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Abstract—Driver status monitoring systems are a vital
component of smart cars in the future, especially in the era
when an increasing amount of time is spent in the vehicle. The
heart rate (HR) is one of the most important physiological signals
of driver status. To infer HR of drivers, the mainstream of the
existing research focused on capturing subtle heartbeat-induced
vibration of the torso or leveraged photoplethysmography (PPG)
that detects cardiac cycle-related blood volume changes in the
microvascular. However, existing approaches rely on dedicated
sensors that are expensive and cumbersome to be integrated or
are vulnerable to ambient noise. Moreover, their performance
on the detection of HR does not guarantee a reliable compu-
tation of the HR variability (HRV) measure, which is a more
applicable metric for inferring mental and physiological status.
The accurate computation HRV measure is based on the precise
measurement of the beat-to-beat interval, which can only be
accomplished by medical-grade devices that attach electrodes to
the body. Considering these existing challenges, we proposed a
facial expression-based HRV estimation solution. The rationale
is to establish a link between facial expression and heartbeat
since both are controlled by the autonomic nervous system. To
solve this problem, we developed a tree-based probabilistic fusion
neural network approach, which significantly improved HRV esti-
mation performance compared to conventional random forest
or neural network methods and the measurements from smart-
watches. The proposed solution relies only on commodity camera
with a lightweighted algorithm, facilitating its ubiquitous deploy-
ment in current and future vehicles. Our experiments are based
on 3400 km of driving data from nine drivers collected in a
naturalistic field study.

Index Terms—Car data, heart rate variability (HRV),
in-vehicle environment, nonintrusive measurement, vital sign
monitoring.
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I. INTRODUCTION

DAILY driving is an integral part of the day for many
people, a fact that is frequently demonstrated by statis-

tics. For example, in Germany, 68% of the working population
uses their car for commuting and more than 25% of them com-
mute daily more than 30 min per direction [1]. However, in
the U.S., about 90% of all citizens (aged 16 or older) drove
2.5 trips daily from 2019 to 2020 on average, which corre-
sponds to about 1 h of driving time or 30 miles (≈ 48.3 km)
of distance [2] per day. Moreover, the industry imagines the
vehicle as the 3rd living space (after home and workplace) of
people [3], which has a tremendous impact on people’s lives.
Nevertheless, driving is still a cognitively demanding task [4].
The prolonged driving time induces excessive stress [5], [6],
which has the potential to impair mental and physiologi-
cal health [4]. Furthermore, inattentiveness, drowsiness, and
fatigue constitute one of the main factors of traffic acci-
dents [7]. The timely recognition of the driver’s status can be
of significant benefit to improve driver states with just-in-time
intervention (JITI) [8]–[11]. The recognition and regulation of
driver status are particularly meaningful in the era of (semi)
automated vehicles. During the transition to fully automated
vehicles (L2 and L3 automation), drivers need to be mentally
and physically prepared to take over the driving task at any
given moment [12]. Therefore, the vision of future intelligent
cars extends the idea of being a simple means of transportation
toward a dedicated space where drivers’ mental and physiolog-
ical states are taken care of. Ultimately, identifying the status
of drivers in vehicles is one important step toward safer driv-
ing and better life quality. From a broader perspective, the
enhanced in-vehicle experience under the concept of ambi-
ent intelligence facilitates Internet of Things (IoT)-enabled
the transformation of a vehicle into a well being and safety
platform, where the driving performance, mental, and physi-
ological status are improved by restoring driver status in an
optimal range, as illustrated in Fig. 1 [13], [14].

Heart rate variability (HRV) and its measures are the most
promising physiological signals to recognize driver status.
Various studies have demonstrated their relevance to infer
stats, such as stress, drowsiness, or inattentiveness. HRV is
the variation in the time interval between heartbeats (interbeat
interval, IBI), and it can be characterized by HRV measures
in time and frequency domains. In the context of our work,
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Fig. 1. Driving performance versus cognitive load according to Yerkes–
Dodson law, adapted from [14]. In future cars, intelligent vehicle systems
are envisioned to be able to regulate excessive fatigue or stressful states of
drivers, in order to further improve driving experience and safety [14].

there are three most relevant and fundamental HRV measures
in the existing literature. In time domain, the root mean square
of successive differences between IBIs (RMSSD) is a widely
used measure. Increased RMSSD is associated with fatigue
or drowsiness states, whereas stress can cause a decrease in
HRV [15]–[17]. Furthermore, Taelman et al. [18] observed that
mental tasks can significantly reduce the proportion of succes-
sive normal beat to normal beat intervals (NN-interval) with
a difference greater than 50 ms (pNN50). In addition to the
signal in the time domain, HRV measures in the frequency
domain are also powerful indicators. Patel et al. [19] and
Vicente et al. [20] found statistically significant evidence that
the low-frequency (LF) and high-frequency (HF) ratio (LF/HF
ratio) is in alert status higher than fatigue status while driv-
ing. To sum it up, excessively low or high states of the
depicted HRV measures (RMSSD, LF/HF ratio, and pNN50)
are strongly associated with the drivers’ cognitive load and
psychological status.

