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Abstract:

This paper develops IV estimators for unconditional quantile treatment e¤ects (QTE) when

the treatment selection is endogenous. In contrast to conditional QTE, i.e. the e¤ects conditional

on a large number of covariates X, the unconditional QTE summarize the e¤ects of a treatment

for the entire population. They are usually of most interest in policy evaluations because the

results can easily be conveyed and summarized. Last but not least, unconditional QTE can be

estimated at
p
n rate without any parametric assumption, which is obviously impossible for con-

ditional QTE (unless all X are discrete). In this paper we extend the identi�cation of uncondi-

tional QTE to endogenous treatments. Identi�cation is based on a monotonicity assumption in

the treatment choice equation and is achieved without any functional form restriction. Several

types of estimators are proposed: regression, propensity score and weighting estimators. Root

n consistency, asymptotic normality and attainment of the semiparametric e¢ ciency bound are

shown for our weighting estimator, which is extremely simple to implement. We also show that

including covariates in the estimation is not only necessary for consistency when the instrumental

variable is itself confounded but also for e¢ ciency when the instrument is valid unconditionally.

Monte Carlo simulations and two empirical applications illustrate the use of the proposed esti-

mators.
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1 Introduction

In many research areas it is of �rst order importance to assess the distributional e¤ects of policy

variables. For instance, policy makers will evaluate di¤erently two training programs having the

same average e¤ect but whose e¤ects are concentrated in the lower end of the distribution for

the �rst one and on the upper end for the second one. The ability of quantile treatment e¤ects

(QTE) to characterize the heterogeneous impacts of variables on di¤erent points of an outcome

distribution makes them appealing in many economic applications. This has motivated the re-

cent surge of interest in their identi�cation and estimation using di¤erent sets of assumptions,

particularly in the applied policy evaluation literature.

In this paper, we develop an instrumental variable (IV) model of unconditional QTE in the

presence of endogeneity and obtain conditions for identi�cation of the QTE without functional

form assumptions. We are interested in the unconditional QTE, i.e. the di¤erence between

the unconditional quantiles of the treated outcome and the unconditional quantiles of the non-

treated outcome for the population of interest. In contrast to conditional QTE, i.e. the e¤ects

conditional on a large number of covariates X, the unconditional QTE summarize the e¤ects of

a treatment for the entire population and are usually of most interest in policy evaluations. The

results can easily be conveyed and summarized since the unconditional quantile function is a one

dimensional function, whereas the conditional quantile functions are multidimensional functions

(of the quantile on one side and of each of the covariates on the other side). In addition, and this

is at least as important, unconditional QTE can be estimated at
p
n rate without any parametric

assumption, which is obviously impossible for conditional QTE (unless all X are discrete). Hence,

we can estimate unconditional QTE more precisely than conditional QTE.

We allow for an endogenous binary treatment and we show how to use an IV to identify QTE.

Our approach to IV is based on the framework developed by Imbens and Angrist (1994), but also

permits non-binary instrumental variables. We identify the e¤ects for the subpopulation that

reacts on changes of the value of the instrument (compliers) based on a monotonicity assumption

in the treatment choice equation.1

We assume that the instrument is independent of the outcome variable only conditionally on

X. In many applications, the instrument is not randomly assigned and may itself be confounded.

1Note that in applications where two-sided noncompliance is impossible and the instrument has been randomized

we identify the average treatment e¤ect on the treated (ATET).
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For example, college proximity may be used as an instrument to identify the returns to schooling,

noting that living close to a college during childhood may induce some children to go to college

but is unlikely to a¤ect their wages many years later (Card, 1995). Nevertheless, since parents�

residence is not randomly allocated, it is likely to be correlated with parent�s profession, family

income and wealth, which may a¤ect the wage prospects of their children. In this case, distance

to college may be a proper IV only after conditioning on some covariates. In addition, including

covariates can be helpful to intercept all mediating causal paths between the instrument and

the outcome variable. A crucial assumption is that the instrument has no direct impact on the

outcome Y , other than via the treatment D. However, if there is another causal link between

the instrument Z and the outcome Y and if this link runs via a mediating variable on the

causal pathway, by conditioning on this variable we can still obtain identi�cation. Naturally,

since conditional independence over the whole support of X implies unconditional independence,

our results also cover the case where the instrument is valid unconditionally, e.g. a randomized

assignment to a training program or the Vietnam conscription lottery. We will show later that

even in this con�guration using covariates is useful since it increases the precision of the estimates.

In this model, we show that unconditional QTE for the compliers are identi�ed. Several

constructive identi�cation results lead naturally to several types of fully nonparametric estimators:

regression (or matching) on the covariates, regression on the propensity score, and weighting

estimators. Additionally, a projection of the weights onto an appropriate space justi�es using a

weighted version of the traditional quantile regression algorithm proposed by Koenker and Bassett

(1978).

We give then conditions under which the proposed weighting estimator is
p
n consistent,

asymptotically normally distributed and e¢ cient. In order to show this last property we �rst

derive the semiparametric e¢ ciency bound for unconditional QTE in our model. Two further

results complete the picture: Knowledge of the probability with which the instrument has been

assigned does not change the value of the e¢ ciency bound, but increasing the number of covariates

does reduce the e¢ ciency bound when the additional covariates are not required for consistency.

Thus, incorporating the information contained in the covariates may be needed for consistency

when the instrument is itself confounded or for e¢ ciency when the value of the instrumental

variable is assigned completely at random. These results can be combined by including some

covariates to obtain consistency and additionally others for e¢ ciency reasons. It is also worthwhile
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to mention that these covariates are permitted to be endogenous.

Finally, Monte Carlo simulations and two empirical applications illustrate the use of the

estimators. In the �rst application, we estimate unconditional QTE with the dataset used by

Abadie, Angrist, and Imbens (2002, AAI in the following). In this case, the instrument has been

completely randomized. As expected, incorporating covariates does not signi�cantly change the

results but reduces (moderately) their variance. As a pedagogical exercise we then manipulate

the data such that the instrument becomes independent of the outcome only conditionally

on a covariate. This allows us to measure the bias arising when the instrument is not valid

independently of the covariates. In the second application, we estimate the return to college in

the USA, an important issue in the debate on inequality, using college proximity as instrument

with data from Card (1995).2 In this case, controlling for additional covariates is critical for the

validity of the instruments.

The estimators proposed in this paper are highly relevant for applied researchers. Our model

corresponds to a situation often encountered in practice as illustrated by both applications. In

addition to deriving the theoretical properties of these estimators, we also provide user-friendly

computer programs that implement the estimators and provide analytical standard errors. Com-

puter codes in the programming language R (free software available at www.r-project.org) and

in Stata are available from the authors and should simplify the use of the results derived in this

paper.

Of course, we are not the �rst to consider the estimation of QTE. This topic has been an active

area of research during the last three decades. Koenker and Bassett (1978) proposed and derived

the statistical properties of a parametric (linear) estimator for conditional quantile models. Due to

its ability to capture heterogeneous e¤ects, its theoretical properties have been studied extensively

and it has been used in many empirical studies; see, for example, Powell (1986), Guntenbrunner

and Jureµcková (1992), Buchinsky (1994), Koenker and Xiao (2002), Angrist, Chernozhukov, and

Fernández-Val (2006). Chaudhuri (1991) analyzed nonparametric estimation of conditional QTE.

All these estimators assume that the treatment selection is exogenous.3 However, in obser-

vational studies, the variables of interest (e.g., education, prices) are often endogenous, making

conventional quantile regression inconsistent and hence inappropriate for recovering the causal

2The returns to education have received a lot of attention with recent research interests aiming also particularly

at higher education (see e.g. Black and Smith (2004 and 2005) about the returns to college).
3Also called �selection on observables�, �conditional independence�or �unconfoundedness�.
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e¤ects of these variables on the quantiles of economic outcomes. Therefore, Abadie, Angrist, and

Imbens (2002) and Chernozhukov and Hansen (2005, 2006, 2007) have proposed linear instru-

mental variable quantile regression estimators. Chernozhukov, Imbens, and Newey (2007) and

Horowitz and Lee (2007) have considered nonparametric IV estimation of conditional quantile

functions. In a serie of papers, Chesher (2003, 2005, 2007) also examines nonparametric identi-

�cation of conditional e¤ects.4 Hoderlein and Mammen (2007) consider marginal e¤ects in non-

separable models. In our paper, on the other hand, we develop a fully nonparametric approach

to identi�cation and estimation of unconditional QTE.

The literature discussed in the preceding two paragraphs deals with the estimation of con-

ditional QTE. When we estimate conditional QTE, either we must make a strong parametric

assumption, or the estimates are not
p
n consistent. The change of estimand, from the condi-

tional to the unconditional e¤ects, enables to take the best of both worlds: absence of functional

form assumptions and
p
n consistency.5 Recently, Firpo (2007), Frölich (2007b) and Melly (2006)

have examined the nonparametric estimation of unconditional QTE, under a selection on observ-

ables assumption. We contribute to this literature by allowing for endogenous treatment choice.

As a matter of fact, our estimators simplify to those estimators when the instrument and the

treatment are identical (exogenous treatment). On the other hand, our weighting estimator sim-

pli�es to the AAI estimator when there is no covariate such that the conditional QTE are also

the unconditional ones. We show, however, that their approach is not generally applicable for the

estimation of unconditional QTE. Thus, the model and estimators looked at in this paper both

substantively complement and di¤er from the existing literature.

The paper is organized as follows. Section 2 presents the model. Section 3 gives the iden-

ti�cation results and suggests natural estimators. The asymptotic properties of the model are

derived in Section 4. In particular we derive the semiparametric e¢ ciency bound and show that

our weighting estimator is consistent, asymptotically normally distributed and e¢ cient. Section

5 presents the results of the simulations and of two applications and Section 6 concludes.

4 Imbens and Newey (2003) consider the case of a continuous treatment with identi�cation based on a control

function approach.
5At the same time, these are of most policy interest. Of course, conditional QTE are also interesting since they

allow to analyze the heterogeneity (with respect to X) of the treatment e¤ect. But for policy guidance, it would

nevertheless be most helpful to examine QTE conditional on only a very small subset of discrete covariates, e.g.

young men, older women etc.
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2 Notation and Framework

We consider the e¤ect of a binary treatment variable D on a continuous outcome variable Y . Let

Y 1i and Y
0
i be the potential outcomes of individual i. Hence, Y

1
i would be realized if individual

i were to receive treatment 1 and Y 0i would be realized otherwise. Most interest has focused on

the estimation of average treatment e¤ects

E[Y 1 � Y 0]

or average treatment e¤ects on the treated

E[Y 1 � Y 0jD = 1].

Instead of considering only average e¤ects, it is often of considerable interest to compare the

distributional e¤ects of the treatment as well. A standard example may be the impact of a

program on income inequality. Another example which has received considerable public interest

is educational equality, where many societies would prefer to provide every child with a fair chance

into adult live. Here, Y is a measure of cognitive ability (e.g. obtained from Math and language

tests) and D may be the introduction of computers in classroom (teaching). In this paper, we

will identify and estimate the entire distribution functions of Y 1 and Y 0. Since quantile treatment

e¤ects (QTE) are an intuitive way to summarize the distributional impact of a treatment, we

especially focus our attention on them:

�� = Q�Y 1 �Q
�
Y 0 ,

where Q�Y 1 is the � quantile of Y
1. In the earnings example, �0:9 would be the impact of D on the

high income part of the distribution. In fact, our results are not limited to the estimation of QTE.

Since we identify the entire processes Q�Y 1 and Q
�
Y 0 for � 2 (0; 1), it would be straightforward to

derive estimates and inference e.g. for the treatment e¤ect on inequality measures such as the

interquantile spread. A typical inequality measure is the inter-decile ratio that can be de�ned as

Q0:9Y 1

Q0:1
Y 1
�
Q0:9Y 0

Q0:1
Y 0

or as
Q0:9Y 1

Q0:1
Y 1

Q0:1Y 0

Q0:9
Y 0
.
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Our main focus is on unconditional treatment e¤ects, i.e. the e¤ects of D in the population

at large. We might also be interested in the e¤ects in subpopulations de�ned by some, usually

broadly de�ned, set A, e.g. women below the age of 25, which we de�ne as

��A = Q�Y 1jA �Q
�
Y 0jA

where Q�Y 1jA is the quantile in the subpopulation A. Notice that this focus di¤ers from the exist-

ing literature on IV quantile regression, which focuses on conditional treatment e¤ects, i.e. con-

ditional on a set of variables X. We call our e¤ects unconditional in the sense that A usually

contains a very broadly de�ned set, while X usually consists of a large set of covariates often

including continuous variables as well. More precisely, we will consider ��A as an unconditional

e¤ect if the set A has positive probability mass, e.g. the subpopulation of women. In other words,

A is not permitted to contain any continuous regressors.6 Conditional and unconditional e¤ects

are interesting in their own rights. Whereas conditional e¤ects may be more interesting in eco-

nomic analysis of e¤ects heterogeneity, for public policy unconditional e¤ects will usually be more

relevant. The reason for this is not only that policy and the public need more aggregated results

for decision making, but also that unconditional e¤ects can be estimated without parametric as-

sumptions more precisely than conditional e¤ects. We can achieve
p
n-consistency for uncondi-

tional QTE, whereas nonparametric estimation of conditional QTE will always be estimated at

a lower rate (unless all X are discrete).

There are only relatively few contributions that examine explicitly unconditional distributional

impacts of treatment. Firpo (2007), Frölich (2007b) and Melly (2006) consider estimation of

treatment e¤ects, when D is exogenous conditional on X. The usual concern with estimating

treatment e¤ects is endogeneity ofD and we will rely on exclusion restrictions for the instrumental

variables Z. We consider a setup related to the recent literature on nonparametric identi�cation

of nonseparable models:

Yi = '(Di; Xi; Ui) (1)

Di = �(Zi; Xi; Vi),

where U and V are possibly related unobservables and X are additional covariates, which are

permitted to be correlated with U and/or V . We assume that, after having included X in the

6 In our analysis, we will also need in a �rst step to condition on a large set of regressors X to make the

instrumental variables conditions hold, but then average over the support of X to obtain unconditional e¤ects.
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model, Z is excluded from the function '. The corresponding potential outcomes are

Y di = '(d;Xi; Ui)

Dz
i = �(z;Xi; Vi).

In contrast to Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey (2007) and

Chesher (2007), we impose triangularity, i.e. assume that Y does not enter in �, but do not need

to assume any kind of monotonicity or rank invariance for '.7 We do impose, on the other hand,

that the function � is (weakly) monotonous in its �rst argument, i.e. assume that an exogenous

increase in Zi can never decrease the value of Di. This is the monotonicity assumption of Imbens

and Angrist (1994). This assumption may be more plausible than monotonicity in ' in some

applications, whereas in other applications it may be less appealing.8

Our method is well suited for binary D. Imbens and Newey (2003) and Chesher (2003)

analyzed identi�cation for continuous D and Chesher (2005) examined interval identi�cation

with discrete D. Heckman and Vytlacil (2005) analyzed (marginal) average treatment e¤ects for

continuous Z and focused on treatment e¤ects conditional onX, whereas we aim for unconditional

e¤ects. In future work we will extend our results to discrete D.

We will focus our attention on the subgroup of compliers, which we de�ne as all individuals

who are responsive to a change in Z within the support of Z. Note that in applications where

the instrument has been randomized and two-sided noncompliance is impossible, the compliers

are the treated. In this case, which corresponds to the application of section 5.1 using the data

of AAI, we actually obtain the QTE on the treated. Generally, we cannot identify the e¤ect of D

on Y for individuals for whom Dz
i does not vary with z in the support of Z.

9 If the instruments

Z are su¢ ciently powerful to move everyone from Di = 0 to Di = 1, this will lead to the average

treatment e¤ect (ATE) in the entire population. In most applications, however, the instruments

available are not so powerful and it is interesting in this case to consider e¤ects in the largest

subpopulation for which the e¤ect is identi�ed. In addition, if Y is bounded, we can derive bounds

on the overall treatment e¤ects because the size of the subpopulation of compliers is identi�ed as

7Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey (2007) and Chesher (2007) assume that

' is monotonous in its third argument.
8 In future work we are going to examine the estimation of unconditional QTE using the monotonicity assumption

in the outcome equation and the combination of both assumptions.
9These are the always-participants or never-participants in the language of Imbens and Angrist (1994).
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well. Therefore, we focus on the QTE for the compliers:

��c = Q�Y 1jc �Q
�
Y 0jc

where Q�Y 1jc = infq
Pr
�
Y 1 � qjT = c

�
� � , where Ti = c means that individual i is a complier, as

de�ned below.

