound of its mean outcome and (ii) a distribution which stochastically dominates any distribution

consistent with the identification to determine the upper bound, respectively. In the presence of

discrete outcomes we have to replace the non-unique quantile function, which gives equal ranks to all

ties, by a modified version which accounts for ties.

To this end, we denote by Yt,s the outcome variable in the respective observed group, by qgt,s the

share of individuals belonging to stratum G = g in the observed subgroup with T = t and S = s,

and introduce the following trimming functions which are similar to the ones proposed by Kitagawa

(2009)

Trimmin,g
t,s ≡

I{Yt,s < F−1(qgt,s)} · Pr(Yt,s < F−1(qgt,s))

1− qgt,s
(A.15)

+
I{Yt,s = F−1(qgt,s)} ·

(
Pr(Yt,s ≥ F−1(qgt,s))− q

g
t,s

)
1− qgt,s

Trimmax,g
t,s ≡

I{Yt,s > F−1(1− qgt,s)} · Pr(Yt,s > F−1(1− qgt,s))
qgt,s

+
I{Yt,s = F−1(1− qgt,s)} ·

(
Pr(Yt,s ≤ F−1(1− qgt,s))− (1− qgt,s)

)
qgt,s

Let Y min,g
t,s ≡ Yt,s · Trimmin,g

t,s and Y max,g
t,s ≡ Yt,s · Trimmin,g

t,s . Since F
Y

min,g
t,s

(y) is stochastically

dominated by any feasible distribution consistent with the identification region and FYmax,g
t,s

(y)

stochastically dominates any feasible distribution consistent with the identification region, we can

define the lower and upper bounds of E(Y (s)|T = t, T = t) as Ȳt,s(min |qgt,s) ≡ E(Y min,g
t,s ) and

Ȳt,s(max |qgt,s) ≡ E(Y max,g
t,s ), respectively.

A.5.2 Estimation

Note that the trimming function can be easily estimated by sample counter part a more intuitive

and asymptotically equivalent estimator can be obtained as follow. Denote by nt,s the number of

observations with T = t and S = s. Let Y
(1)
t,s , . . . , Y

(nt,s)
t,s be the order statistic of Yt,s which assigns

increasing ranks at the ties. E.g., if there are two observations i and j ∈ {1, ..., nt,s} with the same

outcome values y the rank of the first one, denoted by the function rank(·), will be some integer i

while the rank of the second observation will be i+ 1. Define ˜qgt,s · nt,s and ˜nt,s − qgt,s · nt,s to be the

integer part of qgt,s · nt,s and nt,s − qgt,s · nt,s, respectively, if qgt,s · nt,s and nt,s − qgt,s · nt,s are larger

than 1, while they are 1 otherwise.
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The only difference with Section 4 is that the trimmed means are now estimated by

ˆ̄Yt,s(max |qgt,s) ≡
∑n
i=1 Yi · I{Si = s} · I{Zi = t} · I{rank(Yi) ≥ ˜nt,s − qgt,s · nt,s}∑n
i=1 I{Si = s} · I{Zi = t} · I{rank(Yi) ≥ ˜nt,s − qgt,s · nt,s}

,

ˆ̄Yt,s(min |qgt,s) ≡
∑n
i=1 Yi · I{Si = s} · I{Zi = t} · I{rank(Yi) ≤ ˜qgt,s · nt,s}∑n
i=1 I{Si = s} · I{Zi = t} · I{rank(Yi) ≤ ˜qgt,s · nt,s}

.

Since we just replace the quantile function by the modified rank function, this only results in using a

different indicator function when computing the trimmed means. Then, it is possible to rewrite our

bounds as the unique solution to a GMM minimization problem equivalently to Lee (2009). Therefore,

the conditions and results of Newey and McFadden (1994) on GMM estimation still apply. Note that

if Y is continuous, defining the bounds in terms of the modified rank function is equivalent to defining

them in terms of the regular quantile function, as each outcome value has a unique rank in this case.