As a consequence, researchers and automobile manufac-
turers have taken pioneer efforts in driver heart rate (HR)
detection. For example, BMW built a skin-resistance sen-
sor into the steering wheel for HR monitoring [7], [21].
Similarly, Toyota and Denso monitored electrocardiography
(ECG) and photoplethysmogram (PPG) using a steering wheel
equipped with different electrodes and green light LEDs
(525 nm) [7], [22], [23]. In contrast, Ford and Denso utilized
the driver seat [24], [25]. Although these methods seem to
promise advanced and widely validated technology (as PPG
used in today’s smartwatches), researchers agree that these
approaches cannot yet provide reliable measurements. For
instance, [26] evaluated the performance of a steering wheel
integrated sensor under lab condition and concluded that there
was an average error of 6% and the maximal error could
escalate to 20%. Such error is far greater than commodity
smartwatches, as we evaluated in this study [see Fig. 9(a)].
Wartzek et al. [25] found that seat-integrated sensors could not
reliably detect HR from drivers in all situations because seat
integrated sensors are, for example, vulnerable to the thickness
and the material of outer clothing as well as the weight of
drivers.

To overcome such drawbacks, Zheng et al. recently
designed a radio-frequency device and leveraged ultrawide
band (UWB) impulse. The drivers’ HR can be inferred by
analyzing of the Doppler frequency shift of UWB signal
induced by heartbeat, respiration, and ambient noise [27].
Although the method of [27] can accurately detect drivers’
HR, inherent disadvantages exist. First, such a method requires
a special purpose UWB device, which is not readily avail-
able. Second, due to ambient noise and physical constraint of
sampling rate, IBI can only be measured with moderate accu-
racy (about 50% of IBI measurements have an error greater
than 50 ms [27]). Such an accuracy limitation can be tol-
erated, when only the average HR is detected since HR is
computed as the inverse of the mean IBI in a certain interval.
The noise in the IBI measurement is canceled out by the
mean operation. However, considering critical metrics, such
as RMSSD or LF/HF ratio, the inaccuracy will be magnified
because these measures are sensitive even to the small inaccu-
racies in the measurements. Recently, with the advancement
of computer vision techniques, remote PPG (rPPG) [28], [29]
has attracted prominent attention. The fundamental principle
of rPPG is as follows. Heartbeat (hence, blood volume in ves-
sels) induces subtle color variations on the human skin surface,
which can be captured by an RGB camera. Signal processing
techniques are then applied to analyze such variation; thus,
human cardiac activities can be monitored. Although the rPPG
technique is appealing, many efforts are still needed before
it can be applied to the real-world scenario. rPPG is sensi-
tive to illumination and motion artefacts. More importantly,
commodity cameras record video at 30 or 60 Hz, which by
the Nyquist–Shannon sampling theorem is insufficient for the
accurate measurements of IBIs, of which the variation is at
millisecond level. The existing research on HR/HRV detec-
tion using rPPG was conducted in well-defined lab conditions;
therefore, their generalizability to real-world scenarios remains
unclear [30]. In a nutshell, the existing contactless monitoring
methods do not guarantee a reliable measurement of HRV in
real-world scenarios.

In light of these existing challenges, we propose an alterna-
tive way to monitor driver status through HRV. As described
above, drivers’s cognitive load and mental status are strongly
characterized by excessively low or high HRV measures (i.e.,
RMSSD, LF/HF ratio, and pNN50). Therefore, instead of
attempting to derive HRV measures from inherently noisy IBI
measurements, we propose a facial expression-based approach
to detect the onset of HRV outliers. On the basis of the exist-
ing literature, we define HRV outlier as samples whose values
are one standard deviation below or above the mean [31], [32].

Facial expressions are strongly connected and influenced by
the autonomic nervous system (ANS). On the one hand, human
cardiac activity is controlled by ANS. The sympathetic ner-
vous system (SNS) accelerates the HR through the discharge
of epinephrine and norepinephrine while the parasympathetic
nervous system (PNS) releases acetylcholine to induce deceler-
ation [33]. On the other hand, ANS also functions involuntarily
and cope-with affective arousal in reaction to circumstance
accordingly [34]. To estimate HRV from facial expression,
we employed the state-of-the-art machine learning scheme
and developed a novel tree-based probabilistic fusion neural
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network approach. Compared with existing contactless and
nonintrusive UWB or rPPG-based methods [27], [29], the
advantage of our facial expression-based method and our
contribution can be summarized as follows.

1) Our approach relies on a commodity RGB camera
working at 30 FPS, which is very likely to be inte-
grated in future vehicles as a part of driver monitoring
systems [35], [36]. Thus, no additional UWB devices
are needed.

2) We verified our approach based on around 3400 km
(68.6 h) of driving data collected from a two-week field
study, involving nine participants during uncontrolled
daily driving activities on public roads.

3) A novel tree-based probabilistic fusion neural network
approach is developed to optimize HRV estimation
performance. The proposed tree-based probabilistic
fusion framework outperformed conventional convolu-
tional or recurrent neural networks (RNNs) and classic
tree-based machine learning models by up to 6.9% in
balanced accuracy.

4) We benchmark our method against consumer smart-
watch measurement. Smartwatch can be seen as a proxy
of the upper bound of rPPG since its close contact with
the skin mitigates a large portion of noise due to illumi-
nation and motion artefacts. Our evaluation shows that
the proposed approach can even outperform high-end
consumable smartwatches by a large margin.

5) To the best of our knowledge, this is the first study that
verifies the feasibility of facial expression-based HRV
outlier detection based on driving data collected from
public roads in real driving scenarios. Since the over-
all environment is challenging compared with laboratory
conditions, our results are likely to be more reliable.