If Z consists of a single binary variable and if it has a (weakly) monotonous impact on D, the

largest subpopulation a¤ected by moving the instrument will consist of the individuals for whom

D1
i > D0

i . More generally, the largest subpopulation a¤ected would be obtained by moving Z

from the smallest point of its support to its largest point. If there is only a single instrument Z

with support Z = [zmin; zmax], this corresponds to hypothetically moving Zi from zmin to zmax for

every individual. If Z contains several instrumental variables, the largest subpopulation a¤ected

would be obtained by moving the instruments from z�1 to z
�
2 where

(z�1 ; z
�
2) = argmax

z1;z22Z

����Z (E [DjX;Z = z2]� E [DjX;Z = z1]) dFX

���� ,
where the integral expression measures the size of this subpopulation, as further discussed below.

With monotonicity z�1 and z
�
2 will be at the boundary of the support of Z.10

In the following we will assume throughout that z�1 and z
�
2 are known (and not estimated)

and that Pr(Z = z�1) > 0 and Pr(Z = z�2) > 0. This rules out continuous instruments, unless

they have masspoints at z�1 and z�2 . Note that our identi�cation results would also hold for

continuous instruments, but
p
n consistent estimation would not be possible anymore. We will

develop estimators for those situations in future work.

To simplify the notation we will use the values 0 and 1 subsequently instead of zmin to zmax

or z�1 to z
�
2 , respectively. Furthermore, we will in the following only refer to the e¤ectively

used sample fi : Zi 2 f0; 1gg or in other words assume that Pr(Z = z�1) + Pr(Z = z�2) = 1.

This is appropriate for our applications where the single instruments Z are binary. In other

applications, where Pr(Z = z�1) + Pr(Z = z�2) < 1, our results apply with reference to the

subsample fi : Zi 2 fz�1 ; z�2gg.11

10This may not be the case, if the impact of Z is monotonous only given X, such that the relationship determining

D may be decreasing in z for some x and increasing for other x. Then, in principle, an even larger a¤ected

subpopulation could be de�ned by examining di¤erent values of z�1 and z
�
2 for every value of x.

11Consider Pr(Z = z�1) + Pr(Z = z�2) = r < 1 with plim n
N
= r where N is the total sample size and n =
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By considering only the endpoints of the support of Z, recoding Z as 0 and 1, and with D

being a binary treatment variable, we can partition the population into four groups de�ned as

Ti = a if D1
i = D0

i = 1 (always treated), Ti = n if D1
i = D0

i = 0 (never treated), Ti = c if D1
i > D0

i

(compliers), Ti = d if D1
i < D0

i (de�ers). We assume that

Assumption 1:

i) Existence of compliers: Pr(T = c) = Pc > 0

ii) Monotonicity: Pr(T = d) = 0

iii) Independent instrument: (Y d; T )??ZjX

iv) Common support: 0 < p(X) < 1 a:s:

where p(x) = Pr(Z = 1jX = x).

A comment on notation: We will often refer to p(x) as the �propensity score�, where one

should note that it refers to the instrument Z and not, as usual, to the treatment D. The

�rst assumption requires that at least some individuals react to movements in the instrument.

The strength of the instrument can be measured by Pc, which is the probability mass of the

compliants. The second assumption is often referred to as monotonicity. It requires that Dz
i

either weakly increases with z for all individuals (or decreases for all individuals). The third

assumption is the main instrumental variable assumption. It implicitly requires an exclusion

restriction (=triangularity) and an unconfounded instrument restriction. In other words, Zi

should not a¤ect the potential outcomes of individual i directly and those individuals for whom

Z = z is observed should not di¤er in their relevant unobserved characteristics from individuals

with Z 6= z. Unless the instrument has been randomly assigned, this last restriction is often

very unlikely to hold. However, conditional on a large set of covariates X, this assumption

is often more plausible.12 Note further that we do not need X to be exogenous. X can be

related to U and V in (1) in any way. This may be important in many applications where X

often contains lagged (dependent) variables that may well be related to unobserved ability U .13PN
i=1 1(Zi 2 fz

�
1 ; z

�
2g) the number of observations at the endpoints of the support of Z. When calculating the

variance approximation for a particular application, the sample size n should be used. If r is much smaller than 1,

there could be �nite-sample precision gains by smoothing over Z. We leave this for future research.
12 In our application, the distance to college instrument is clearly not randomly assigned and individuals with

Z = 1 are certainly di¤erent from those with Z = 0. After conditioning on a number of X variables, particularly

family background variables that capture the endogenous location choice, the assumption becomes more plausible.
13See also Frölich (2006).
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The fourth assumption requires that the support of X is identical in the Z = 0 and the Z = 1

subpopulation. This assumption is needed since we �rst condition on X to make the instrumental

variables assumption valid but then integrate out to obtain the unconditional treatment e¤ects.

An alternative set of assumptions, which leads to the same estimators later, replaces monotonicity

(Assumption 1ii) with assuming that the average treatment e¤ect is identical for compliers and

de�ers, conditional on X.

Finally, we also need to assume that the quantiles are unique and well-de�ned:

Assumption 2:

The random variables Y 1jc and Y 0jc are continuous with positive density in a neighborhood

of Q�Y 1jc and Q
�
Y 0jc, respectively.

3 Identi�cation Results and Estimators

3.1 Identi�cation

Theorem 1 stated below demonstrates that the unconditional QTE for the compliers are non-

parametrically identi�ed. Detailed proofs of this and all other theorems and lemmas are in the

appendix. We now convey the intuition for the results. If Assumption 1 was valid without condi-

tioning on X, the distribution function of Y 1 for the complier sub-population would be identi�ed

by
E [1 (Y � u)DjZ = 1]� E [1 (Y � u)DjZ = 0]

E [DjZ = 1]� E [DjZ = 0] .

This unconditional distribution function could then be inverted to obtain the unconditional

quantile function. Since a similar result applies to the distribution of Y 0, identi�cation of the

QTE would directly follow from this simple result. However, conditioning on the X is necessary.

Note that although it is unknown which observations are the compliers, the size of the complier

sub-population with characteristics x is identi�ed as

Pr(T = cjX = x) = E [DjX = x;Z = 1]� E [DjX = x;Z = 0] ,

and that, for all x with Pr(T = cjX = x) > 0, the conditional distribution function of Y 1 for the

compliers (we get a similar result for Y 0) is identi�ed as

FY 1jX=x;T =c(u) =
E [1 (Y � u)DjX = x;Z = 1]� E [1 (Y � u)DjX = x;Z = 0]

Pr(T = cjX = x)
. (2)
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We can, thus, identify the treatment e¤ects for the compliers with characteristics X = x.

More interesting, however, would be an estimate of the distribution for the subpopulation of all

compliers, which is the largest population for which the e¤ect is identi�ed. The simple integrationR
FY 1jX;T =c(u)dFX of the conditional distribution using the observable distribution of X does not

provide the solution to this problem. Moreover, the �nite sample properties of such an estimator

should be poor when Pr(T = cjX = x) is small for certain values of x. If we want to obtain the

unconditional distribution for the compliers, we need to weight the conditional distribution by the

density of X for the compliers, dFXjT =c. This distribution is not observed but, by Bayes�law,

dFXjT =c =
Pr(T =cjX=x)
Pr(T =c) dFX . Therefore, FY 1jT =c(u) =

R
FY 1jX;T =c(u)

Pr(T =cjX=x)
Pr(T =c) dFX . Using

(2), we obtain one of the results of Theorem 1.

Theorem 1 (Identi�cation: Matching on X) Under Assumption 1, the potential outcome

distributions for the compliers are nonparametrically identi�ed as

FY 1jc(u) =

R
(E [1 (Y � u)DjX;Z = 1]� E [1 (Y � u)DjX;Z = 0]) dFXR

(E [DjX;Z = 1]� E [DjX;Z = 0]) dFX
, (3)

FY 0jc(u) =

R
(E [1 (Y � u) (D � 1)jX;Z = 1]� E [1 (Y � u) (D � 1)jX;Z = 0]) dFXR

(E [DjX;Z = 1]� E [DjX;Z = 0]) dFX
.

which gives the QTE as the di¤erence between the quantiles:

Q�Y 1jc = F�1
Y 1jc(�) Q�Y 0jc = F�1

Y 0jc(�).

Straightforward nonparametric estimators exist for all elements appearing in Theorem 1.

E [DjX = x;Z = z] can be estimated for instance by a local logit estimator or by a logistic

series approximation. E [1 (Y � u)DjX;Z = 1] could also be estimated by a di¤erent local logit

procedure for each u. An alternative that may be fruitful when we want to estimate the whole

distribution (or at least for a large number of u) consists in estimating the conditional quantile

function by local quantile regression and then to invert this function. Instead of using kernel

weights, nearest neighbors estimators may also be used to estimate all conditional functions

appearing in Theorem 1.

The estimators based directly on Theorem 1 can be quali�ed as regression (or matching)

estimators because they correspond to a function of several nonparametric regressions on X.

In the exogenous treatment evaluation literature, two alternative approaches are widely used:

regression (or matching) on the propensity score and weighting estimators based on the propensity
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score. The following Lemma shows that matching on the propensity score can also be used in our

case

Lemma 2 (Propensity score matching) Let P = p(X) and dFP be the distribution of P .

Under Assumption 1 it follows that:

FY 1jc(u) =

R
(E [1 (Y � u)DjP;Z = 1]� E [1 (Y � u)DjP;Z = 0]) dFPR

(E [DjP;Z = 1]� E [DjP;Z = 0]) dFP
, (4)

FY 0jc(u) =

R
(E [1 (Y � u) (D � 1)jP;Z = 1]� E [1 (Y � u) (D � 1)jX;Z = 0]) dFPR

(E [DjP;Z = 1]� E [DjP;Z = 0]) dFP
.

If the propensity score is known or if a parametric functional form can be assumed for it, then

matching on the propensity score has the advantage that it does not require high-dimensional

nonparametric regressions. If the propensity score must be estimated, then high-dimensional

nonparametric functions must be estimated anyway and it is an empirical question to �nd which

one is better suited for a particular dataset.

Starting from (3) one can also derive an expression for the unconditional distribution functions

by appropriate weighting of the observations. Note that

E [E [1 (Y � u)DjX;Z = 1]] = E

�
E

�
1 (Y � u)DZ

p(X)
jX
��
= E

�
1 (Y � u)DZ

p(X)

�
and

E [E [1 (Y � u)DjX;Z = 0]] = E

�
E

�
1 (Y � u)D(1� Z)

1� p(X) jX
��
= E

�
1 (Y � u)D(1� Z)

1� p(X)

�
.

Moreover,

Pc = E [E [DjX;Z = 1]� E [DjX;Z = 0]]

= E

�
E [DZjX]
p(X)

� E [D (1� Z) jX]
1� p(X)

�
= E

�
D � Z � p(X)

p(X) (1� p(X))

�
.

Thus, we can show that the expressions in (3) have the following equivalent representation:

Lemma 3 Under Assumption 1, the potential outcome distributions are identi�ed as

FY 1jc(u) =
E [1 (Y < u)DW ]

E [DW ]
(5)

FY 0jc(u) =
E [1 (Y < u) (1�D)W ]

E [DW ]
,
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where14

W =
Z � p (X)

p(X) (1� p(X)) (2D � 1) . (6)

Hence, one could estimate the QTE by the di¤erence

q1 � q0

of the solutions of the two moment conditions

E [1 (Y < q1)DW ] = �E [DW ] (7)

E [1 (Y < q0) � (1�D)W ] = �E [DW ]

or equivalently

E [f1 (Y < q1)� �gWD] = 0 (8)

E [f1 (Y < q0)� �gW (1�D)] = 0,

because E[W ] = 2Pc and E[DW ] = Pc. We could thus estimate q0 and q1 by these weighted

univariate quantiles in the D = 0 and D = 1 populations. Alternatively, we could estimate the

treatment e¤ect directly by a weighted quantile regression:

Lemma 4 Under Assumption 1, the solution of the following optimization problem

(�; �) = argmin
a;b

E [�� (Y � a� bD) �W ] , (9)

where �� (u) = u � f� � 1 (u < 0)g, is equivalent to the solutions to the moment conditions (8) in

that the solution for a corresponds to Q�Y 0jc and the solution for b corresponds to �
�
c = Q�Y 1jc �

Q�Y 0jc.

Note that the sample objective function to (9) is typically non-convex since Wi is negative

for Zi 6= Di. This complicates the optimization problem a little because local optima could exist.

AAI notice a similar problem in their approach but our problem is less serious here because we

14As discussed below, these weights are di¤erent from the weights used by AAI. However, they appear to be the

same as the weights �0 and �1 suggested in Theorem 1 of Abadie (2003). In that paper, he is interested in the

conditional mean function. Therefore, as in AAI, he does not use �0 and �1 for estimation but only the combination

�, which we call WAII below.
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need to estimate only a scalar in the D = 1 population and another one in the D = 0 population.

In other words, we can write (9) equivalently as

(Q�Y 1jc; Q
�
Y 0jc) =

�
argmin

q1
E [�� (Y � q1) �W jD = 1] , argmin

q0
E [�� (Y � q0) �W jD = 0]

�
, (10)

which are two separate one-dimensional estimation problems in the D = 1 and D = 0 populations

such that we can easily use grid-search methods supported by visual inspection of the objective

function for local minima.

Although the negativity of some of the weights W is not a serious problem, we consider two

alternatives to it. The �rst alternative relates back to Theorem 1 in that we could estimate the

cdf via (3), (4) or (5) instead of the quantiles via (9), particularly if one is interested in the entire

distribution instead of only the e¤ect at one single quantile, e.g. the median.

Alternatively, we could apply an iterated expectations argument to (9) to obtain

(�; �) = argmin
a;b

E [�� (Y � a� bD) �W ]

= argmin
a;b

E [�� (Y � a� bD) � E [W jY;D]]

= argmin
a;b

E
�
�� (Y � a� bD) �W+

�
where

W+ = E [W jY;D ] = E

�
Z � p (X)

p(X) (1� p(X)) jY;D
�
(2D � 1) . (11)

These new weights W+ are always nonnegative as shown below. Hence, they can be used to

develop an estimator with a linear programming representation. The sample objective function

to (9) with W+ instead of W is globally convex since it is the sum of convex functions, and the

global optimum can be obtained in a �nite number of iterations. However, we would need to

estimate (11) �rst. Note that AAI suggest a similar projection approach, but their weights are

conditional on Y;D and X. Hence, nonparametric estimation of their weights is more di¢ cult and

computationally demanding, whereas estimation of (11) requires only univariate nonparametric

regression separately for the D = 0 and D = 1 populations.

We show now that these weights W+ are always non-negative. If D = 1 the weights W+

15



would be negative if E [Z � p (X) jY;D = 1] < 0. However,

E [Z � p (X) jY;D = 1] = E
�
E
�
ZjX;Y 1; D = 1

�
� p (X) jY 1; D = 1

�
= E

"
Pr
�
Z = 1; D = 1jX;Y 1

�
Pr (D = 1jX;Y 1) � p (X) jY 1; D = 1

#

= E

"
Pr
�
Z = 1; D = 1jX;Y 1

�
� p (X) � Pr

�
D = 1jX;Y 1

�
Pr (D = 1jX;Y 1) jY 1; D = 1

#
� 0

because of

Pr
�
Z = 1; D = 1jX;Y 1

�
� p (X) � Pr

�
D = 1jX;Y 1

�
= Pr

�
Z = 1; D = 1jX;Y 1

�
� p (X) �

�
Pr
�
D = 1; Z = 1jX;Y 1

�
+ Pr

�
D = 1; Z = 0jX;Y 1

�	
= (1� p(X)) � Pr

�
Z = 1; D = 1jX;Y 1

�
� p (X) � Pr

�
D = 1; Z = 0jX;Y 1

�
= (1� p(X)) � Pr

�
Z = 1; T 2 fa; cgjX;Y 1

�
� p (X) � Pr

�
Z = 0; T = ajX;Y 1

�
= (1� p(X)) � Pr

�
Z = 1jX;Y 1

�
� Pr

�
T 2 fa; cgjX;Y 1

�
� p (X) � Pr

�
Z = 0jX;Y 1

�
� Pr

�
T = ajX;Y 1

�
= (1� p(X)) � p(X) � Pr

�
T 2 fa; cgjX;Y 1

�
� p (X) � (1� p(X)) � Pr

�
T = ajX;Y 1

�
= (1� p(X)) � p(X) �

�
Pr
�
T 2 fa; cgjX;Y 1

�
� Pr

�
T = ajX;Y 1

�	
� 0

because T ??ZjX;Y d and Y d??ZjX by Assumption (1iii).

On the other hand, if D = 0 the weightsW+ would be negative if E [Z � p (X) jY;D = 0] > 0.

By analogous derivations as above one can show that

E [Z � p (X) jY;D = 0] � 0.

Therefore, the weights W+ are always non-negative.