Therefore, the two approaches converge to each other as the number of support points of Y goes to

infinity.

A.6 Inference based on Chernozhukov, Lee, and Rosen (2009)

We only discuss estimation and inference for ∆UB
01 , as the procedure is analogous for ∆LB

10 . Let

∆UB
01 (π01) be the conditional the upper bound of ∆01 given π01, and ∆UB

01 a vector containing a

‘large’ number of ∆UB
01 (π01) obtained from a discrete approximation of the support of π01. In practice,

∆UB
01 may be constructed by an equidistant grid of m elements between πmin

01 ≡ max(0, P1|0 − P1|1)

and πmax
01 ≡ min(P1|0, P0|1), so that it is an m dimensional vector. We denote by i ∈ {1, . . . ,m} the

indicator of the elements of the equidistant grid and by π01,i the corresponding value of π01.

We use the procedure of Chernozhukov, Lee, and Rosen (2009) to obtain a half-median-unbiased

estimator of minπ01 [∆UB
01 (π01)], see also the application of this method in Chen and Flores (2012).

The main idea is that instead of taking the maximum of the estimated ∆̂UB
01 (π01) directly, one uses

the following precision adjusted version, denoted by ∆̃UB
t (p), which consists of the initial estimate

plus s(i), a measure of the precision of ∆̂UB
01 (π01,i), times an appropriate critical value k(p):

∆̃UB
01 (p) = max

π01,i

[∆̂UB
01 (π01,i) + k(p) · s(i)].

As outlined below, k(p) is a function of the sample size and the estimated variance-covariance matrix

of
√
n(∆̂UB

01 −∆UB
01 ), denoted by Ω̂. For p = 1

2
, the estimator ∆̃UB

01 (p) is half-median-unbiased, which

implies that the estimate of the upper bound exceeds its true value with probability at least one half

asymptotically.

The following algorithm briefly sketches the estimation of ∆UB
01 along with its upper confidence
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band based on the precision adjustment.

1. Estimate the vector ∆̂UB
01 by its sample analog. Estimate the variance-covariance matrix Ω̂ by

bootstrapping B times.

2. Denoting by ĝ(i)> the i-th row of Ω̂
1
2 , estimate ŝ(i) = ‖ĝ(i)‖√

n
, where ‖·‖ is the Euclidean norm.

3. Simulate R draws, H1, . . . , HR from a N (0, Im), where 0 and Im are the null vector and the

identity matrix of dimension m, respectively.

4. Let H∗r (π01,i) = ĝ(i)>Zr/ ‖ĝ(i)‖ for r = 1, . . . , R.

5. Let k̃(c) be the c-th quantile of maxπ01,i H
∗
r (π01,i), r = 1, . . . , R, where c = 1− 0.1

log(n)
.

6. Compute the set estimator Î = {i : ∆̂UB
01 (π01,i′) ≤ maxπ01,i′ {[∆̂

UB
01 (π01,i′) + k̃(c) · ŝ(i′)] + 2 ·

k̃(c) · ŝ(i′)}}.

7. Estimate the critical value k̂(p) by the p-th quantile of maxπ01,i:i∈Î H
∗
r (π01,i), r = 1, . . . , R.

8. For half-median-unbiasedness, set p = 1
2

and compute ∆̃UB
t ( 1

2
) = maxπ01,i [∆̂

UB
01 (π01,i) + k̂( 1

2
) ·

ŝ(i)].

9. To obtain the upper confidence band, estimate the half-median-unbiased lower bound ∆̂LB
01 .

10. Let Γ = max(0, ∆̃UB
01 ( 1

2
) − ∆̂LB

01 ), ρ = ∆̃UB
01 ( 3

4
) − ∆̃UB

01 ( 1
4
)) and τ = (ρ · log(n))−1. Compute

â = 1− Φ(τ · Γ) · α, where α is the chosen confidence level.

11. The upper confidence band for the estimate of ∆UB
01 is obtained by ∆̃UB

01 (â).
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