The remainder of this article is organized as follows. We
present our field study in Section II. We introduce our methods
for HRV estimation in Section III. Section IV summarizes
the results of our methods. The implication of the method
and discovery is discussed in Section V. Finally, Section VI
presents the conclusion.

II. EXPERIMENT SETTINGS

We conducted a two-week field study with nine daily
commuters (originally then; one participant’s data were
removed due to corruption) during their normal driving routine
on public roads. A variety of sensory data, including HRV,
facial expression, and smartwatch records, is collected from
the daily the driving activity of participants in naturalistic con-
dition. The participants were supposed to use the vehicles for
their daily drives, including business trips and vacations. Our
university’s ethics committee authorized the approval for the
experiments prior to the study.

A. Subjects

The nine participants (four females and five males, mean
age, 37±8 years) were recruited from a large enterprise (more
than 1000 employees) through an internal call in their com-
pany social media forum. Our selection focused on ordinary

Fig. 2. Data collection equipment. (a) Firstbeat measurement [37].
(b) Webcam deployment.

Fig. 3. Accumulated driving distance.

daily commuters that are representative of a large variety of
people.

B. Data Collection Equipment and Protocol

We mounted two webcams (Logitech HD Pro Webcam
C920) on the dashboard of the vehicle to record the faces of the
drivers and the traffic context. The traffic context information
is not relevant to this study and will not be explored. HRV
data were collected using a medical-grade heart monitoring
device (Firstbeat Bodyguard 2), as shown in Fig. 2(a) and (b).
The sampling rate of the heart monitoring device was 1000 Hz.
For the sake of a more comprehensive comparison participants
also wore a recent consumer smartwatch (Garmin vívoactive 3)
during driving.

C. Characteristics of Driving Activity

It was crucial for our data set to capture representative driv-
ing situations. This section presents some important statistics
related to our data set.

After data cleansing, we had about 68.6 h of video data
with associated HRV measurements during driving. The total
driving distances of each participant are plotted in Fig. 3.
Most drivers drove for reasonably long distances (more than
300 km) during the field study. The GPS records of the vehi-
cles are presented as a heatmap in Fig. 4. As shown in this
figure, most participants drove around the area of Stuttgart,
Germany. Overall, our data set covered a wide range of daily
driving activities, such as commuting, shopping trips, and
leisure activities at the weekend.
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Fig. 4. GPS heatmap of the most active area.

Fig. 5. HRV outlier detection framework.

(a) (b) (c)

Fig. 6. Distribution of RMSSD, LF/HF ratio, and pNN50 of the nine drivers.
(a) RMSSD. (b) LF/HF ratio. (c) pNN50.

D. Characteristics of Heart Rate Variability Measure

HRV is measured over a period of time. We applied an
overlapping sliding window with a length of 5 min and a
step size of 30 s to compute HRV measures (i.e., RMSSD,
LF/HF ratio, and pNN50). The choice of 5 min follows the
convention of short-term HRV measurement [38], [39]. We
refer to such 5-min segments as HRV segments. The entire
facial expression-based HRV detection framework is simi-
lar to the one used in [40] and is shown in Fig. 5. We
take facial expressions in HRV segments as input data to
estimate the HRV measures associated with the correspond-
ing segments. From the recording of Firstbeat Bodyguard 2,
the ground truth of HRV measures is computed based on
a standardized wearable data processing toolkit [41]. These
HRV segments are randomly shuffled for training and test-
ing. To avoid the intersection between training and test data
sets caused by overlapping sliding windows, we discard HRV
segments that intersect both data sets for each shuffle, as
illustrated in Fig. 16.

Next, we inspect the distribution of HRV, which is illus-
trated in Fig. 6. Owing to the influence of age and gender,
there is significant difference among participants in terms of
the median and range [38]. To account for such individual

TABLE I
SAMPLE COUNTS FOR DIFFERENT CATEGORY

factors, we define HRV outlier detection as a binary classi-
fication problem and predict whether a given driver’s HRV
measures are excessively low or high with respect to his/her
personal empirical distribution. We distinguished between low
and high HRV outlier detection, as formulated in (1) and (2),
respectively. Such definition is similar to [31] and [32], in
where the authors defined outliers for stress or mental status
estimation as one standard deviation above or below the mean
HRV. Consequently, HRV measures within one standard devi-
ation of the personal mean are considered normal. It means
that we develop two machine learning models, one for the
detection of low outliers of HRV measures and the other for
high outliers

low
detector

=
{

low outlier, < per. mean–per. std
rest, >= per. mean–per. std

(1)

high
detector

=
{

rest, <= per. mean + per. std
high outlier, > per. mean + per. std.

(2)

We performed data cleansing and removed IBI artefacts
(<250 ms or >2000 ms). We removed HRV segments where
the driver faces appeared in less than 70% of video frames as
well as HRV segments with no valid IBI signal. Finally, we
obtained in total 3876 HRV segments, the distribution of low
and high outliers, and normal samples are given in Table I.

III. METHODS

This section explains our approach to infer HRV outliers
from facial expressions.

A. Data Preprocessing

Detection of Facial Action Units: The facial action units
(AUs) are used in the facial action coding system (FACS) to
describe the muscle movement currently active in the face,
such as “nose wrinkle” or “cheek raise” [42] Based on the
active level and the combination of AUs, facial expressions,
such as anger, fear, and joy can be quantitatively determined.