3.2 Relationship to the Existing Literature

These results bear some resemblance with AAI, who suggested estimating a weighted linear

quantile regression

argmin
�;�

E

�
�� (Y � �D � �0X) �

�
1� D(1� Z)

1� p(X) �
(1�D)Z
p(X)

��
. (12)

However, both the model and the estimand are di¤erent. AAI impose a linear parametric spec-

i�cation, whereas our approach is entirely nonparametric. Furthermore, they identify the con-

ditional treatment e¤ects, i.e. conditional on X, whereas we are interested in the unconditional

treatment e¤ects.

16



Note that the approach of AAI generally cannot be used for estimating unconditional treat-

ment e¤ects since the weights in AAI are not appropriate for that case. In other words, one might

be thinking to run a weighted quantile regression of Y on a constant and D by using equation

(12) and replacing X by a constant in the �rst term. For that purpose, however, the weights of

AAI are not correct as shown in the following proposition.

Proposition 5 The solution of

argmin
�;�

E

�
�� (Y � �� �D) �

�
1� D(1� Z)

1� p(X) �
(1�D)Z
p(X)

��
(13)

for � gives the di¤erence between the � quantiles of the treated compliers and non-treated com-

pliers, respectively:

� = F�1
Y 1jc;D=1(�)� F

�1
Y 0jc;D=0(�)

where

FY 1jc;D=1(u) = Pr(Y
1 � ujD = 1; T = c)

FY 0jc;D=0(u) = Pr(Y
0 � ujD = 0; T = c).

This di¤erence is not very meaningful as one compares the Y 1 outcomes among the treated

with the Y 0 outcomes among the non-treated. Therefore, in the general case the weights of AAI

are only useful to estimate conditional quantile e¤ects. Hence, if one is interested in nonparametric

estimation of the unconditional QTE, one should use the weights in (9) but not those in (13).

Note, however, that their weights can be used in a special case: when the instrumental variable

is independent of X such that we can write p (X) = p.

To show this equivalence, we �rst de�ne

WAAI = 1�
D(1� Z)
1� p � (1�D)Z

p
.

The following relation between the weights W , de�ned in 6, and WAAI can be shown when

p(x) = p is a constant

WAAI = (Dp+ (1�D) (1� p))W .

This implies that, conditionally on D, W is a multiple of WAAI . As shown in (10), the uncon-

ditional quantiles for the compliers can be estimated by univariate weighted quantiles separately

in the D = 0 and the D = 1 population. Since multiplying with a positive constant does not
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change the result of the minimization, this completes the proof of the equivalence of the weights

if p(x) = p is a constant:

Q�Y 0jc = argmin
q0

E [�� (Y � q0) �W jD = 0] = argmin
q0

E [�� (Y � q0) �WAAI jD = 0]

Q�Y 1jc = argmin
q1

E [�� (Y � q1) �W jD = 1] = argmin
a

E [�� (Y � q1) �WAAI jD = 1] .

This equivalence result holds only if p (X) is constant, which implies that the instrument is

valid without conditioning on any X. This is often the case when the instrument is randomly

assigned, unless the randomization probabilities vary between strata, e.g. by gender or nation-

ality or income groups. Therefore, AAI could have estimated the unconditional QTE with the

weights used to estimate conditional QTE. However, they have changed the estimand by includ-

ing additional covariates in the regression. In this sense, our weights W can be considered as a

generalization of the weights WAAI for the case when Z is not independent of X. In that case,

the weights WAAI do not work for the unconditional QTE whereas the weights W do.

On the other hand, if one were interested in estimating conditional QTE using a parametric

speci�cation, the weightsW we propose in (6) could also be used. Hence, although not developed

for this case, our weights W can be used in (12). More precisely

Proposition 6 If one assumes a linear model for the conditional quantile for the compliers

F�1Y (� jX;D; T = c) = X 0��0 + �
�
0D,

a weighted quantile regression with weights W would identify ��0 and �
�
0.
15

Hence, both types of weights, i.e. those of AAI and those in (6), would identify the conditional

quantile treatment e¤ects, but it is not clear which one will be more e¢ cient. For the compliers,W

varies with x whereas the weights in AAI are identical to one. In any case, both types of weights

would be generally ine¢ cient since they do not incorporate the conditional density function of

the error term at the � quantile. Hence, if one was mainly interested in estimating conditional

QTE with a parametric speci�cation, more e¢ cient estimators could be developed.

Consider now another special case of our model: the case where treatment D is exogenous

conditional on X. If D is exogenous, then we can use D as its own instrument and set Z = D

15 Instead of W one could also use E[W jY;X;D], which are always nonnegative, but usually not the weights

W+ = E[W jY;D] as conditioning on X is necessary here.
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and our representation in (3) simpli�es to

FY 1(u) =

Z
E [1 (Y � u) jX;D = 1] dFX .

When the conditional distribution is estimated by local regression, we obtain the estimator

proposed in Frölich (2007b); when it is estimated by non-parametric quantile regression, this is

the estimator proposed by Melly (2006); when it is estimated by parametric methods we obtain

the estimators proposed by Machado and Mata (2005), Gosling, Machin, and Meghir (2000) and,

more generally, Chernozhukov, Fernández-Val, and Melly (2007). Furthermore, in this exogenous

case, our weights simplify to

W =
D

p(x)
+

1�D
1� p(x) .

These are exactly the weights proposed by Firpo (2007) and it shows that our methods gen-

eralize all existing approaches to estimating QTE under exogeneity. The weights of Firpo (2007)

are always positive such that there is no need for estimating positive weights by projection. Fi-

nally, note that the whole population complies when we assume exogeneity such that we obtained

the QTE for the population.

4 Asymptotic Properties

In the previous section the identi�cation of unconditional QTE under endogeneity has been

considered and several natural estimators have been suggested. In this section, we �rst analyze

the asymptotic properties of one of the proposed estimators for the � quantile treatment e¤ect,

��c .
16 We derive then the semiparametric e¢ ciency bound and show that our estimator is indeed

e¢ cient. We �nally show that the e¢ ciency bound does not change if we know the propensity

score p(x) but does decrease if we include additional covariates when these covariates are not

needed for consistency.

From Lemma 4, a natural estimator of ��c = Q�Y 1jc �Q
�
Y 0jc is given by

(Q̂�Y 0jc; �̂
�
c ) = argmin

a;b

1

n

nX
i=1

�� (Yi � a� bDi)Ŵi (14)

16We consider the weighting estimator, which is the simplest one to implement since it requires only one non-

parametric regression.
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or numerically equivalently via:

Q̂�Y 1jc = argmin
q1

1

n

nX
i=1

�� (Yi � q1)DiŴi

Q̂�Y 0jc = argmin
q0

1

n

nX
i=1

�� (Yi � q0) (1�Di) Ŵi.

For this we need a �rst step estimator of the weights Ŵi, which depend on a nonparametric esti-

mate of p(x). For concreteness, we develop the asymptotic distribution for p̂(x) being estimated

by local linear regression in Theorem 7 and by local logit regression in Theorem 8. Alternative

nonparametric estimators could be used as well, but local linear regression has several appealing

properties. It has better boundary properties than Nadaraya-Watson regression and is easier to

implement than local quadratic or local cubic regression, particularly when dim(X) is large.1718

The local linear regression estimator of p(x0) at a location x0 is de�ned as the value of a that

solves the weighted least squares regression

min
a;b

nX
j=1

�
Zj � a� b0 (Xj � x0)

�2
Kj

where Kj is the product kernel:

Kj = Kh(Xj � x0) =
1

hL

LY
l=1

�

�
Xjl � xl

h

�
,

where Xjl is the l-th element of Xj and xl is the l-th element of x0. Further, � is a univariate

kernel function of order �, which is assumed to be integrating to one. The following kernel

constants will be used later: �t =
R
ut�(u)du and ��t =

R
ut�2(u)du. The kernel function being

of order � means that �0 6= 1 and �t = 0 for 0 < t < � and �� 6= 0.

Assumption 3 gives regularity conditions under which the estimator is asymptotically normal

and e¢ cient:
17An alternative is series regression. The use of series methods as e.g. in Hirano, Imbens, and Ridder (2003) or

Firpo (2007), however, seems to require much stronger smoothness assumptions. E.g. Firpo (2007) requires more

than seven times dim(X) continuous derivatives of the propensity score. If X contains say 10 variables, more than

70 derivatives are needed. Although we need smoothness of several functions, we never require such a large amount

of smoothness. In addition, when dim(X) is large, collinearity problems can make the implementation of series

regression di¢ cult in small samples.
18Since our estimator includes Firpo (2007) as a special case, for Z = D, the proofs below also complement his

article when local linear or local logit estimation is used instead of series regression as in his article.
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Assumption 3:

i) The data f(Yi; Di; Zi; Xi)g are iid from R� R� R�X with X � RL being a compact set.

ii) p(x) is bounded away from 0 and 1 over X .

iii) Smoothness:

- p(x) is 2 times continuously di¤erentiable with second derivative Hölder continuous,

- f(x) is �� 1 times continuously di¤erentiable with (�-1)-th derivative Hölder continuous,

- FY jd;z;x(y) is continuously di¤erentiable with respect to y.

iv) Uniform consistency: The estimator p̂(x) satis�es

sup
x2X

jp̂(x)� p(x)j p�! 0.

v) The univariate Kernel function � is compactly supported, bounded, Lipschitz and of order �.

We also assume that
R
�(u)du = 1.

vi) The bandwidth satis�es nhL= lnn!1 and nh2� ! 0.

Since the estimated weights Ŵ imply a weighting by the inverses of p̂(x) and 1� p̂(x), we need

p̂(x) to be bounded away from zero and one. This is implied by Assumption (3ii) and (3iv). In

Assumption (3iv) we simply assume p̂(x) to be uniformly consistent since there are many di¤erent

sets of assumptions under which local linear estimation can be shown to be uniformly consistent.

Some assumptions may be more appropriate in certain settings, other more in others, see e.g.

Fan (1993), Masry (1996) or Gozalo and Linton (2000). For example, if we use a conventional

second order kernel (� = 2), the results of Gozalo and Linton (2000) apply to the local linear and

also to the local logit estimator examined later. Their Theorem 1(ii) requires f(x) to be bounded

away from zero and further that f(x) and p(x) are continuous.19

Assumption (3v) and (3vi) are needed to reduce the bias term to a su¢ ciently small order.

Together they require that � > L=2. Hence, if X contains 4 or more continuous regressors, higher

order kernels are required. With 3 or less continuous regressors, conventional kernels can be used.

To control the bias, for practical purposes we propose to use local linear regression with higher-

order kernels, where we suggest using a product kernel. Instead of using higher order kernels, one

could alternatively use local higher order polynomial regression instead of local linear regression.

19Apply their Theorem 1(ii) with s = r = 0. They also require the existence of E[Z2] < 1 and V ar(ZjX = x)

to be a continuous function of x, which are trivially satis�ed since Z is Bernoulli.
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However, when the number of regressors in X is large, this could be inconvenient to implement

in practice since a large number of interaction and higher order terms would be required, which

could give rise to problems of local multicollinearity in small samples and/or for small bandwidth

values. On the other hand, higher order kernels are very convenient to implement in practice

when a product kernel is used. In addition, they conveniently permit to smooth over continuous

and discrete regressors as suggested by Racine and Li (2004). Although the asymptotic theory

is not a¤ected by discrete regressors and the common solution is to conduct separate regressions

within each cell spanned by the discrete regressors, smoothing over discrete regressors can increase

precision in �nite samples.

We could permit for a more general kernel function with multiple bandwidths as e.g. in

Ruppert and Wand (1994) at the expense of a more complex notation. In practice, it appears to

be common to rotate the data beforehand such that the covariance matrix is the identity matrix

and to use a common bandwidth, instead of estimating a di¤erent bandwidth value for each X

variable.

The following theorem gives the asymptotic distribution of �̂�c :

Theorem 7 (Asymptotic distribution) Under Assumptions 1 to 3, the estimator (14) is
p
n

consistent, asymptotically normal and e¢ cient:

p
n
�
�̂�c ���c

�
d�! N (0;V) ,

where

V = 1

P 2c f
2
Y 1jc(Q

�
Y 1jc)

E

�
�(X; 1)

p(X)
FY jD=1;Z=1;X(Q

�
Y 1jc)

�
1� FY jD=1;Z=1;X(Q�Y 1jc)

��
+

1

P 2c f
2
Y 1jc(Q

�
Y 1jc)

E

�
�(X; 0)

1� p(x)FY jD=1;Z=0;X(Q
�
Y 1jc)

�
1� FY jD=1;Z=0;X(Q�Y 1jc)

��
+

1

P 2c f
2
Y 0jc(Q

�
Y 0jc)

E

�
1� �(X; 1)

p(X)
FY jD=0;Z=1;X(Q

�
Y 0jc)

�
1� FY jD=0;Z=1;X(Q�Y 0jc)

��
+

1

P 2c f
2
Y 0jc(Q

�
Y 0jc)

E

�
1� �(X; 0)
1� p(X) FY jD=0;Z=0;X(Q

�
Y 0jc)

�
1� FY jD=0;Z=0;X(Q�Y 0jc)

��
+ E

h�(X; 1)#211(X) + (1� �(X; 1))#201(X)
p(X)

+
�(X; 0)#210(X) + (1� �(X; 0))#200(X)

1� p(X)

i
�E
h
p(X)(1�p(X))

�
�(X; 1)#11(X) + (1� �(X; 1))#01(X)

p(X)
+
�(X; 0)#10(X) + (1� �(X; 0))#00(X)

1� p(X)

�2 i
,
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where #dz(x) =
��FY jD=d;Z=z;X(Q�Y djc)

Pc�fY djc(Q
�
Y djc

) and �(x; z) = Pr(D = 1jX = x;Z = z) and Pc =R
(�(x; 1)� �(x; 0)) dFX is the fraction of compliers and

fY 1jc(u) =

�Z �
fY jX;D=1;Z=1(u)� (x; 1)� fY jX;D=1;Z=0(u)� (x; 0)

�
dFX

�
=Pc

fY 0jc(u) = �
�Z �

fY jX;D=0;Z=1(u) (1� �(x; 1))� fY jX;D=0;Z=0(u) (1� �(x; 0))
�
dFX

�
=Pc.

(The proof of e¢ ciency follows later.)

The variance contributions stem from two parts: First the weighting byW if the weights were

known and second from the fact that the weights were estimated. The variance contribution to

the estimation of Q�Y 1jc due to the weighting follows from the term
�
ZD
p(X) �

(1�Z)D
1�p(X)

� ��1(y�Q�
Y 1jc)

Pc�fY 1jc(Q�Y 1jc)

and the variance due to the nonparametric estimation of the weights is �
�
�(x;1)(Z�p(x))

p(x)

�
#11(X)��

�(x;0)(Z�p(x))
1�p(x)

�
#10(X). The terms for the estimation of Q�Y 0jc are derived analogously, and the

above variance expression for the QTE follows.

As it is often the case for semiparametric estimators, the �rst order asymptotic theory does

not depend on the bandwidth value anymore, which has the unpleasant implication that it is

not helpful for selecting bandwidth values. In principle, we could also extend the proof to derive

a second order approximation to the mean squared error where the second order terms would

depend on the bandwidth values. From the derivations in the proof, however, it appears that

the second order terms would be very complex since they depend on higher order derivatives of

several types of functions. Hence, although feasible to derive, it appears that the second order

approximation would be of little practical value. Too many nuisance functions would have to be

estimated and plugged in and the estimated bandwidth could be very noisy in �nite sample. It

thus appears that alternative approaches to bandwidth selection should be considered as e.g. the

empirical bias bandwidth selector of Ruppert (1997) and further developed in Flossmann (2007).

We leave this for future research.

Since we derive only �rst order asymptotics we can treat every point Xi where p(Xi) is to

be estimated as an interior point. In contrast to Nadaraya-Watson regression, the variance and

bias of local linear regression are of the same order in the interior as at the boundary. The

magnitude of the bias, however, is generally larger at the boundary. The impact of the boundary

of X on the MSE of �̂�c vanishes with h and would only show up if we were to derive the second
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order asymptotics. This would be a further complication to the formula for the second order

asymptotics as discussed above.

As an alternative to local linear regression, we also consider local logit regression in the

following. Local linear regression has received extensive praise for its favorable properties, but

does not ensure that p̂(x) 2 (0; 1). We could simply cap the estimates of p̂(x) above one or below

zero by setting them to some value below one or above zero, but local logit regression performs

often better than local linear regression in �nite samples for binary dependent variables.

De�ne the log likelihood function for local logit regression at a location x0 as

lnLn(x0; a; b) =
1

n

nX
j=1

�
Zj ln�

�
a+ b0 (Xj � x0)

�
+ (1� Zj) ln

�
1� �

�
a+ b0 (Xj � x0)

��	
Kj

where �(x) = 1
1+e�x . Let â and b̂ be the maximizers of lnLn(x0; a; b) and a0 and b0 be the values

that maximize the expected value of the likelihood function E [lnLn(x0; a; b)]. Note that we are

interested only in â and include b̂ only to appeal to the well known properties that local likelihood

or local estimating equations perform better if more than a constant term is included in the local

approximation (see e.g. Fan and Gijbels (1996) and Carroll, Ruppert, and Welsh (1998)). We

estimate p(x0) by p̂(x0) = �(â(x0)). As with local linear regression, we need uniform consistency

of p̂(x0). As we did with the local linear estimator, we simply assume uniform consistency here as

uniform consistency can be achieved under di¤erent sets of regularity conditions, see e.g. Gozalo

and Linton (2000) or Nielsen (2005). The following Assumption 4 and Theorem 8 are very similar

to Assumption 3 and Theorem 7 stated above.

Assumption 4:

i) The data f(Yi; Di; Zi; Xi)g are iid from R� R� R�X with X � RL being a compact set.

ii) p(x) is bounded away from 0 and 1 over X .

iii) Smoothness:

- p(x) is � times continuously di¤erentiable with �-th derivative Hölder continuous,

- f(x) is �� 1 times continuously di¤erentiable with (�-1)-th derivative Hölder continuous,

- FY jd;z;x(y) is continuously di¤erentiable with respect to y.

iv) Uniform consistency: The local logit estimator satis�es

sup
x2X

jp̂(x)� p(x)j p�! 0
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v) The univariate Kernel function � is compactly supported, bounded, Lipschitz and of order �.

We also assume that
R
�(u)du = 1.

vi) The bandwidth satis�es nhL= lnn!1 and nh2� ! 0.

Theorem 8 (Local logit) Under Assumptions 1, 2 and 4, the estimator (14), with p̂(x) esti-

mated by local logit, is
p
n consistent, asymptotically normal and e¢ cient:

p
n
�
�̂�c ���c

�
d�! N (0;V) .

Thus, both estimators have the same asymptotic distribution. An estimator for V, the nor-

malized asymptotic variance of �̂�c is now suggested.
20 Even if the formula looks very compli-

cated and di¢ cult to estimate, straightforward estimators exist for each of its elements taken sep-

arately. In contrary to the asymptotic variance of the quantile regression estimator, for instance,

there is no need to estimate conditional densities, which are typically di¢ cult to estimate. On

the other hand, we need to estimate the univariate densities of the counterfactual distributions,

fY 1jc(Q
�
Y 0jc) and fY 1jc(Q

�
Y 0jc). As suggested by Firpo (2007), we can estimate such a density by

a reweighted kernel estimator, using the weights already used to estimate the QTE. Firpo (2007)

gives regularity conditions under which this estimator is consistent.

Consistent estimators for Pc, Q�Y 1jc and p (x) were given in the proof of Theorems 7 and 8.

�(x; z) can be estimated using a similar strategy and similar regularity conditions to that used to

estimate p (x). Finally, methods to estimate the conditional distribution FY jD;Z;X are suggested,

for instance, in Hall, Wol¤, and Yao (1999). We use their local logit estimator in the estimation.

The estimator of the variance obtained by inserting all these estimators in the asymptotic formula

is consistent by the continuous mapping theorem.

We now show that �̂�c is indeed e¢ cient in the class of regular semiparametric estimators. In

order to show that we derive the semiparametric e¢ ciency bound21 for ��c in Theorem 9.

Theorem 9 (E¢ ciency bound) Under Assumptions 1 and 2, the e¢ ciency bound for ��c =

Q�Y 1jc �Q
�
Y 0jc is V. Therefore, �̂

�
c attains the semiparametric e¢ ciency bound.

20This analytical estimator of the variance has also been implemented in Stata. The codes can be obtained from

the authors.
21Frölich (2007a) derives a similar e¢ ciency bound for average treatment e¤ects and Hong and Nekipelov (2007)

derives the bound for general separable models.
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Note that this bound simpli�es to the bound obtained by Firpo (2007) if we set D = Z. The

following lemma shows that the e¢ ciency bound is the same when the function p(x) is known. In

the leading example of experimental design with imperfect compliance, where Z is randomization

into treatment and D is actual treatment receipt, the probability Pr(Z = 1jX) is often under the

control of the institution conducting the experiment and thereby known. This probability might

be constant or depend on X in a known way. In the application of AAI, for instance, it is known

that the probability of being randomized is 2/3.

When the treatment is exogenous, Hahn (1998) shows that knowledge of the propensity does

not help to estimate the treatment e¤ects on the whole population but does help to estimate e¤ects

on the treated population. As discussed in Hirano, Imbens, and Ridder (2003) and Frölich (2004),

the reason is that the propensity score is not helpful for estimating the conditional mean of the

dependent variable. On the other hand, knowledge of the propensity score allows using the whole

population to estimate the distribution of the covariates for the treated. The following lemma

shows that our case is similar in this respect to the estimation of the ATE for the whole population.

Intuitively, we need to integrate the conditional distribution over the whole population, even if

the resulting treatment e¤ects are de�ned for the compliers.

Lemma 10 (Knowledge of propensity score) Under Assumptions 1 and 2, the e¢ ciency

bound for ��c is V irrespective of whether the function p(x) is known or unknown.

Note that knowledge of Pr(D = 1jX;Z) would change the variance bound. However, we

cannot �nd a plausible example where this probability would be known and simultaneously D

would be endogenous.

Whereas knowledge of p(x) does not a¤ect the variance bound, including more variables in

X, however, can reduce it. So far, in all our discussions, the reason for accounting for the X

variables was to make Assumption 1 more plausible. As the following theorem shows, however,

the X variables can also help to increase e¢ ciency. We can therefore include some X variables to

make the instrumental variables assumption more plausible and additional X variables to reduce

the asymptotic variance. Consider two regressors sets X1 and X2 with X1 � X2. X1 may be

the empty set, which is the case when the instrumental variable is randomly assigned as e.g. in

AAI. Suppose that both regressor sets satisfy Assumption 1. In other words, controlling for X1

is su¢ cient to obtain consistent estimates, but X2 may help to reduce variance.
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Generally speaking, the additional variables inX2 could be causal predictors of the instrument

Z, and/or of the treatment variable D and/or of the outcome Y . If these variables were predictors

of D or Y and also of the instrument Z, Assumption 1 would generally not be satis�ed without

controlling for these confounding variables. However, if the additional variables are only predictors

of the instrument Z or if they are only predictors of D and/or Y , controlling for these variables

is not necessary for consistency. Both estimators, one using X1 and the other using X2, would be

consistent. Including additional variables that a¤ect only Z but neither D nor Y usually leads

to an e¢ ciency loss. On the other hand, including variables a¤ecting D or Y but not Z leads to

e¢ ciency gains. Hence, regressors that turn out as insigni�cant in a regression of Z on control

variables could nevertheless be retained as regressors for e¢ ciency reasons. In the particular

case were Z is completely randomized, as e.g. in AAI, one could nevertheless gain e¢ ciency by

incorporating control variables in the estimation process.

We suppose for the following theorem that

Pr (Z = 1jX1; X2) = Pr (Z = 1jX1) . (15)

Hence, the additional regressors inX2 that are not included inX1 do not a¤ect the instrument but

may be predictors of the potential outcomes Y and/or the treatment variable D. As mentioned

above, without this assumption the estimator using X1 would generally be inconsistent such that

a comparison of variances would be of little interest.

Theorem 11 (Variance reduction) Let X1 and X2 with X1 � X2 be two regressor sets that

both satisfy Assumptions 1 and 2 as well as equation (15). Let V1 be the semiparametric variance

bound when using regresor set X1 and V2 be the semiparametric variance bound when using

regresor set X2, both referring to the same quantile � of the QTE. Then

V1 � V2.

Except for very special circumstances, the inequality would usually be strict.

5 Applications

5.1 Simulated datasets

We examine now the small sample performance of the proposed estimators on simulated datasets.

In order to reveal systematic di¤erences between the behaviors of the estimators, we use 29
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di¤erent data generating processes (DGP). 200 replications of 400 observations are drawn for

each of the DGP. The covariates X consist of three continuous regressors and the unconditional

probabilities Pr (D = 1) and Pr (Z = 1) are set to 0.5. All other functions (Y as a function of

X and D, D as a function of X and Z, Z as a function of X) vary from one DGP to the other.

Therefore, we can examine how the ranking of the performance of the estimators changes when

we change some of the parameters of the DGP. While the detailed results are available from the

authors, we give here �ve general lessons we have gained from this exercise.

First, a regression on the nonparametrically estimated propensity score performs almost al-

ways worse than a direct regression on the covariates. This is not especially surprising since we

know from the literature on ATE that the regression on the propensity score estimator is not ef-

�cient for this parameter. A similar result probably applies to the estimation of QTE. Moreover,

this estimator is computationally the most demanding one since three nonparametric regressions

are required: estimation of the propensity score, and regression of Y and D on the propensity

score. For all these reasons, we would not recommend to use this estimator.

Secondly, among the weighting estimators, we �nd only moderate di¤erences between using

W and W+ as weights and no clear ranking emerges between these two estimators. When we

plot the results for a given sample, the estimates using W+ appear to be smoother (as a function

of the quantile at which the QTE is estimated). The projection of the weights on Y looks like

an additional smoothing procedure in the Y dimension. Although it may produce more pleasing

pictures, this does not necessarily deliver a better performance.

Third, as expected, the local linear estimator does not �t well a binary dependent variable

when Pr (Z = 1 jX ) has a large support even if we censor the estimated probabilities. In this

case, the local logit estimator performs much better. However, a simple truncation of the weights

(with recentering of the weights such that the estimated distribution functions are still well-

de�ned distribution functions) is su¢ cient to obtain satisfactory results (as good as using local

logit). Since �tting local linear regression is faster than �tting local logit models, this could be a

good alternative at least for exploratory analysis and bandwidth selection.

Fourth, the simulations showed several factors determining whether the regression or the

weighting estimator performs better. No di¤erence can be found between these two approaches

when all regressions are correctly parametrically speci�ed. The �nite-sample performance

of the regression estimator deteriorates when the outcome equation becomes non-linear while
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the performance of the weighting estimator deteriorates when the propensity score becomes

non-linear. This is a direct consequence of the di¤erent functions estimated by each of these

estimators. Finally, the performance of the weighting estimator deteriorates relatively more

when the propensity score has much mass near 0 or 1. Note that each of these quantities

(linearity of the functions and distribution of the propensity score) could be estimated to

determine which estimator should be used for a given application. Alternatively, it should be

possible to de�ne a double robust estimator combining both approaches in an optimal way.

The last conclusion we draw from the Monte Carlo simulations concerns the choice of the

bandwidths. As a �rst approximation cross-validation seems to be acceptable even when we

know that it is not consistent. However, there is a potential for a non-negligible improvement.

We have naively implemented under-smoothing by dividing the cross-validated bandwidths by 2

and 4, respectively. This rudimentary method delivers gains of 20% to 40% in MSE, showing

that further research in this direction is worthwhile.

5.2 JTPA training programs

The impact of training programs on the earnings of participants is of great interest to economists,

but its estimation is di¢ cult because of the self-selection of the treatment status. A randomized

training experiment conducted under the Job Training Partnership Act (JTPA) provides exoge-

nous variation for addressing this issue. In this experiment, people were randomly o¤ered train-

ing but they were able to refuse to participate. Therefore, the treatment was self-selected and

potentially correlated with the potential outcome, the 30-month earnings data, but the treatment

assignment provides a credible instrument for the treatment participants. In this sub-section we

use the men subsample of the data of AAI to illustrate the estimation of unconditional QTE of

JTPA training programs.

Since the instrument has been completely randomized, we do not need to condition on any

covariates to ensure the validity of the exclusion restriction. We can therefore use the estimator

proposed by AAI to estimate the unconditional QTE if we do not include the regressors X in

the weighted quantile regression. However, Theorem 11 implies that we can improve e¢ ciency by

incorporating the information contained in the observed characteristics of the trainees. Therefore,

we expect both estimators to be consistent but the second one to be more precise, although the

e¢ ciency gains might be small.
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The AAI estimator is implemented exactly as in the original paper with the exception that

we regress Y only on a constant and D.22 In order to simplify the comparison, we apply the

same estimation strategy as AAI but replace their weights by W+ de�ned in (11). We estimate

p (X) by a linear regression of Z on X while the projection on Y and D is estimated using the

same series approximation as in AAI. Figure 1 shows that the point estimates are, as expected,

very similar and the di¤erence between both estimators is never signi�cant. Figure 2 plots the

relative e¢ ciency gains of the suggested estimator. We have bootstrapped the results 1000 times

and then compared the standard errors of the estimated QTE and the length of a 95% percentile

con�dence interval. Values below 1 indicate a reduction in standard deviation or a shortening of

the con�dence interval. An e¢ ciency gain of about 5% in the center of the distribution con�rms

the asymptotic results but also shows that the gains are modest in this application.

Naturally, the main motivation for our estimator does not consist in this gain but in the

possibility of allowing Z to be a proper instrumental variable only after conditioning on some

covariates X. In order to simulate this case, we now manipulate the value of Z such that Z

becomes correlated with the potential outcome if we do not control for the covariates but is still a

valid instrument after controlling for X. To keep this manipulation simple, we set the value of the

corrupted instrument to 1 with probability 0.5 for married men having Z = 0. Then, we use the

same procedure as before but with the corrupted Z as instrument. To eliminate the additional

random component added by this manipulation we repeat it 1000 times and present the mean

estimates in Figure 3.

The bias arising from not controlling for the covariates is very clear. Independently of their

treatment status married men tend to have higher earnings than non-married men. Since the

instrument is positively correlated with the marriage dummy, a positive bias can be observed at

all quantiles. On the other hand, when we control for the covariates, the bias disappears and

we get almost the same result as that obtained from the original data. This arti�cial exercise

illustrates what can happen in many applications, as we will see now in the next sub-section.

5.3 Returns to college

The returns to education have received a lot of attention with recent research interests aiming

also particularly at higher education (see e.g. Black and Smith (2004 and 2005) about the

22We can replicate their results if we add X to the regressors.
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returns to college). In this section we apply the new quantile estimators to estimate the returns

to college using college proximity as an instrument. The data is taken from Card (1995), who

found that the 2SLS estimates of the returns to schooling were about 13% and thus twice as

large as the corresponding OLS estimates. Here, we focus particularly on the treatment e¤ect of

having attended college. The data stems from the National Longitudinal Survey of Young Men

(NLSYM), which began in 1966 with 5525 men between 14 to 24 years old. The sampling frame

of the NLSYM oversampled neighborhoods with a large fraction of non-white residents.

We follow Card (1995) in that we examine wages in the year 1976 to mitigate the in�uence

of attrition. About 20% of the sample attrited in the �rst three years of the survey and the total

attrition rate was about 29% in 1976. Total attrition increased further to 35% until the 1981

wave. In 1976 the respondents were between 24 to 34 years old such that most of them should

have completed college at that time. Eighty-three percent of men interviewed in 1976 report

a valid wage observation. As pointed out in Card (1995), the characteristics of this working

subsample are relatively similar to the original sample, the subsample of 1976 interviewees and

the subsample with 1976 wages. Most noticeable is a smaller fraction of blacks. Therefore, we

work with the same sample as in the original paper. Descriptive statistics can be found in the

original paper.

The variable of interest Y is the log hourly wage in 197623, measured in dollars per hour.

The binary indicator D having attended college is also taken from the 1976 wave. We de�ne D

as one if years of education is �12. About 50% have attended college, while the other 50% did

not. The instrument is an indicator for the presence of an accredited 4-year college in the local

labor market. Almost 68% of the observations were living in such neighborhoods in 1966. Our

vector of covariates includes potential experience, race, and regions of residence taken from the

1966 and 1976 waves. We also include variables capturing the endogenous location choice of the

parents: measures of parental education, interactions of mother�s and father�s education classes,

and indicators for family structures at age 14.

As a �rst step to estimate the QTE of college attendance on wages, we examine the relationship

between the instrumental variable Z and other background characteristics X that are likely to

have a strong in�uence on earnings in 1976. Table 1 shows a probit regression of Z on X and

23The role of a monotone transformation of the dependent variable is completely transparent in the quantile

setting, where F�1h(Y ) (�) = h
�
F�1Y (�)

�
. We choose to use the log transformation in order to simplify the comparison

with the existing literature.
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Figure 4 shows the kernel density estimates of the distribution of Pr(Z = 1jX) in the Z = 1 and

Z = 0 subpopulations. This �gure shows that those individuals living near to a college (Z = 1)

and those with Z = 0 do indeed seem to di¤er with respect to their family characteristics X. On

the other hand, there does not seem to be a problem with respect to the common support since

the support of p(x) is rather similar in these two subpopulations.