The manual coding process of FACS requires profound
expert knowledge and is laborious. To alleviate this problem,
we leveraged the automatic FACS coding algorithm from
Affectiva, a spin-off of MIT’s Media Lab. Affectiva’s facial
expression recognition technology uses computer vision and
deep learning techniques to first detect the active level of
AUs, based on which another mapping function is established
between facial expression and AUs [43]. The Affectiva’s major
advantage is that it is built on a very large foundational data
set, consisting of more than 9.7 million facial images of peo-
ple, with more than 5 billion facial frames [43]. Additionally,
based on the in-vehicle data of more than 20 000 h featuring
more than 4000 unique individuals, Affectiva is well optimized
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Fig. 7. HRV outlier detection using standard random forest pipeline.

to automotive in-cabin environment [43]. Given these features,
Affectiva’s solution can reliably capture facial movements. In
this study, we used one of the latest stable versions (ics-2.2.1).

Feature Engineering: Affectiva detects AUs for each frame
and presents the results as the activation level of each AU
in the range of 0 to 100. The entire list of detected AU
is the following:“browRaise,”“browFurrow,” “noseWrinkle,”
“upperLipRaise,” “mouthOpen,” “eyeClosure,” “cheekRaise,”
“eyeWiden,” “innerBrowRaise,” “yawn,” “blink,” “blinkRate,”
“lipCornerDepressor,” “lidTighten,” and “smile” (all 15 AUs
provided by the Affectiva SDK). We build feature vectors
(FVs) for AUs through a sliding window, with both the length
and the step size equal to 5 s. In each sliding window,
we compute mean, min, max, median, standard deviation,
quantile-25%, quantile-75%, kurtosis, and skewness for each
AU. That is to say, for every 5 s, a 135-dimension (15 AUs × 9
features) FV is generated. From a 5-min HRV segment, a
sequence of 60 FVs (5 min/5 s = 60) is generated.

In addition to AUs, HRV is heavily influenced by the time
of day. We incorporate this prior information by including time
features defined as current time (formatted in the 24 h-scale),
day of the week, an indicator of driving at night, seconds
before dawn, seconds after dusk, seconds before sunrise, and
seconds after sunset. The last four features were set to zero if
driving had occurred after or before the corresponding event.
By merging the time features to each FV, the final input to the
machine learning models has the shape of 60 steps×142 dim.

B. Machine Learning Approaches

Standard Pipeline: We first verify the feasibility of the HRV
outlier detection in the wild by exploring a random forest
model. Despite the simplicity of tree-based models, they often
outperform more complicated models, such as neural networks
or support vector machines (SVMs) [44]. This is especially the
case with a lack of prior insight about underlying data property
or domain knowledge [45].

Our random forest-based pipeline is depicted in Fig. 7. In
the training phase, we assign all FVs in an HRV segment
the same label as the HRV segment, meaning that the input
instance to the random forest is each FV. In the test phase, we
perform prediction on all FVs in each HRV segment. The final
prediction for one HRV segment is aggregated from prediction
results of all FVs in that HRV segment. In this study, we use
the majority vote as the aggregation function.

The input FVs are sequences of time-series data. Therefore,
to further explore the possibility of other machine learn-
ing models, the choice of random forest can be replaced by
prevalent (1-D) convolutional neural network (CNN), RNN,
multilayer perceptron (MLP), etc. We used random forest as
well as various neural networks as the baseline method and
the evaluation is presented in Section IV.

Fig. 8. Tree-based probabilistic fusion model.

Tree-Based Probabilistic Fusion Network (TPFN): As we
will show in Tables IV and V in Section IV, when tree-based
models are applied in the standard pipeline, they usually out-
perform neutral network models. The tree-based model often
performs better than other models in practise [44], [45]. The
reason is that the hierarchy decision stage of tree-based mod-
els does not impose restrictions on the distribution of inputs;
the merit of the ensemble mechanism of random forest makes
it extremely robust to unseen data [44]–[46]. Unlike neural
networks whose architecture is sensitive to specific data distri-
bution and requires profound domain knowledge, recent work
suggested that random forests can help discover the underly-
ing structure of data [44], [45]. As such, we develop a hybrid
model that uses a tree-based model to create a probabilistic
embedding from data, which is further fused and processed
by a neural network. The details of our proposed model are
explained as follows.

We first compute the probability embedding of each AU.
This is performed by building 15 random forests for the 15
feature subsets of all AUs. Each feature subset contains not
only features of the corresponding AU but also the prior men-
tioned time features. Therefore, each random forest takes FVs
of 16 dim. (nine statistical features from AUs and seven time
features) as input. We train these 15 random forests sim-
ilar to those in Fig. 7. After that, instead of aggregating
the predictions of the random forests, we take the prediction
probability (with closer to 0 being more likely to be class
0, and vice versa), which is again a time-series sequence
of form 60 step × 15 AUs, as input to a neural network.
The neural network takes the fusion of the probability from
the random forests and further predicts the HRV outlier for the
entire sequence. In this study, we used an MLP (two layers,
each with 16 neurons and sigmoid as activation) to classify
on every step the fused probability and then with a final
classification that is aggregated (by majority vote) from the
60 votes.