For illustrative purposes we used a parametric estimate of p(x) for Table 1 and Figure 4. For

the following estimates of the QTE we use nonparametric regression. Our vector of covariates

contains 3 continuous variables, 1 unordered variable and 8 indicator variables for 3010 observa-

tions. Given this large number of discrete variables we follow the suggestion by Racine and Li

(2004) to also smooth over the dummy variables to improve precision in small samples. A prod-

uct Epanechnikov kernel is used for the continuous and ordered variables whereas the dummy

variables enter multiplicatively with a weight of one if the variable is identical to the evaluation

point and a weight smaller than one otherwise. All smoothing parameters have been chosen by

cross-validation.24

Figure 5 compares the returns to college assuming exogeneity with the returns obtained using

college proximity as an instrument. The unconditional QTE assuming exogeneity are quite stable

along the distribution and amount to about 20%. The instrumental variable strategy produces

higher estimates of the return to college, especially on the lower part of the distribution. Note

however that we must be cautious since the standard errors, not plotted to avoid overloading the

�gure, are quite high such that, as in Card (1995), we cannot reject that college is exogenous

because both con�dence intervals overlaps at all quantiles.

Figure 6 shows how important it is to incorporate covariates in the estimation. If we assume

that the IV is valid without conditioning on X, then the estimated QTE attain incredibly high

values (about 100%). Maybe contrarily to what could have been expected, Figure 6 also shows

that controlling for family background is not determinant since the estimates do not really change

when we exclude them from the conditioning set. The regional variables are much more important

in this respect and the estimated returns to college are not credible when we exclude them.

24This is not a consistent way to estimate the optimal bandwidths. In the absence of a consistent method, we

consider cross-validation as a reasonable second-best solution and leave this problem for further research.
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6 Conclusions

This paper considers nonparametric identi�cation and e¢ cient estimation of unconditional quan-

tile treatment e¤ects under endogeneity. Unconditional QTE summarize the distributional e¤ects

for the whole population. They are easy to convey and can be estimated precisely even without

parametric assumptions. We allow for endogeneity because the variables of interest are often self-

selected in observational studies, making conventional methods inconsistent for the causal e¤ects

of these variables. In the spirit of Imbens and Angrist (1994), identi�cation is based on the pres-

ence of an instrument satisfying a monotonicity assumption in the treatment choice equation. We

only require the instruments to satisfy an exclusion restriction conditionally on the covariates,

i.e. we allow the instrument to be itself unconditionally confounded. Incorporating covariates in

the estimation makes therefore the IV assumption more credible in many applications.

We show that the unconditional QTE are nonparametrically identi�ed in this setting. Natural

estimators arise from the constructive identi�cation results. We emphasize interesting links with

the existing literature. On one side, we show that our estimators generalize all existing estimators

for exogenous QTE. On the other hand, our weighting estimator simpli�es to the Abadie, Angrist

and Imbens (2002) estimator when there are no covariates. We show root n consistency and

asymptotic normality of a weighting estimator, which is easy to implement. The derivation of

the semiparametric e¢ ciency bound for this model allows us to show e¢ ciency for the suggested

estimator. Interestingly, we also �nd that the semiparametric e¢ ciency bound does not decrease

when the propensity score is known, which is often the case when the instrument is under the

control of the institution managing the experiment. On the other hand, including additional

variables not needed for consistency decreases the asymptotic variance. Therefore, we may include

some covariates for consistency and other covariates for e¢ ciency.

The proposed estimators are easy to implement25 and have numerous potential applications,

as illustrated by the two empirical examples we presented. We �rst used our estimators to

evaluate the e¤ects of JTPA training programs using the variation induced by a randomized

experiment. We can quantify the precision gained by including covariates in the estimation since

the instrument has been completely randomized and is therefore valid unconditionally. In a

second application, we estimated the returns to college using college proximity as an instrument.

Controlling for covariates is critical in this case because the location choice made by the parents

25Moreover, user-friendly codes written in Stata and R can be obtained from the authors.
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can be unconditionally correlated with unobserved characteristics. If we do not incorporate

covariates, the returns to college attain incredibly high values when education is instrumentalized.

Once we include covariates, the returns to college become plausible, and they are higher than

under the assumption of exogeneity, as often found in the literature.
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A Appendix (Proof of theorems)

A.1 Proof of Theorem (1):

We consider the derivation of

FY 0jc(u) =

R
(E [1 (Y � u) � (D � 1)jX;Z = 1]� E [1 (Y � u) � (D � 1)jX;Z = 0]) dFXR

(E [DjX;Z = 1]� E [DjX;Z = 0]) dFX
. (16)

(The results for FY 1jc are analogous and are omitted.)

Consider �rst the expression

E [1 (Y � u) � (D � 1)jX;Z = 1]� E [1 (Y � u) � (D � 1)jX;Z = 0]

which by the law of total probability can be partitioned into the four subpopulations:

= E [1 (Y � u) � (D � 1)jX;Z = 1; T = a] Pr (T = ajX;Z = 1)

� E [1 (Y � u) � (D � 1)jX;Z = 0; T = a] Pr (T = ajX;Z = 0)

+ E [1 (Y � u) � (D � 1)jX;Z = 1; T = n] Pr (T = njX;Z = 1)

� E [1 (Y � u) � (D � 1)jX;Z = 0; T = n] Pr (T = njX;Z = 0)

+ E [1 (Y � u) � (D � 1)jX;Z = 1; T = c] Pr (T = cjX;Z = 1)

� E [1 (Y � u) � (D � 1)jX;Z = 0; T = c] Pr (T = cjX;Z = 0) .

Noting that the value of Z and T together determine the value of D and using that T ??ZjX from

assumption 1, we obtain

= 0 � Pr (T = ajX)

�
�
E
�
1
�
Y 0 � u

�
jX;Z = 1; T = n

�
� E

�
1
�
Y 0 � u

�
jX;Z = 0; T = n

�	
Pr (T = njX)

+
�
0 + E

�
1
�
Y 0 � u

�
jX;Z = 0; T = c

�	
Pr (T = cjX) .

Now we use Y d??ZjX; T by assumption 1 to obtain

= �
�
E
�
1
�
Y 0 � u

�
jX; T = n

�
� E

�
1
�
Y 0 � u

�
jX; T = n

�	
Pr (T = njX)

+
�
E
�
1
�
Y 0 � u

�
jX; T = c

�	
Pr (T = cjX)

= E
�
1
�
Y 0 � u

�
jX; T = c

�
Pr (T = cjX) .
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Now we insert this result into the numerator of (16) to obtainZ
(E [1 (Y � u) � (D � 1)jX;Z = 1]� E [1 (Y � u) � (D � 1)jX;Z = 0]) dFX

=

Z
E
�
1
�
Y 0 � u

�
jX; T = c

�
Pr (T = cjX) dFX

=

Z
E
�
1
�
Y 0 � u

�
jX; T = c

�
dFXjc � Pc

= E
�
1
�
Y 0 � u

�
jT = c

�
� Pc

where the second last equality made use of Bayes�theorem:

dFXjc � Pc = Pr (T = cjX) � dFX .

Now consider the denominator of (16) and proceed as before. First notice that conditional on X

E [DjX;Z = 1]� E [DjX;Z = 0]

= E [DjX;Z = 1; T = a] Pr (T = ajX;Z = 1)� E [DjX;Z = 0; T = a] Pr (T = ajX;Z = 0)

+ E [DjX;Z = 1; T = c] Pr (T = cjX;Z = 1)� E [DjX;Z = 0; T = c] Pr (T = cjX;Z = 0)

using that T ??ZjX from assumption 1, we obtain

= Pr (T = ajX)� Pr (T = ajX) + Pr (T = cjX)

= Pr (T = cjX) .

Inserting this into the denominator of (16) and again making use of Bayes�theorem

Z
Pr (T = cjX) dFX =

Z
dFXjc � Pc = Pc.

Putting these results together we obtain for the right hand side of (16)

E
�
1
�
Y 0 � u

�
jT = c

�
� Pc

Pc
= Pr

�
Y 0 � ujT = c

�
= FY 0jc(u).

A.2 Proof of Lemma (2):

The following two variants of using iterated expectations show the equality for a typical component of the

estimator

E

�
1 (Y � u)DZ

p(X)

�
=

Z
E

�
1 (Y � u)DZ

p(X)
jX
�
dFX =

Z
E [1 (Y � u)DjX;Z = 1] dFX
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E

�
1 (Y � u)DZ

p(X)

�
= E

�
E

�
1 (Y � u)DZ

p(X)
jp(X) = �

��
= E

�
E

�
�
1 (Y � u)D

p(X)
jp(X) = �; Z = 1

��
= E [E [1 (Y � u)Djp(X) = �; Z = 1]] .

For the corresponding components in the Z = 0 population, Z is replaced by 1� Z and p(X) is replaced
by 1� p(X) in the previous derivations.

A.3 Proof of Lemma (3):

Note that by iterated expectations

E

�
1 (Y � u)DZ

p(X)

�
=

Z
E

�
1 (Y � u)DZ

p(X)
jX
�
dFX =

Z
E [1 (Y � u)DjX;Z = 1] dFX

and

E

�
1 (Y � u)D(1� Z)

1� p(X)

�
=

Z
E

�
1 (Y � u)D(1� Z)

1� p(X) jX
�
dFX =

Z
E [1 (Y � u)DjX;Z = 0] dFX

Hence, the equation (3) can be written as

FY 1jc(u) =

R �
E
h
1 (Y � u)D

�
Z�p(X)

p(X)(1�p(X))

�i�
dFX

Pc

and analogously for FY 0jc(u).

A.4 Proof of Lemma (4):

If the objective function has a unique interior solution, it follows that

argmin
a;b

E [W � �� (Y � a� bD)] (17)

= arg zero
a;b

E

24W � f� � 1 (Y < a+ bD)g �

0@ 1

D

1A35 . (18)

This implies the moment conditions:

E

�
Z � p(X)

p(X) (1� p(X)) (2D � 1) f� � 1 (Y < a+ bD)g
�
= 0

E

�
Z � p(X)

p(X) (1� p(X)) (2D � 1) f� � 1 (Y < a+ bD)g �D
�
= 0.

Multiplying the �rst moment condition with (D + (1�D)) inside the expectation operator and inserting

the second moment condition gives:

E

�
Z � p(X)

p(X) (1� p(X)) (2D � 1) f� � 1 (Y < a+ bD)g � (1�D)
�
= 0

E

�
Z � p(X)

p(X) (1� p(X)) (2D � 1) f� � 1 (Y < a+ bD)g �D
�
= 0
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which is equivalent to

E

�
Z � p(X)

p(X) (1� p(X)) f� � 1 (Y < a)g � (1�D)
�
= 0

E

�
Z � p(X)

p(X) (1� p(X)) f� � 1 (Y < a+ b)g �D
�
= 0.

Renaming a with q0 and a + b with q1 and subtracting the term E
h
� Z�p(X)
p(X)(1�p(X))

i
, which is zero, from

the �rst moment condition gives

E

�
Z � p(X)

p(X) (1� p(X)) f1 (Y < q0) (D � 1)� �D)g
�
= 0

E

�
Z � p(X)

p(X) (1� p(X)) f� � 1 (Y < q1)g �D
�
= 0,

which are identical to (7).

A.5 Proof of Proposition (5)

Replicating the previous proofs in reverse order, one can �rst show that the �rst order conditions to

argmin
a;b

E

��
1� D(1� Z)

1� p(X) �
(1�D)Z
p(X)

�
�� (Y � �� �D)

�
are:

E

�
D

�
Z � p(X)
1� p(X)

�
1 (Y < �+ �)

�
= � � P (T = c;D = 1) (19)

E

�
(D � 1)

�
Z � p(X)
p(X)

�
1 (Y < �)

�
= � � P (T = c;D = 0):

where Pr(T = c;D = 1) = Pr(D = 1jT = c) Pr(T = c) = E
h
DZ�p(X)

1�p(X)

i
is the fraction of �treated

compliers�and Pr(T = c;D = 0) = Pr(D = 0jT = c) Pr(T = c) = E
h
(D � 1)Z�p(X)p(X)

i
is the fraction of

�non-treated compliers�. (Since the proof is very similar to the previous one it is ommitted.)

De�ne the distributions of the potential outcomes for treated compliers and non-treated compliers as

FY 1jc;D=1(u) = Pr(Y
1 � ujD = 1; T = c)

FY 0jc;D=0(u) = Pr(Y
0 � ujD = 0; T = c).

Analogously to the previous proofs one can show that these distributions are identi�ed as

FY 1jc;D=1(u) =
E
h
1 (Y < u) �D � Z�p(X)1�p(X)

i
Pr(T = c;D = 1)

FY 0jc;D=0(u) =
E
h
1 (Y < u) � (D � 1) � Z�p(X)p(X)

i
Pr(T = c;D = 0)

.

Hence, �+� and � in (19) de�ne the quantiles in the sense that FY 1jc;D=1(�0+�0) = � = FY 0jc;D=0(�0).

This implies then that F�1Y 1jc;D=1(�) = �0 + �0 and F
�1
Y 0jc;D=0(�) = �0 and that

�0 = F�1Y 1jc;D=1(�)� F
�1
Y 0jc;D=0(�).
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A.6 Proof of Proposition (6):

We show that E [�� (Y �X 0b� aD) �W ] has expectation zero in the subpopulation of always- and never-

participants, for every value of a and b. Note �rst that

E [�� (Y �X 0� � �D)W jT = a ] = E

�
�� (Y �X 0� � �D) Z � p (X)

p(X) (1� p(X)) (2D � 1) jT = a

�
= E

�
E

�
�� (Y

1 �X 0� � �) Z � p (X)
p(X) (1� p(X)) jX;Z; T = a

�
jT = a

�
= E

�
E
�
�� (Y

1 �X 0� � �)jX; T = a
� E [ZjX;T = a]� p (X)

p(X) (1� p(X)) jT = a

�
= E

�
E
�
�� (Y

1 �X 0� � �)jX; T = a
� E [ZjX]� p (X)
p(X) (1� p(X)) jT = a

�
= 0:

where Y d??ZjX; T and T ??ZjX has been used which follows from Assumption 1. The same result holds

for the never-taker. Therefore,

(�; �) = argmin
a;b

E [�� (Y �X 0b� aD) �W jT = c ]

= argmin
a;b

E

��
D

p(X)
+

1�D
1� p(X)

�
� �� (Y �X 0� � �D) jT = c

�
,

which is the objective function of a weighted linear quantile regression for compliers. Note that all weights
are strictly positive and �nite because we assume that 0 < p(X) < 1. Therefore, standard quantile
regression results (see for instance Koenker (2005) Theorem 4.1 and 5.1) imply that this function is
minimized at ��0 and �

�
0 as long as E

h�
D

p(X) +
1�D

1�p(X)

�
(X 0; D)

0
(X 0; D)

i
is positive de�nite, which has

been assumed.

A.7 Proof of Theorem (7)

�̂�c is the value of b that solves

argmin
a;b

1

n

nX
i=1

�� (Yi � a� bDi) � Ŵi. (20)

Since Di takes only two di¤erent values it is more convenient in the following to use the numerically

equivalent representation:

�̂�c = q̂1 � q̂0 where (q̂1; q̂0) =

argmin
q1;q0

 
1

n

nX
i=1

�� (Yi � q1) �DiŴi +
1

n

nX
i=1

�� (Yi � q0) � (1�Di) Ŵi

!
. (21)

Here q1 delivers an estimate of Q�Y 1jc and q0 an estimate of Q
�
Y 0jc. We will derive the joint asymptotic

distribution of q̂1 and q̂0 which provides the distribution of �̂�c .
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De�ne the objective function

Gn(q1; q0; Ŵ ) =
1

n

nX
i=1

Ŵi (�� (Yi � q1)Di + (1�Di) �� (Yi � q0))

� 1

n

nX
i=1

Ŵi

�
�� (Yi �Q�Y 1jc)Di + (1�Di) �� (Yi �Q�Y 0jc)

�
,

where the �rst term is identical to (21) and the second term does neither depend on q1 nor q0. Hence, the

minimizers of Gn and of (21) are identical:

(q̂1; q̂0) = argmin
q1;q0

Gn(q1; q0; Ŵ ). (22)

The function Gn will be helpful later to derive the properties of q̂1 and q̂0.

A.7.1 Analysis of the approximate gradient

As a preliminary step we examine the properties of the approximate gradient. Instead of minimizing

the objective function Gn(q1; q0; Ŵ ) we could alternatively consider the estimator which sets the moment

function to zero

q̂1 = arg zero
1

n

nX
i=1

(1(Yi < q1)� �) � ŴiDi,

and analogously for q0. This is the approximate gradient of the objective function. We will �rst inspect

the properties of this estimator and thereafter examine the estimator based on (22). These preliminary

derivations are only casual to obtain a potential candidate for the in�uence function representation. De�ne

the objective function �n(q;W ) = 1
n

P
(1(Yi < q)� �)�WiDi where �n(q̂1; Ŵ ) = 0 and use a Taylor series

expansion to obtain

0 = �n(q̂1; Ŵ ) = �n(Q
�
Y 1jc; Ŵ ) + (q̂1 �Q�Y 1jc) �

@�n(q; Ŵ )

@q jq=Q�
Y 1jc

+Op

�
(q̂1 �Q�Y 1jc)

2
�
.

The derivative is not everywhere de�ned but almost surely. One could thus approximate q̂1 as

p
n(q̂1 �Q�Y 1jc) = �

p
n

"
@�n(Q

�
Y 1jc; Ŵ )

@q
+Op

�
q̂1 �Q�Y 1jc

�#�1
�n(Q

�
Y 1jc; Ŵ )

= �
p
n
�n(Q

�
Y 1jc; Ŵ )

Pc � fY 1jc(Q
�
Y 1jc)

� (1 + op(1)) (23)

where we used that under certain regularity conditions @�n(Q�Y 1jc; Ŵ )=@q converges to @E[�n(Q
�
Y 1jc;W )]=@q =

Pc � fY 1jc(Q
�
Y 1jc) where the last expression follows from Theorem 1 where we derived that

fY 1jc(u) =
�R �

fY jX;D=1;Z=1(u)� (x; 1)� fY jX;D=1;Z=0(u)� (x; 0)
�
dFX

	
=Pc.

We will see below that the stochastic properties of the estimator are largely driven by the term

�n(Q
�
Y 1jc; Ŵ ), which is the approximate gradient of the objective function Gn for q̂1 at Q

�
Y 1jc. (The terms
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for q̂0 are analogous and are omitted here.) To lighten the notation we use pi = p(Xi) and p̂i = p̂(Xi) and

�i(z) = �(Xi; z).

�n(Q
�
Y 1jc; Ŵ ) =

1

n

nX
i=1

ŴiDi

�
1
�
Yi < Q�Y 1jc

�
� �
�

=
1

n

nX
i=1

�
ZiDi

p̂i
� (1� Zi)Di

1� p̂i

��
1
�
Yi < Q�Y 1jc

�
� �
�

where we used that Ŵ = ZD
p̂(X)�

(1�Z)D
1�p̂(X)�

Z(1�D)
p̂(X) +

(1�Z)(1�D)
1�p̂(X) . Now we use that p̂i�pi

p2i

�
1� p̂i�pi

p̂i

�
= 1

pi
� 1
p̂i

to obtain

=
1

n

nX
i=1

�
ZiDi

pi
� (1� Zi)Di

1� pi

��
1
�
Yi < Q�Y 1jc

�
� �
�

� 1

n

nX
i=1

ZiDi

p2i

�
1
�
Yi < Q�Y 1jc

�
� �
�
(p̂i � pi)

�
1� p̂i � pi

p̂i

�

� 1

n

nX
i=1

(1� Zi)Di

(1� pi)2
�
1
�
Yi < Q�Y 1jc

�
� �
�
(p̂i � pi)

�
1 +

p̂i � pi
1� p̂i

�
.

The �rst term captures the variance contribution due to the weighting if the weights were known. The

second and third term capture the variance due to estimating the weights. From (45) and (46) and

analogous derivations for the third term we obtain

=
1

n

nX
i=1

�
ZiDi

pi
� (1� Zi)Di

1� pi

��
1
�
Yi < Q�Y 1jc

�
� �
�

� 1

n

nX
i=1

�(Xi; 1)#11(Xi) (Zi � pi)
p (Xi)

(1 + op(1)) + op

�
1p
n

�

� 1

n

nX
i=1

�(Xi; 0)#10(Xi) (Zi � pi)
1� p (Xi)

(1 + op(1)) + op

�
1p
n

�
and after some derivations

=
1

n

nX
i=1

 1(Yi; Di; Zi; Xi) (1 + op(1)) + op

�
1p
n

�
where

 1(Yi; Di; Zi; Xi) =
ZiDi

pi
�11(Yi; Xi)�

(1� Zi)Di

1� pi
�10(Yi; Xi)

+
ZiDi � �(Xi; 1) (Zi � pi)

p (Xi)
#11(Xi)�

�(Xi; 0) (Zi � pi) + (1� Zi)Di

1� p (Xi)
#10(Xi) (24)

and

�dz(y; x) =
�
1(y � Q�Y djc)� �

�
� #dz(x) (25)

and

#dz(x) = E
h
1(Y � Q�Y djc)� � jD = d; Z = z;X = x

i
. (26)
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(Notice that �dz and #dz are de�ned di¤erently here than in (68) and (69) in that they are not divided by

Pc times the density at the quantile.) By inserting this into (23) and using a CLT for iid data we obtain

that to �rst order
p
n(q̂1 �Q�Y 1jc)

d�! N

 
0; V ar

 
 1(Yi; Di; Zi; Xi)

Pc � fY 1jc(Q
�
Y 1jc)

!!
.

Analogously, we can derive

 0(Yi; Di; Zi; Xi) = �
Zi(1�Di)

pi
�01(Yi; Xi) +

(1� Zi)(1�Di)

1� pi
�00(Yi; Xi)

� Zi(1�Di)� (1� �(Xi; 1)) (Zi � pi)
p (Xi)

#01(Xi) +
(1� �(Xi; 0)) (Zi � pi) + (1� Zi)(1�Di)

1� p (Xi)
#00(Xi)

(27)

and
p
n(q̂0 �Q�Y 0jc)

d�! N

 
0; V ar

 
 0(Yi; Di; Zi; Xi)

Pc � fY 0jc(Q
�
Y 1jc)

!!
.

Finally it follows that

p
n(�̂�c ���c )

d�! N

 
0; V ar

 
 1(Yi; Di; Zi; Xi)

Pc � fY 1jc(Q
�
Y 1jc)

�  0(Yi; Di; Zi; Xi)

Pc � fY 0jc(Q
�
Y 1jc)

!!
.

This asymptotic variance is identical to the variance bound (71).

A.7.2 Analysis of the non-di¤erentiable objective function

With the preliminaries of the previous subsection, we now embark on proving the theorem. Since Gn

is not di¤erentiable everywhere, although almost everywhere, we extend our previous heuristic proof by

examining the approximate derivative and showing that the approximation error vanishes. This proof is

somewhat similar to Firpo (2007). De�ne the statistic

~Gn (q1; q0) =
�
q1 �Q�Y 1jc

� 1
n

nX
i=1

 1(Yi; Di; Zi; Xi) +
�
q0 �Q�Y 0jc

� 1
n

nX
i=1

 0(Yi; Di; Zi; Xi) (28)

+
�
q1 �Q�Y 1jc

�2 fY 1jc(Q
�
Y 1jc) � Pc
2

+
�
q0 �Q�Y 0jc

�2 fY 0jc(Q
�
Y 0jc) � Pc
2

where  1 and  0 are de�ned in (24) and (27).
We will show in the following, �rst that the di¤erence between the two objective functions Gn(q1; q0; Ŵ )

and ~Gn (q1; q0), which are both convex functions in q1 and q0, vanishes for any q1 and q0 as n!1. Second,
we derive the asymptotic distribution of the minimizers of ~Gn (q1; q0), which will give results identical to
those of the previous subsection. Finally, we show that the minimizers of Gn(q1; q0; Ŵ ) and ~Gn (q1; q0) get
close to each other such that their �rst order asymptotic distribution is the same.
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A.7.3 Closeness of the two objective functions Gn(q1; q0; Ŵ ) and ~Gn (q1; q0):

First, we need to show that the two objective functions Gn(q1; q0; Ŵ ) and ~Gn (q1; q0) are getting close as

n!1. For this it is helpful to add and subtract the terms

1

n

nX
i=1

ŴiDi

�
1
�
Yi < Q�Y 1jc

�
� �
��

q1 �Q�Y 1jc

�
+
1

n

nX
i=1

Ŵi(1�Di)
�
1
�
Yi < Q�Y 0jc

�
� �
��

q0 �Q�Y 0jc

�
,

which is the linear term of an approximate Taylor expansion, to Gn(q1; q0; Ŵ ) to obtainGn(q1; q0; Ŵ )� ~Gn (q1; q0)


=
������ 1
n

nX
i=1

ŴiDi

�
1
�
Yi < Q�Y 1jc

�
� �
��

q1 �Q�Y 1jc

�
�
�
q1 �Q�Y 1jc

� 1
n

nX
i=1

 1(Yi; Di; Zi; Xi)

+
1

n

nX
i=1

Ŵi(1�Di)
�
1
�
Yi < Q�Y 0jc

�
� �
��

q0 �Q�Y 0jc

�
�
�
q0 �Q�Y 0jc

� 1
n

nX
i=1

 0(Yi; Di; Zi; Xi)

+
1

n

nX
i=1

ŴiDi

��
� � 1

�
Yi < Q�Y 1jc

���
q1 �Q�Y 1jc

�
+ �� (Yi � q1)� �� (Yi �Q�Y 1jc)

�
�
�
q1 �Q�Y 1jc

�2 fY 1jc(Q
�
Y 1jc) � Pc
2

+
1

n

nX
i=1

Ŵi(1�Di)
��
� � 1

�
Yi < Q�Y 0jc

���
q0 �Q�Y 0jc

�
+ �� (Yi � q0)� �� (Yi �Q�Y 0jc)

�
�
�
q0 �Q�Y 0jc

�2 fY 0jc(Q
�
Y 0jc) � Pc
2

������
� kA1k+ kA2k+ kA3k+ kA4k = op

�
1

n

�
. (29)

It remains to be shown that all these terms are op( 1n ). Similarly to Hirano, Imbens, and Ridder (2003) and
Firpo (2007), we consider a situation where n increases but

p
n(q1�Q�Y 1jc) and

p
n(q0�Q�Y 0jc) remain �xed.

We will use throughout that Ŵ = ZD
p̂(X) �

(1�Z)D
1�p̂(X) �

Z(1�D)
p̂(X) + (1�Z)(1�D)

1�p̂(X) and p̂i�pi
p2i

�
1� p̂i�pi

p̂i

�
= 1

pi
� 1
p̂i
.

Term kA1k =���q1 �Q�Y 1jc

��� � ������ 1
n

nX
i=1

�
ŴiDi

�
1
�
Yi < Q�Y 1jc

�
� �
�
�  1(Yi; Di; Zi; Xi)

� ������

=
���q1 �Q�Y 1jc

��� � ������ 1
n

nX
i=1

h
ZD

�
1

pi
� p̂i � pi

p2i

�
1� p̂i � pi

p̂i

���
1
�
Yi < Q�Y 1jc

�
� �
�

� (1� Z)D
 

1

1� pi
+

p̂i � pi
(1� pi)2

�
1 +

p̂i � pi
1� p̂i

�!�
1
�
Yi < Q�Y 1jc

�
� �
�

�  1(Yi; Di; Zi; Xi)
i������
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and after inserting (24)

=
���q1 �Q�Y 1jc

��� � ������ 1
n

nX
i=1

h�(Xi; 1) (Zi � pi)
p (Xi)

#11(Xi)� ZD
p̂i � pi
p2i

�
1� p̂i � pi

p̂i

��
1
�
Yi < Q�Y 1jc

�
� �
�

+
�(Xi; 0) (Zi � pi)

1� p (Xi)
#10(Xi)� (1� Z)D

p̂i � pi
(1� pi)2

�
1 +

p̂i � pi
1� p̂i

��
1
�
Yi < Q�Y 1jc

�
� �
� i������

using (45) and (46) and the analogous expressions for #10(Xi) we obtain

=
���q1 �Q�Y 1jc

��� � ������ 1
n

nX
i=1

h��(Xi; 1)#11(Xi)

p (Xi)
+
�(Xi; 0)#10(Xi)

1� p (Xi)

�
(Zi � pi) op(1) + op

�
1p
n

�i������
=
p
n
���q1 �Q�Y 1jc

��� � ������ 1p
n

1

n

nX
i=1

h��(Xi; 1)#11(Xi)

p (Xi)
+
�(Xi; 0)#10(Xi)

1� p (Xi)

�
(Zi � pi) op(1) + op

�
1p
n

�i������
= op

�
1

n

�
where we used that 1

n

P
Ai = Op(E [Ai] +

p
V ar (Ai) =n).

The derivations for the Term kA2k are analogous and are omitted.

Next, we examine Term kA3k. (The derivations for Term kA4k are analogous to these and are
omitted.)

Term kA3k =

 1n
nX
i=1

�
ZiDi

p̂i
� (1� Zi)Di

1� p̂i

�
(Yi � q1)

n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o
�
�
q1 �Q�Y 1jc

�2 fY 1jc(Q
�
Y 1jc) � Pc
2


=

 1n
nX
i=1

Di (1� Zi)
pi � p̂i

(1� p̂i) (1� pi)
(Yi � q1)

n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o
+

 1n
nX
i=1

�DiZi
p̂i � pi
p̂ipi

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o
+

 1n
nX
i=1

DiZi
pi

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o
� E

�
DiZi
pi

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o�
+
������ 1
n

nX
i=1

�Di
1� Zi
1� pi

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o
+ E

�
Di
1� Zi
1� pi

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o� ������
+

 1n
nX
i=1

E
h
DW � (Y � q1)

n
1
�
Y < Q�Y 1jc

�
� 1(Y < q1)

oi
�
�
q1 �Q�Y 1jc

�2 fY 1jc(Q
�
Y 1jc) � Pc
2

 .
Now we consider each of the �ve terms separately and show that they are all op(n�1) where we consider
a situation where n increases but

p
n(q1 �Q�Y 1jc) and

p
n(q0 �Q�Y 0jc) are �xed.

Now consider the second term of kA3k. (Also note that the �rst term is analogous and the corresponding
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derivations are omitted here.) 1n
nX
i=1

�DiZi
p̂i � pi
p̂ipi

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o
�
 1n

nX
i=1

DiZi
pi

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o supx2X
(p̂(x)� p(x)) �

�
inf
x2X

p̂(x)

��1
=

 1n
nX
i=1

DiZi
pi

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o � op(1) �Op(1)
because p(x) is assumed to be bounded away from zero and one and because p̂(x) is uniformly consistent.

Now we use (32) and (34) together with 1
n

P
Ai = Op(E [Ai] +

p
V ar (Ai) =n) to obtain

=
Op(n�1 +pn� 3

2�1)
 � op(1) �Op(1) = op

�
1

n

�
.

The derivations for the �rst term of kA3k are analogous and are omitted.

Third term of kA3k: 1n
nX
i=1

DiZi
p(Xi)

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o
� E

�
DiZi
p(Xi)

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o�
=
Op(pn� 3

2�1)
 = op

�
1

n

�
where we used (34) together with 1

n

P
(Ai � E [Ai]) = Op(

p
V ar (Ai) =n).

The derivations for the fourth term of kA3k are analogous and are omitted.