IV. EVALUATION

In this section, we evaluate the proposed method against
state-of-the-art machine learning models. The evaluation is
performed by constructing a general model for all drivers.

In the following, we will provide an insight into the HRV
measurement accuracy of the current high-end commodity
smartwatch compared with the medical-grade HR monitor
(Firstbeat). Next, we comprehensively compare the proposed
approach with various baseline methods.
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(a) (b)

Fig. 9. Absolute and relative errors of high-end smartwatch compared with
Firstbeat [37]. (a) HR. (b) RMSSD.

A. Measurement Accuracy of Smartwatch

Smartwatches and other wearable devices are becoming
popular in people’s daily life. The low cost and ubiqui-
tous property make them an ideal tool for health monitoring.
Therefore, we should first inspect if their measurement accu-
racy meets the requirement of HRV detection in the wild.

For this purpose, we use the measurement of the Firstbeat
as the gold standard to compute the errors of smartwatches.
The absolute and relative errors of mean HR and RMSSD of
HRV segments are illustrated in Fig. 9. In this study, we have
an overlap of 21.25 h of Firstbeat data with smartwatch mea-
surements. Due to the in-the-wild property of the experiment,
drivers sometimes did not wear the smartwatch.

It it obvious in Fig. 9(a) that the smartwatch can very accu-
rately measure the average HR. The mean value of the absolute
error is only around 1 beat per minute. This magnitude of
error agrees with the latest systematic evaluation of smart-
watches [15], [47]. However, the errors become significant
when using the measured IBI from a smartwatch to compute
RMSSD, as illustrated in Fig. 9(b). The mean of the relative
errors is almost 100%. More comparisons between smartwatch
and Firstbeat measurements are given in Fig. 19. Although
the sensors of smartwatches tremendously improved and will
continue (e.g., ECG monitoring is now available in certain
smartwatches, the prerequisite of its usage is that the users
must sit still without arm movements; thus, limited applica-
bility while driving [15]), the current high-end smartwatch that
measures the accurate mean HR does not provide reliable HRV
measurements while driving.

B. Comparison With Baseline Methods

In this section, we present the baseline methods to be
compared and analyze the results quantitatively.

Baseline Methods: This part describes the baseline meth-
ods in detail. On the one hand, the chosen baselines, such
as smartwatch and time models, are used to demonstrate that
our proposed facial expression-based approach is a good and
necessary complement of currently prevalent HR monitoring
methods; on the other hand, the comparison with the tree-
based and neural network models can demonstrate that the
proposed tree-based probabilistic fusion is an efficient way to
learn data representation.

1) Smartwatch Model: Although smartwatches exhibit
unreliable measurements of HRV, as described

Fig. 10. RMSSD of the nine drivers in different time interval.

in Section IV-A, it is still meaningful to evaluate
whether the noise in the smartwatch is consistent. This
means, for example, if the noise adds a consistent offset
to the HRV measurements, HRV outlier detection can
still be accurately performed since we are interested
in whether HRV is lower or higher than the personal
baseline level. We refer to the smartwatch model as SM.

2) Time Model: It is well known that the time of day has a
strong impact on HRV [48]. For example, HRV tends to
be higher during working hours than at night because the
body must react to the accumulated stress and cognitive
load. We demonstrate the time-dependent variation of
RMSSD in Fig. 10. More examples of LF/HF ratio and
pNN50 are given in Figs. 17 and 18 in the Appendix.
Therefore, it is crucial to inspect the possibility of infer-
ring HRV outlier purely based on time. To this end,
instead of defining a rule-based model, we build a time
model (referred as TM) by constructing a random forest
using only time features (7D). The TM resembles the
settings in Fig. 7 except for the input FVs.

3) Tree-Based Models: As described in Section III-B, ran-
dom forest (referred as RF) can be used as the machine
learning back end in the pipeline. To explore the fea-
sibility of other tree-based models, we further replace
random forest with one of the latest tree-based mod-
els, the deep forest (referred as DF) [46]. For RF, DF,
and tree part of TPFN, a grid-search of parameters
is performed. The candidate parameters are described
in Table VI. The optimal parameters for all tree-based
models are determined as depth of tree = None (i.e.,
unlimited depth), number of trees = 200, min samples
split = 2, and min samples leaf = 1.

4) Neural Network Models: Over the last decade, neu-
ral network techniques have experienced tremendous
improvement. Therefore, it is meaningful to benchmark
our proposed tree-based probabilistic fusion approach
with them. We implemented a 1-D convolutional neu-
ral network (referred as CNN), multilayer perceptron
(referred as MLP), as well as recurrent neural network
(referred as RNN) to the time-series FVs. To be more
precise, the CNN, as depicted in Fig. 11, consists of two
cascaded 1-D convolutional filters (kernel size = 3, filter
size = 64, dropout rate = 0.5, and activation = sigmoid)
followed by a linear fully connected (FC) layer with 16
neurons and a Softmax operation that reduces the flatted
convolutional output to two dimensions, corresponding
to the binary classification. RNN, as shown in Fig. 12,
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Fig. 11. CNN baseline model.