Fifth term of kA3k: Here we use (33) to obtain 1n
nX
i=1

E
h
DW � (Y � q1)

n
1
�
Y < Q�Y 1jc

�
� 1(Y < q1)

oi
� 1
2

�
q1 �Q�Y 1jc

�2
fY 1jc(Q

�
Y 1jc) � Pc


=
������ 1
n

nX
i=1

E

2664DW
8>><>>:
fY jX;Z;D(Q

�
Y 1jc)

2

�
q1 �Q�Y 1jc

�2
+

O

��p
n
�
q1 �Q�Y 1jc

��3�
n
3
2

9>>=>>;
3775

�

�
q1 �Q�Y 1jc

�2
2

fY 1jc(Q
�
Y 1jc) � Pc

������
=


1

n

nX
i=1

O

��p
n
�
q1 �Q�Y 1jc

��3�
n
3
2

 = Op

�
1

n
3
2

�
= op

�
1

n

�

where we made use of

Pc�fY 1jc(Q
�
Y 1jc) = E

h
DW � fY jD;X;Z(Q�Y 1jc)

i
and Pc�fY 0jc(Q

�
Y 0jc) = E

h
(1�D)W � fY jD;X;Z(Q�Y 0jc)

i
which followed from (63) and (64).
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Some intermediate results that have been used in the derivations above. Consider the term:

E
h
(Yi � q1)

n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o
jX;D;Z

i

=

Q�
Y 1jcZ
q1

(y � q1) � fY jX;D;Z(y)dy =

Q�
Y 1jcZ
q1

@
�
(y � q1) � FY jX;D;Z(y)

	
� FY jX;D;Z(y)

@y
dy

=
�
Q�Y 1jc � q1

�
� FY jX;D;Z(Q�Y 1jc)� (q1 � q1) � FY jX;D;Z(q1)�

Q�
Y 1jcZ
q1

FY jX;D;Z(y)dy

=
�
Q�Y 1jc � q1

�
� FY jX;D;Z(Q�Y 1jc)� FY jX;D;Z(Q�Y 1jc)

�
Q�Y 1jc � q1

�
� fY jX;D;Z(Q�Y 1jc)

�
1

2

�
Q�Y 1jc �Q�Y 1jc

�2
� 1
2

�
q1 �Q�Y 1jc

�2�
� f 0Y jX;D;Z(Q�Y 1jc)

�
1

6

�
Q�Y 1jc �Q�Y 1jc

�3
� 1
6

�
q1 �Q�Y 1jc

�3�
�O

��
q1 �Q�Y 1jc

�4�
=
1

2
fY jX;D;Z(Q

�
Y 1jc)

�
q1 �Q�Y 1jc

�2
+O

��
q1 �Q�Y 1jc

�3�
=

1
2fY jX;D;Z(Q

�
Y 1jc)

n

�p
n
�
q1 �Q�Y 1jc

��2
+
1

n
3
2

O

��p
n
�
q1 �Q�Y 1jc

��3�
(30)

where we used the expansion FY jX;D;Z(y) = FY jX;D;Z(Q
�
Y 1jc) + (y � Q�Y 1jc) � fY jX;D;Z(Q�Y 1jc) +

1
2 (y �

Q�Y 1jc)
2 � f 0Y jX;D;Z(Q�Y 1jc) +O((y �Q�Y 1jc)

3).

Also consider

E
h
(Yi � q1)2

n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o
jX;Z;D

i

=

Q�
Y 1jcZ
q1

(y � q1)2 � fY jX;D;Z(y)dy =

Q�
Y 1jcZ
q1

@
n
(y � q1)2 � FY jX;D;Z(y)

o
� 2 (y � q1)FY jX;D;Z(y)

@y
dy

=
�
Q�Y 1jc � q1

�2
� FY jX;D;Z(Q�Y 1jc)� (q1 � q1)

2 � FY jX;D;Z(q1)�

Q�
Y 1jcZ
q1

2 (y � q1)FY jX;D;Z(y)dy

Now again expanding FY jX;D;Z

=
�
Q�Y 1jc � q1

�2
� FY jX;D;Z(Q�Y 1jc)� 2FY jX;D;Z(Q�Y 1jc)

Q�
Y 1jcZ
q1

(y � q1) dy

� 2fY jX;D;Z(Q�Y 1jc)

Q�
Y 1jcZ
q1

(y � q1) (y �Q�Y 1jc)dy � f 0Y jX;D;Z(Q�Y 1jc)

Q�
Y 1jcZ
q1

(y � q1)
�
(y �Q�Y 1jc)

2 +O(y �Q�Y 1jc)
3
�
dy

= �2fY jX;D;Z(Q�Y 1jc)
1

6
(q1 �Q�Y 1jc)

3 � f 0Y jX;D;Z(Q�Y 1jc)
1

12
(q1 �Q�Y 1jc)

4

= �
fY jX;Z;D(Q

�
Y 1jc)

3 � n 3
2

�p
n
�
q1 �Q�Y 1jc

��3
+O

�
1

n2

�
. (31)
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Furthermore

E

�n
(Yi � q1)

n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

oo2
jX;D;Z

�
= 1

�
Q�Y 1jc > q1

�
� E
h
(Yi � q1)2

n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o
jX;D;Z

i
� 1

�
Q�Y 1jc < q1

�
� E
h
(Yi � q1)2

n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o
jX;D;Z

i
= O

 
1
p
n
3

!
,

which follows from (31).

Combining these intermediaries we obtain by using (30)

E

�
DiZi
p(Xi)

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o�
= E

h
�(X; 1) � E

h
(Y � q1)

n
1
�
Y < Q�Y 1jc

�
� 1(Y < q1)

o
jX;Z = 1; D = 1

ii
= E

�
�(X; 1) �

�
1

2
fY jX;Z=1;D=1(Q

�
Y 1jc)

�
q1 �Q�Y 1jc

�2
+
1

n
3
2

O

��p
n
�
q1 �Q�Y 1jc

��3���
= O

�
1

n

�
(32)

and

E
h
DiWi (Yi � q1)

n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

oi
= E

�
DiWi �

�
1

2
fY jX;Z;D(Q

�
Y 1jc)

�
q1 �Q�Y 1jc

�2
+
1

n
3
2

O

��p
n
�
q1 �Q�Y 1jc

��3���
. (33)

We also need the variance expression

V ar

�
DiZi
pi

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o�
= E

"�
DiZi
pi

(Yi � q1)
n
1
�
Yi < Q�Y 1jc

�
� 1(Yi < q1)

o�2#
�O

�
1

n2

�
by (32). Further

= E

�
�(X; 1)

p(X)
� E
��
(Y � q1)

n
1
�
Y < Q�Y 1jc

�
� 1(Y < q1)

o�2
jX;Z = 1; D = 1

��
�O

�
1

n2

�
= O

 
1
p
n
3

!
(34)

by (31).
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A.7.4 Minimizer of ~Gn (q1; q0)

As a corollary to the �nal proof, we now examine the properties of the minimizers of the function ~Gn (q1; q0),

given in (28), and show that the minimizers of ~Gn converge to an asymptotically normal distribution.

Since ~Gn (q1; q0) is di¤erentiable and quadratic in q1 and in q0 its minimizers are de�ned by the �rst order

condition:

0 =
1

n

nX
i=1

 1(Y;D;Z;X) +
�
~q1 �Q�Y 1jc

�
fY 1jc(Q

�
Y 1jc) � Pc (35)

0 =
1

n

nX
i=1

 0(Y;D;Z;X) +
�
~q0 �Q�Y 0jc

�
fY 0jc(Q

�
Y 0jc) � Pc (36)

p
n
�
~q1 �Q�Y 1jc

�
= � 1

fY 1jc(Q
�
Y 1jc) � Pc

1p
n

nX
i=1

 1(Y;D;Z;X) (37)

p
n
�
~q0 �Q�Y 0jc

�
= � 1

fY 0jc(Q
�
Y 0jc) � Pc

1p
n

nX
i=1

 0(Y;D;Z;X). (38)

We thus obtain
p
n
�
~q1 �Q�Y 1jc

�
d! N

 
0; V ar

 
 1(Y;D;Z;X)

fY 1jc(Q
�
Y 1jc) � Pc

!!
(39)

p
n
�
~q0 �Q�Y 0jc

�
d! N

 
0; V ar

 
 0(Y;D;Z;X)

fY 0jc(Q
�
Y 0jc) � Pc

!!
(40)

p
n (~q1 � ~q0 ���c )

d! N

 
0; V ar

 
 1(Y;D;Z;X)

fY 1jc(Q
�
Y 1jc) � Pc

�  0(Y;D;Z;X)

fY 0jc(Q
�
Y 0jc) � Pc

!!
, (41)

by a CLT for iid data.

A.7.5 Properties of q̂1 and q̂0

In the previous subsection we de�ned the statistic ~Gn (q1; q0), which has unique minimizers ~q1 and ~q0, and
derived their properties. In contrast, the minimizers q̂1 and q̂0 of the objective function Gn may not be
unique as Gn may have "�at regions". Both functions, however, are convex and various approaches can be
used to show that q̂1 and ~q1 are close in the sense that q̂1 = ~q1+ op(

1p
n
). Hence, the �rst order asymptotic

distribution is identical for q̂1 and ~q1. The same applies for q̂0 and ~q0 and thus to �̂�c and ~��c . In the
following we make use of results in Hjort and Pollard (1993).

To simplify the notation in the following, we focus on q1 and ignore q0 since ~Gn and Gn are both

additively separable in q1 and q0. The two simpli�ed statistics are thus

~Gn (q1) =
�
q1 �Q�Y 1jc

� 1
n

nX
i=1

 1(Yi; Di; Zi; Xi) +
�
q1 �Q�Y 1jc

�2 fY 1jc(Q
�
Y 1jc) � Pc
2
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and

Gn(q1; Ŵ ) =
1

n

nX
i=1

ŴiDi�� (Yi � q1)�
1

n

nX
i=1

ŴiDi�� (Yi �Q�Y 1jc).

Lemma 2 of Hjort and Pollard (1993) states that for each � > 0 and for Gn and ~Gn both convex

functions in q1 and with ~q1 being the unique minimizer of ~Gn

Pr (jq̂1 � ~q1j � �) � Pr
 
2 sup
js�~q1j��

���Gn(s; Ŵ )� ~Gn (s)
��� � inf

js�~q1j=�
~Gn (s)� ~Gn (~q1)

!
.

After some calculations and making use of (37) we obtain ~Gn (~q1 � �)� ~Gn (~q1) = �2 �
fY 1jc(Q

�
Y 1jc)�Pc
2 and

the same result for ~Gn (~q1 + �)� ~Gn (~q1). Further choosing � = "=
p
n we obtain:

Pr
�p
n jq̂1 � ~q1j � "

�
� Pr

 
2 sup
js�~q1j� "p

n

���Gn(s; Ŵ )� ~Gn (s)
��� � "2

n
�
fY 1jc(Q

�
Y 1jc) � Pc
2

!
. (42)

Now we make use of the previous result in (29) that jGn(q1; Ŵ ) � ~Gn (q1) j = op(
1
n ) for any value of q1.

By lemma 1 of Hjort and Pollard (1993) this also implies sup
q12S

jGn(q1; Ŵ ) � ~Gn (q1) j = op(
1
n ) for any

compact set S. Because the rightmost expression in (42) is always positive and of order Op( 1n ) whereas

the expression sup
���Gn(s; Ŵ )� ~Gn (s)

��� is op( 1n ), this now implies that
Pr
�p
n jq̂1 � ~q1j � "

� p�! 0, 8" > 0

which completes the proof.

A.8 Proof of Theorem (8)

The proof of the theorem is essentially identical to the proof for local linear regression. We only have to
show that (43) equals (45) when we estimate p̂i by local logit regression. All these derivations are given
in Appendix C.

B Properties of the local linear regression estimator

In this subsection several preliminaries for the proof of the previous theorem are derived. These results are
stated in recursive order. First, the results most pertinent to the proofs are given followed by derivations
for these intermediate results etc.

B.1 Properties of some V-statistics

Now we analyze the term
1

n

nX
i=1

ZiDi

p2i

�
1
�
Yi < Q�Y 1jc

�
� �
�
(p̂i � pi) (43)
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with L = dim(X), when p̂ is estimated by local linear regression, with some properties given in the

subsequent section. Making use of expression (47) and de�ning

&ij =
ZiDi

p2i

�
1
�
Yi < Q�Y 1jc

�
� �
�
� e01
�
1

n
X0iKiXi

��1
Xj;iKj;i

�
�
(Zj � pj) + (Xj �Xi)

0 @
2p (Xi)

@x@x0
(Xj �Xi) +O

�
h3
��

we obtain that (43) can be written as

1

n

nX
i=1

ZiDi

p2i

�
1
�
Yi < Q�Y 1jc

�
� �
�
(p̂i � pi) =

1

n2

nX
i=1

nX
j=1

&ij =
1

n2

nX
i=1

nX
j=1

&ij + &ji
2

.

The latter term is a nondegenerate symmetric von Mises statistic. The von Mises statistic is asymptotically

equivalent to the corresponding U-statistic, and its projection is

=
2

n

nX
i=1

�
E

�
&ij + &ji

2
jXi; Zi; Di; Yi

�
� E

�
&ij + &ji

2

��
+ E

�
&ij + &ji

2

�
+ op

�
1p
n

�
(44)

under the condition that E

��
&ij+&ji

2

�2�
� o(n), see Ser�ing (1980, p.190) and Powell, Stock,

and Stoker (1989). To verify this condition note that E[&2ij ] � o(n) by (53) and that E j&ij&jij �q
E[&2ij ] � E[&2ji] by Hölder�s inequality. From (50) and (52) we obtain that E [&ij + &jijXi; Zi; Di; Yi] =�
�(Xi;1)
p(Xi)

#11(Xi) +O(h)
�
� (Zi � pi) +O(h�) and E [&ij + &ji] = O(h�). This gives

=
1

n

nX
i=1

�
�(Xi; 1)

p (Xi)
#11(Xi) +Op(h)

�
� (Zi � pi) +Op(h�) + op

�
1p
n

�
.

Under the condition that nh2� ! 0 the bias term is op(n�
1
2 ) and the asymptotic distribution is determined

by the �rst term

=
1

n

nX
i=1

�(Xi; 1)#11(Xi) (Zi � pi)
p (Xi)

(1 +Op(h)) + op

�
1p
n

�
. (45)

Next, consider the term����� 1n
nX
i=1

ZiDi

p2i

�
1
�
Yi < Q�Y 1jc

�
� �
�
(p̂i � pi)

�
1� p̂i � pi

p̂i

������
�

����� 1n
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i=1

ZiDi

p2i

�
1
�
Yi < Q�Y 1jc

�
� �
�
(p̂i � pi)

����� supx2X

�����1 + pi � p̂i
p̂i

�����
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����� 1n
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ZiDi

p2i

�
1
�
Yi < Q�Y 1jc

�
� �
�
(p̂i � pi)

����� � (1 + op(1)) (46)

since p̂(x) is uniformly consistent and p(x) is bounded away from zero over the support of X. Hence, this
term is of the same order as (43) and its asymptotic properties are determined by (45).
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By analogous derivations we also obtain for

1

n

nX
i=1

(1� Zi)Di

p2i

�
1
�
Yi < Q�Y 1jc

�
� �
�
(p̂i � pi)

=
1

n

nX
i=1

�(Xi; 0)#10(Xi) (Zi � pi)
1� p (Xi)

(1 +Op(h)) + op

�
1p
n

�
.

B.2 Local linear regression

Consider estimation of p(x0) at a location x0. De�ne the regressor matrices Xj =
�
1;
�
Xj�x0
h

�0�0
and

X = (X1;X2; :::;Xn)0 and K = diag(K1;K2; :::;Kn). Since p(x0) is estimated by a weighted least squares

regression, we can write the solution as

p̂(x0) = e01 (X0KX)
�1

nX
j=1

XjKjZj = e01 (X0KX)
�1

nX
j=1

XjKj (Zj � pj + pj)

where e1 is a column vector of zeros with �rst element being one and pj = p(Xj). A series expansion gives

= e01 (X0KX)
�1

nX
j=1

XjKj (Zj � pj)

+ e01 (X0KX)
�1
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XjKj

�
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@p (x0)

@x
+ (Xj � x0)0

1

2

@2p (x0)

@x@x0
(Xj � x0) +Rj

�

where @p(x0)
@x is the L� 1 vector of �rst derivatives and @2p(x0)

@x@x0 the L�L matrix of second derivatives and

Rj is the remainder term of all third order derivatives multiplied with the respective third order interaction

terms of Xj � x0. Since Kj has bounded support, the remainder term premultiplied with Kj is of order

O(Kj � h3). We thus obtain after some derivations that

= e01 (X0KX)
�1

nX
j=1

XjKj (Zj � pj)+p (x0)+e01 (X0KX)
�1

nX
j=1

XjKj

�
(Xj � x0)0

1

2
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(Xj � x0) +O

�
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.

Now we replace x0 with Xi to obtain the expression when estimating at a location Xi

p̂(Xi)� p(Xi) = e01 (X0iKiXi)
�1

nX
j=1

Xj;iKj;i

�
(Zj � pj) + (Xj �Xi)

0 1

2

@2p (Xi)

@x@x0
(Xj �Xi) +O

�
h3
��
,

(47)

where Xj;i =
�
1;
�
Xj�Xi

h

�0�0
and Kj;i =

LQ
l=1

1
h�
�
Xjl�Xil

h

�
and Xi = (X1;i;X2;i; :::;Xn;i)0 and Ki =

diag(K1;i;K2;i; :::;Kn;i).
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B.3 Denominator of the local linear estimator

Under the assumption that nhL !1 and h! 0 one can show that for a kernel of order �:

1

n
(X0KX) =

1

n

nX
j=1

XjX0j
LY
l=1

1

h
�

�
Xjl � xl

h

�
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266666664
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+O(h�) O(h2��2) � � �
... O(h2��2)

. . . O(h2��2)
...

... O(h2��2)
. . .

377777775
(48)

This can be shown element-wise via mean square convergence. Only the derivations for the (2; 2) element

are shown here, with the derivations for the other elements being analogous. Consider the (2; 2) element

of 1n (X
0KX) and denote it by �

� =
1

nhL

nX
j=1

�
Xj1 � x1

h

�2 LY
l=1

�
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�
which has the expected value:
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h

�2 LY
l=1
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�
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h

�
f(Xj)dXj .