Fig. 12. RNN baseline model.

uses two recurrent layers (dropout rate = 0.5) with 16
gated recurrent units (GRUs) followed by a linear FC
layer with 16 neurons and a Softmax operation that
reduces the hidden states of GRUs to two dimensions,
similar to CNN. MLP resembles the pipeline in Fig. 7,
where random forest is replaced by a two-layer MLP
(activation = sigmoid and dropout rate = 0.5) with
32 units in each layer. The classification is performed
on each FV and the final prediction is the aggrega-
tion (majority vote) of all FVs in an HRV segment.
The chosen architectures for CNN, RNN, and MLP
are similar to the ones used in [49] and [50], which
have been proven to be effective in predicting various
physiological and psychological status. Additionally, the
optimal parameter settings of the above-mentioned neu-
ral networks were determined using grid search. This is
done by applying a fivefold cross-validation to the train-
ing data set. Subsequently, each network is retrained
on a total training data set with the optimal parame-
ters. This procedure of parameter searching is similar
to that of [50]. The candidate parameters for the grid
search are described in Tables VII–IX. Furthermore,
for all networks, we further grid searched on optimizer
(SGD and ADAM), normalization schemes (Z-score
normalization, min–max normalization, and logarithmic
transformation),1 and gradient clipping schemes (norm
type = 2-norm, the option for max. norm was iterated
over 1, 10, and 100). Finally, all neural network models
(including the neural network part of TPFN) are trained
by ADAM with a learning rate of 0.005; Z-score normal-
ization and gradient clipping with max. norm = 10 are
applied. The loss function is defined as cross-entropy.

Numeric Results: We perform the binary classification on
an unbalanced data set (majority : minority ≈ 82% : 18%).
Therefore, balanced accuracy is used as the metric, which is
an unweighted mean of accuracy over all classes. Thus, this
metric is not biased toward the majority class and can provide

1To avoid numerical issues, logarithmic transform is applied as A =
log(|A| + 1).

TABLE II
BALANCED ACCURACY OF LOW HRV OUTLIER DETECTION,
SMARTWATCH (SM) VERSUS PROPOSED SOLUTION (TPFN)

TABLE III
BALANCED ACCURACY OF HIGH HRV OUTLIER DETECTION,
SMARTWATCH (SM) VERSUS PROPOSED SOLUTION (TPFN)

TABLE IV
BALANCED ACCURACY OF LOW HRV OUTLIER DETECTION

a more accurate evaluation of the overall performance. As rel-
evant HRV metrics, we selected RMSSD and evaluated LF/HF
ratio and pNN50 since they are closely related to mental status,
as explained in Section I.

We first compare the proposed approach with HRV out-
lier detection based on smartwatch measurements. That is, to
say, for SM, we computed HRV measures from smartwatch-
measured IBI and use the computed HRV measures to detect
HRV outliers. Smartwatch measurements are available for
21.25 h of 68.58 h. To ensure a fair comparison, the proposed
TPFN is trained for the remaining 47.3 h. After that, TPFN
and SM were validated on the same data set where smartwatch
measurements are available. The result is described in Tables II
and III. The proposed TPFN method outperforms SM in all
cases, with an improvement ranging from 3.6% to 13.1%.
The evaluation demonstrated that the IBI measured by smart-
watches could not precisely compute HRV measures despite
accurate HR measurement. The measurement noise does not
constitute a constant offset, making HRV outlier detection
based on smartwatches imprecise.

Next, we compare the proposed TPFN with prevalent
machine learning models. We randomly split the data set into
train (70%) and test (30%) sets. The final results are presented
as the average of 10 repeated experiments using 10 different
random seeds. The standard deviations of the ten repetitions
are indicated in brackets in corresponding tables.

The results are presented in Tables IV and V. TM performs
by distance the worst despite the strong correlation between
HRV and time [38]. Neural network approaches (CNN, RNN,
and MLP), despite their higher complexity, achieve worse
results than tree-based models (RF and DF). Finally, the best
performance is achieved by the proposed hybrid TPFN model
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TABLE V
BALANCED ACCURACY OF HIGH HRV OUTLIER DETECTION

Fig. 13. Confusion matrix of RMSSD outlier detection.

Fig. 14. Confusion matrix of LF/HF ratio outlier detection.

that combines the merits of both tree-based model and neural
networks. The TPFN model outperforms other best perform-
ing baseline models by an average of 3.4% and up to 6.9% in
balanced accuracy.

To better visualize the performance of the outlier detection,
the confusion matrices of TPFN are plotted in Figs. 13–15.
The confusion matrices show that the proposed TPFN is not
particularly biased toward the majority class, except for the
high outlier detection of LF/HF ratio in Fig. 14. Meanwhile,
the model maintains low false negative and false positive
rates, as illustrated in the subdiagonals of the confusion
matrices.

V. DISCUSSION

In this section, we discuss the proposed approach in terms
of prediction usability, reliability, and potential limitations.

A. Usability

The proposed approach relies on a driver monitoring
camera. Although such a camera is not widely installed in
current vehicles, it is becoming an integral and essential com-
ponent of future cars. The reason is that a driver monitoring

Fig. 15. Confusion matrix of pNN50 outlier detection.

camera is an essential safety feature that prevents inatten-
tion or drowsiness while driving. European Union (EU) is the
pioneer in pushing forwards this safety feature. In 2019, a
general safety regulation was passed by the EU Council of
Ministers. The safety regulation requires that all new vehicles
on the EU market must install advanced safety systems to
prevent distraction and drowsiness. Such an advanced safety
system is very likely to be implemented through a driver
monitoring camera [35], [36], [51]. Starting in 2022, all
new type-approved vehicles with a certain level of auton-
omy must fulfil this requirement. By 2026, this law will
cover all newly produced cars regardless of their level of
automation [51], [52]. In the United States, two safety-related
traffic bills have been introduced or passed (H.R.2—Moving
Forward Act and S.4123—SAFE Act of 2020). This may lead
to the requirement that driver monitoring camera becomes
mandatory in new vehicles [51]. In China, the regulations
requiring long-distance trucks to use driver monitoring have
already been implemented in certain regions, in particular for
vehicles transporting hazardous goods. More similar regula-
tions are expected to follow [51]. We can anticipate that driver
monitoring cameras will become essential and mandatory in
many regions of the world in the future. The proposed solution
can be well integrated into future cars without any additional
hardware cost.

The proposed solution plays an important complementary
role to the emerging driver monitoring solutions, such as activ-
ity recognition and gaze detection [53], [54]. While driver
activity recognition and gaze detection algorithms can infer
whether a driver’s behaviors are allowed during driving, these
algorithms do not guarantee if a driver’s mental status is favor-
able. Various studies suggested that incremental cognitive load
impact drivers’ visual behavior and their gaze is, therefore,
focused on the central road region [55], [56]. Even worse is
that increased cognitive load reduces drivers’ awareness of
incidents occurring within the restricted visual field, namely,
“look but fail to see” [14]. Such shortcomings of driver activ-
ity or gaze monitoring techniques can be well compensated
by our proposed algorithm, which assesses the cognitive load
of drivers through HRV estimation.

Finally, the monitoring of HRV measures provides a sig-
nificant derivative benefit from the well-being perspective.
Driving is not the only source of stress and mental load
in daily lives. Occupational burn-out, sentimental relation
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between couples, mood disorders, etc., can lead to subop-
timal states and could manifest themselves in the changes
of HRV measures [38], [57]. The HRV monitoring technique
in combination with well-being interventions that regulate
drivers’ psychological status [9], [10], in essence, does not
only reduces stress and cognitive load from driving but also
from other daily events [14]. The smart vehicles in the
future should not only be a tool for transportation but also
an intelligent 3rd living space integrated with a wellness
platform [14].

B. Reliability

The proposed HRV estimation solution provides supportive
service to improve the user experience. Upon the detection
of excessively low or high HRV measures, intelligent vehicle
systems can deliver corresponding interventions to regulate
the suboptimal states of drivers. State-of-the-art driver stress
or mental regulation strategies mainly consist of music or
mindfulness intervention, breath exercise, control of ambient
auditory, lighting or aero (wind) feedback, odor stimulation,
etc., [9], [10], [58]–[60].

Unlike obstacle avoidance or pedestrian detection systems
that have almost zero tolerance for false detection, the HRV
estimation in our context can engage in ambiguity when
the system is uncertain about its estimation. This is in line
with the Guidelines for Human-AI Interaction proposed by
Amershi et al. [61]. There is a certain gray zone that tol-
erates ambiguous decisions. In the case of uncertainty, the
reliability of the system can be further improved by adopt-
ing the interaction between system and users, for instance,
through verbal communication [62], an inquiry of the neces-
sity of intervention [9], or adjusting intensity/option of
intervention [63], etc. On the other hand, interventions yield a
stronger effect, especially if users are in a suboptimal state
(and hence, a state of high “vulnerability”), because more
potential for improvement exists. That being said, wrongly
applied interventions (i.e., user in the optimal state) to regulate
low HRV measures are unlikely to move the user from optimal
state to a state of high HRV measures [63]. If interventions are
provided based on wrong HRV estimation, the consequence is
not as dangerous as, for instance, missdetection of lane marks
or pedestrians.

C. Limitations

This research should be assessed considering its limitations.
Even though our experiments were performed under natu-
ralistic conditions, a very challenging setting, the proposed
approach does not generalize to the leave-one-subject-out set-
ting. This drawback could be attributed to the fact that we
have only nine drivers in our data set. The limited sample size
is not diverse enough for a machine learning model to learn a
generalizable pattern among different subjects. We expect that
a large-scale field study with a greater number of the subject
could be conducted to further explore the generalizability of
facial expression-based HRV estimation.

In addition, it is worth noting that the estimation of LF/HF
ratio is generally inferior than the other HRV measures.

We believe that this difference can be explained by the
fact that subject respiration heavily influences the frequency
components of HRV [64], [65]. More specifically, both res-
piration and autonomic nerve activities contribute to the
deviation in LF/HF ratio, whereas only the latter factor can
be reliably interpreted by the proposed facial expression-
based inference model. For future work, we see potential
in integrating a respiration detection module and thus, fus-
ing the information of breath to further improve the HRV
estimation, which shall be one of our focuses in future
research.

Furthermore, although the excessively low or high HRV
measures are strong indicators of certain physiological and
psychological status, an exact measurement of HRV measures
could bring more insight into a user’s health status (e.g., moni-
toring of hypertension or other cardiovascular diseases), which
is not accomplished in this study as no study subject reported
any relevant complications. The exact measurement of HRV
relies on precise capturing of IBI, which can be achieved
by rPPG under well-defined lab condition. The fundamental
mechanism of rPPG that detects the heartbeat induced peak of
blood volume in a vessel is a more straightforward approach
for measuring the exact value of HRV. However, rPPG is not as
robust as our approach and is vulnerable to ambient noise due
to illumination and motion artefacts [66]. With the positive
results demonstrated in this study, researchers in the future
could focus on a fusion approach that leverages the robust-
ness of our approach to reduce noise in rPPG; thus, achieving
a reliable HRV measurement in the wild. At the same time,
future work could extend our work by investigating the feasi-
bility of applying the proposed facial expression-based HRV
estimation outside the vehicle. For example, a potential use
case could be patients with cardiovascular diseases who need
low-cost monitoring of their current condition. The mandatory
step to validate our approach would be the collection of medi-
cal data from affected patients and subsequent experiments on
this data.

VI. CONCLUSION AND OUTLOOK

Several studies and surveys pointed out that the suboptimal
state of drivers is the main cause of traffic accidents [7]. The
National Highway Traffic Safety Administration (NHTSA)
suggested that 94% of accidents resulted from human
errors [67]. Therefore, a strategy for monitoring drivers’ sta-
tus and driving performance becomes crucial in the reduction
of the number of accidents. Such a driver monitoring system
is particularly meaningful in the upcoming era of ever auto-
mated vehicles, where driver status needs to be maintained to
ensure a seamless takeover of the control of cars. Although
several HRV estimation approaches have been proposed, the
mediocre accuracy, inconvenient deployment, and the lack of
ubiquity prevent them from becoming a practical and prevalent
solution.

To address the existing challenges and embrace future tech-
nologies, we proposed a facial expression-based approach for
HRV measure outlier detection. The reason is that empirical
research showed that excessively low or high HRV measures
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are strongly correlated with various suboptimal mental and
psychological states of people [15], [16], [19], [20]. The
merit of the proposed approach is threefold. First, HRV esti-
mation is a meaningful and even necessary complement to
visual human activity recognition (HAR)-based driver mon-
itoring. While HAR captures drivers’ physical behaviours,
HRV estimation evaluates their mental status. Second, driver
monitoring cameras will become a mandatory component
of future vehicles in many regions. Therefore, the proposed
approach does not induce any extra hardware cost, providing a
higher degree of ubiquity than smartwatches and UWB-based
technologies. Our evaluation demonstrates that the proposed
TPFN approach outperforms a consumer smartwatch in HRV
measure outlier detection by up to 13.1% in terms of bal-
anced accuracy. The positive results and the ubiquity of the
proposed approach demonstrated its great potential in improv-
ing driving experience and safety. Finally, the proposed TPFN
approach outperforms other prevalent pure tree-based or neu-
ral network-based methods by an average of 3.4% in balanced
accuracy. The idea of the tree-based probabilistic embed-
ding should inspire researchers to consider the possibility
of hybrid models that leverages the merits of the tree-based
models, especially when no rich prior domain knowledge
is available.

The concept of facial expression-based estimation of HRV
measures proposed in this work could further facilitate various
IoT-based services and applications. For example, in mobile
crowdsensing [68], [69], car ridesharing companies (Uber,
Didi, etc.) could determine whether a driver is an optimal state
based on the proposed HRV estimation approach. After that,
task allocation can be optimized by assigning more demand-
ing tasks to the drivers of better states or enforcing mandatory
pause to the drivers who are temporally not fit for work-
ing. Thus, the quality of service will be improved. Another
example is smartphone-based mobile sensing of user phys-
iological and psychological states. One major limitation of
smartphone-based sensing is the lack of accurate physiological
data [31], [50], [70]. With the help of the proposed method,
users’ HRV estimation can be shared via data link between
smartphones and the devices that capture facial expressions
(e.g., intelligent vehicles, webcam of laptops, and surveillance
cameras). In this way, smartphone-based mobile sensing can
achieve a more comprehensive understanding of users’ status.
The method proposed in this work, in essence, conceptualizes
a more robust and more accurate way of pervasive monitor-
ing of users’ mental states. The concept targets “IoT data
analytical services,” one of the ten main challenges in devel-
oping an IoT service outlined by Bouguettaya et al. [71]. The
purpose of IoT data analytics is to distil heterogeneous IoT
data in order to provide domain-specific actionable knowledge
of adequate quality [71]. In our vision, the facial expression-
based HRV estimation of users should not only be limited
to drivers but can also be generalized to broader applica-
tions where users’ mental state should be considered. As such,
we expect to see interdisciplinary research from psychology,
neuroscience, and computer science could benefit from our
idea and further push forward the pervasive sensing of user
status.

Fig. 16. Processing of HRV segments to avoid intersection between training
and test data.

Fig. 17. LF/HF ratio of the nine drivers in different time interval.

Fig. 18. pNN50 of the nine drivers in different time interval.

(a) (b)

Fig. 19. Absolute and relative errors of high-end smartwatch compared with
Firstbeat [37]. (a) LF/HF ratio. (b) pNN50.

TABLE VI
CANDIDATE PARAMETERS FOR GRID SEARCH FOR TREE-BASED MODELS

APPENDIX

See Figs. 16–19 and Tables VI–IX.
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TABLE VII
CANDIDATE PARAMETERS FOR GRID SEARCH FOR CNN

TABLE VIII
CANDIDATE PARAMETERS FOR GRID SEARCH FOR RNN

TABLE IX
CANDIDATE PARAMETERS FOR GRID SEARCH FOR MLP
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