With a change in variables: ul =
Xjl�xl

h and u = (u1; :::; uL)
0 and a Taylor series expansion and noting

that � is a kernel of order � we obtain

=

Z
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Z
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=
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by bounded convergence.

To show convergence in mean square, it also needs to be shown that V ar (�) converges to zero
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by bounded convergence and Taylor series expansion. As it has been assumed that nhL !1, the variance
of � converges to zero. Hence, mean square convergence has been shown, which implies convergence in
probability by Chebyshev�s inequality.

From (48) one can derive after some tedious calculations that
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(49)

B.4 Further properties of local linear regression

For deriving the asymptotic distribution of the QTE estimator the expressions appearing in equation
(44) are needed, in particular E[& ij jXi; Zi; Di; Yi] and E[&jijXi; Zi; Di; Yi]. These are derived below.
To simplify notation, we frequently write @��1f(Xi)=@x

��1

@��2f(Xi)=@x��2
as a shorthand notation for the column vector��
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Derive �rst E[& ij jXi; Zi; Di; Yi] which is:
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In the last expression, the following term has been used, where we make use of (49):
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and for � = 2 this term would be

=
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.

In both cases this term is of order O(h�).

Now we derive E[&jijXi; Zi; Di; Yi] which is:
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where #11 was de�ned in (26). Now we enter (49) to obtain
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For an application of the projection theorem in (44) we need to show that E[&2ij ] � o(n). Therefore,
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because of (54) and since p(x) is bounded away from zero over its support as has been assumed. Here we
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have used that
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as it has been assumed that nhL !1.

C Properties of local logit

De�ne the log likelihood function for local logit regression at a location x0 as

lnLn(x0; a; b) =
1

n

nX
j=1

fZj ln� (a+ b0 (Xj � x0)) + (1� Zj) ln (1� � (a+ b0 (Xj � x0)))g �Kj

where �(x) = 1
1+e�x . We will denote derivativesof �(x) by �

0(x), �00(x), �(3)(x) etc. and also note that
�0(x) = �(x) � (1��(x)). Let â and b̂ be the maximizers of lnLn(x0; a; b) and a0 and b0 be the values that
maximize the expected value of the likelihood function E [lnLn(x0; a; b)]. We will sometimes write â(x0),
b̂(x0), a0(x0) and b0(x0) to make it explicit that these coe¢ cients are di¤erent for di¤erent values of x0.
At other times we supress the dependence to ease notation and to focus attention on the properties at a
particular x0.

We estimate p(x0) by p̂(x0) = �(â(x0)). In the following we will also show that �(a0(x0)) is identical
to p(x0) up to an O(h�) term.

To derive this, note that since the likelihood function is globally convex, the maximizers are obtained

by setting the �rst order conditions to zero. The values of a0(x0) and b0(x0) are thus implicitly de�ned by
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the moment conditions

E

24(Zj � � (a0 + b00 (Xj � x0)))

0@ 1

Xj � x0

1AKj

35 = 0
= E

24(pj � � (a0 + b00 (Xj � x0)))

0@ 1

Xj � x0

1AKj

35 = 0. (55)

Now examine only the �rst moment condition to obtain

0 =

Z
(p(Xj)� � (a0 + b00 (Xj � x0))) �Kj � f(Xj)dXj

=

Z
(p(x0 + uh)� � (a0 + b00uh))

LY
l=1

� (ul) f(x0 + uh)du

where u = Xj�x0
h . Now assuming that p is � times di¤erentiable and noting that the kernel is of order �

we obtain by Taylor expansion that

(p(x0)� � (a0)) f(x0) +O(h�) = 0

hence

p(x0) = � (a0) +O(h
�).

Combining this with the previous results we thus have obtained an expression for p̂(x0)� p(x0)

p̂(x0)� p(x0) = �(â(x0))� �(a0(x0)) +O(h�)

and by Taylor expansion of �(â) which converges to �(a0)

p̂(x0)� p(x0) = (â(x0)� a0(x0)) � �0(a0(x0)) � (1 + op(1)) +O(h�).

(One could also explicitly consider the second order term, but for sake of brevity we omit this here.)

By entering (57) and (59) we obtain

= �0(a0(x0)) � e01
�
1

n

Xn
�0(�00Xj) + �00(�

0
0Xj)Xj(�̂ � �0)0 +Op(jj�̂ � �0jj2

o
XjX0jKj

��1
� 1

n

X
(Zj � pj + pj � �(a0 + b00 (Xj � x0)))KjXj � (1 + op(1)) +O(h�)

where we de�ned � = (a; hb0)0 and Xj =
�
1;
�
Xj�x0
h

�0�0
to obtain

=
1

f(x0)

0BBBBBBBB@

1

�h (��2)!(��1)!

�
@��1(�0f(x0))

@x��11

=
@��2(�0f(x0))

@x��21

�
...

�h (��2)!(��1)!

�
@��1(�0f(x0))

@x��1L

=
@��2(�0f(x0))

@x��2L

�

1CCCCCCCCA

0

� 1

n

X
(Zj � pj + pj � �(a0 + b00 (Xj � x0)))KjXj � (1 + op(1)) +O(h�),
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where @� (�0f(x0)) =@x�1 is de�ned in (58)

Now we can embark to show that (43) equals (45) when we estimate p̂i by local logit regression.

Analogously to Section B.1 we can write (43) as

1

n

nX
i=1

ZiDi

p2i

�
1
�
Yi < Q�Y 1jc

�
� �
�
(p̂i � pi) =

1

n2

nX
i=1

nX
j=1

&ij

where

&ij =
ZiDi

p2(Xi)

�
1
�
Yi < Q�Y 1jc

�
� �
� 1

f(Xi)

0BBBBBBBB@

1

�h (��2)!(��1)!

�
@��1(�0f(Xi))

@x��11

=
@��2(�0f(Xi))

@x��21

�
...

�h (��2)!(��1)!

�
@��1(�0f(Xi))

@x��1L

=
@��2(�0f(Xi))

@x��2L

�

1CCCCCCCCA

0

�Kj;iXj;i � (Zj � pj + pj � �(a0(Xi) + b
0
0(Xi) (Xj �Xi))) � (1 + op(1)) +O(h�).

By (60) we obtain that E [&ij jXi; Zi; Di; Yi] = Op(h
�) and by (61) that E [&jijXi; Zi; Di; Yi]

=
�(Xi; 1)#11 (Xi)

p (Xi)
(Zi � p(Xi)) (1 + op(1)) +Op(h

�). (56)

With these two results, and noting that E[&2ij ] � o(n) by (62), we obtain essentially the same expression
as in (45), and we can apply the same derivations as in the proof of Theorem 9.

C.1 Further properties of local logit

C.1.1 Properties of â

Now we need to examine â in more detail. De�ne �rst � = (a; hb0)0 and Xj =
�
1;
�
Xj�x0
h

�0�0
. The �rst

order condition of the estimator is given by

0 =
1

n

X�
Zj � �(�̂

0
Xj)
�
KjX0j

=
1

n

X�
Zj � �(�00Xj)� �0(�00Xj)(�̂ � �0)0Xj � �00(�00Xj) � (�̂ � �0)0XjX0j(�̂ � �0)�Op(jj�̂ � �0jj3)

�
KjX0j

by Taylor expansion. Further

�̂��0 =
�
1

n

Xn
�0(�00Xj) + �00(�

0
0Xj)Xj(�̂ � �0)0 +Op

�
jj�̂ � �0jj2

�o
XjX0jKj

��1
1

n

X�
Zj � �(�00Xj)

�
KjXj .

As we are only interested in â and not in b̂ we write

â� a0 = e01

�
1

n

Xn
�0(�00Xj) + �00(�

0
0Xj)Xj(�̂ � �0)0 +Op

�
jj�̂ � �0jj2

�o
XjX0jKj

��1
� 1

n

X
(Zj � �(a0 + b00 (Xj � x0)))KjXj . (57)
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C.1.2 Denominator for local logit

We start with an approximation to the term

1

n

Xn
�0(�00Xj) + �00(�

0
0Xj)Xj(�̂ � �0)0 +Op

�
jj�̂ � �0jj2

�o
XjX0jKj .

Under the assumption that nhL !1 and h! 0, which implies consistency of â and b̂, one can show that

for a kernel of order �

=

266666664

f(x0)�
0(a0) h��1 ��

(��1)!
@��1(�0f(x0))

@x��11

� � � � � �

h��1 ��
(��1)!

@��1(�0f(x0))
@x��11

h��2 ��
(��2)!

@��2(�0f(x0))
@x��21

0 0

... 0
. . . 0

... 0 0
. . .

377777775
(1 + op(1))

where @� (�0f(x0)) =@x�l is a shortcut notation for all the cross derivatives of �
0 and f(x0)

@� (�0f(x0))

@x�l
�

�X
r=0

�(r+1)(a0(x0)) �
@��rf(x0)

@x��rl

. (58)

The derivations are similar to those of Section B.3 and are omitted here. An additional complication
compared to Section B.3 are the second order terms, which however are all of lower order when (â � a0)

and (b̂� b0) are op(1).

Similarly to Section B.3 we can now derive

e01

�
1

n

Xn
�0(�00Xj) + �00(�

0
0Xj)Xj(�̂ � �0)0 +Op

�
jj�̂ � �0jj2

�o
XjX0jKj

��1

=
1

f(x0)�0(a0(x0))

0BBBBBBBB@

1

�h (��2)!(��1)!

�
@��1(�0f(x0))

@x��11

=
@��2(�0f(x0))

@x��21

�
...

�h (��2)!(��1)!

�
@��1(�0f(x0))

@x��1L

=
@��2(�0f(x0))

@x��2L

�

1CCCCCCCCA

0

(1 + op(1)) (59)
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C.1.3 Preliminaries for the U-statistics projection theorem

As a preliminary for the application of the projection theorem we calculate �rst E [&ij jXi; Zi; Di; Yi] =

Z
ZiDi

p2(Xi)

�
1
�
Yi < Q�Y 1jc

�
� �
� 1

f(Xi)

0BBBBBBBB@

1

�h
�
@��1(�0f(Xi))

@x��11

=
@��2(�0f(Xi))

@x��21

�
(��2)!
(��1)!

...

�h
�
@��1(�0f(Xi))

@x��1L

=
@��2(�0f(Xi))

@x��2L

�
(��2)!
(��1)!

1CCCCCCCCA

0

�Kj;iXj;i � (Zj � p(Xj) + p(Xj)� �(a0(Xi) + b
0
0(Xi) (Xj �Xi))) � (1 + op(1)) +Op(h�)

� dF (Xj ; Zj)

=
ZiDi

p2(Xi)

1
�
Yi < Q�Y 1jc

�
� �

f(Xi)

Z
0BBBBBBBB@

1

�h
�
@��1(�0f(Xi))

@x��11

=
@��2(�0f(Xi))

@x��21

�
(��2)!
(��1)!

...

�h
�
@��1(�0f(Xi))

@x��1L

=
@��2(�0f(Xi))

@x��2L

�
(��2)!
(��1)!

1CCCCCCCCA

0

� Xj;iKj;i � (p(Xj)� �(a0(Xi) + b
0
0(Xi) (Xj �Xi))) � (1 + op(1)) dF (Xj) +O(h

�)

=
ZiDi

p2(Xi)

1
�
Yi < Q�Y 1jc

�
� �

f(Xi)

�
Z (

1� h (�� 2)!
(�� 1)!

LP
l=1

 
@��1 (�0f(Xi))

@x��1l

=
@��2 (�0f(Xi))

@x��2l

!�
Xjl �Xil

h

�)
�Kj;i � (p(Xj)� �(a0(Xi) + b

0
0(Xi) (Xj �Xi))) � (1 + op(1)) dF (Xj) +Op(h

�)

=
ZiDi

p2(Xi)

1
�
Yi < Q�Y 1jc

�
� �

f(Xi)
�
Z (

1� h (�� 2)!
(�� 1)!

LP
l=1

 
@��1 (�0f(Xi))

@x��1l

=
@��2 (�0f(Xi))

@x��2l

!
ul

)

� (p(Xi + uh)� �(a0(Xi) + uhb
0
0(Xi))) � f(Xi + uh) (1 + op(1))

LY
l=1

� (ul) du+Op(h
�)

where u = Xj�Xi

h and by Taylor series expansion we obtain, using that p(Xi) = �(a0(Xi)) + Op(h
�) as

has beeen derived above

=
ZiDi

p2(Xi)

1
�
Yi < Q�Y 1jc

�
� �

f(Xi)
Op(h

�) = Op(h
�). (60)
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Now we calculate E [&jijXi; Zi; Di; Yi] =

Z
ZjDj

p2(Xj)

1
�
Yj < Q�Y 1jc

�
� �

f(Xj)

0BBBBBBBB@

1

�h
�
@��1(�0f(Xj))

@x��11

=
@��2(�0f(Xj))

@x��21

�
(��2)!
(��1)!

...

�h
�
@��1(�0f(Xj))

@x��1L

=
@��2(�0f(Xj))

@x��2L

�
(��2)!
(��1)!

1CCCCCCCCA

0

�Ki;jXi;j � (Zi � pi + pi � �(a0(Xj) + b
0
0(Xj) (Xi �Xj))) � (1 + op(1)) +Op(h�)

� dF (Yj ; Dj ; Xj ; Zj)

and by conditioning on all X1; :::; Xn via iterated expectations we obtain

=

Z
�(Xj ; 1)#11(Xj)

p(Xj)f(Xj)
�
(
1� h (�� 2)!

(�� 1)!
LP
l=1

@��1 (�0f(Xj)) =@x
��1
l

@��2 (�0f(Xj)) =@x
��2
l

�
Xil �Xjl

h

�)
�Ki;j � (Zi � pi + pi � �(a0(Xj) + b

0
0(Xj) (Xi �Xj))) � (1 + op(1)) +Op(h�)

� dF (Xj)

=

Z
�(Xi � vh; 1)#11 (Xi � vh)

p (Xi � vh)
�
(
1� h (�� 2)!

(�� 1)!
LP
l=1

vl
@��1 (�0f(Xi � vh)) =@x��1l

@��2 (�0f(Xi � vh)) =@x��2l

)
� (Zi � p(Xi) + p(Xi)� �(a0 (Xi � vh) + vhb00(Xi � vh))) � (1 + op(1)) +Op(h�)

�
LY
l=1

� (vl) dv

where v = Xi�Xj

h . Note that the term Zi�pi clearly dominates this expression because p(Xi)��(a0(Xi)) =

Op(h
�) and all other terms are multiplied by h or powers of it. We thus obtain

=
�(Xi; 1)#11 (Xi)

p (Xi)
(Zi � p(Xi)) (1 + op(1)) +Op(h

�). (61)

As a last element for applying the U-statistics projection we need to show that E[&2ij ] � o(n). The key

element is to show that the following term is op(n)

E
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f(Xi)
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0
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0
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�
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=
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!
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p(Xi + uh) (1� p(Xi + uh)) + (p(Xi + uh)� �(a0(Xi) + uhb

0
0(Xi)))

2
�
� f(Xi + uh)

�
LY
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�2 (vl) dv � (1 + op(1))

where u = Xj�Xi

h and we obtain

=
��L0
hL

p(Xi) (1� p(Xi))

f(Xi)
� (1 + op(1)) = op(n) (62)

as it has been assumed that nhL !1.

D Additional lemmas used for the proofs

Here we restate the �rst two lemmas of Hjort and Pollard (1993) for the convenience of the reader.

Lemma 1 of Hjort and Pollard (1993): From pointwise to uniform. Suppose An(s) is a sequence of
convex random functions de�ned on an open convex set S in Rp, which converges in probability to some
A(s), for each s. Then sup

s2K
jAn(s)�A(s)j goes to zero in probability, for each compact subset K of S.

Lemma 2 of Hjort and Pollard (1993): Nearness of argmins. Suppose An(s) is convex as in Lemma

1 and is approximated by Bn(s). Let �n be the argmin of An, and assume that Bn has a unique argmin

�n. Then there is a probabilistic bound on how far �n can be from �n. For each � > 0,

Pr (j�n � �nj � �)

� Pr
(
2 � sup

js��nj��
jAn(s)�Bn(s)j � inf

js��nj=�
Bn(s)�Bn(�n)

)
.
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E Proofs for the e¢ ciency bounds:

E.1 Proof of Theorem (9):

Semiparametric e¢ ciency bounds were introduced by Stein (1956) and developed by Koshevnik and Levit
(1976), Pfanzagl and Wefelmeyer (1982), Begun, Hall, Huang, and Wellner (1983) and Bickel, Klaassen,
Ritov, and Wellner (1993). See also the survey of Newey (1990) or Newey (1994).

We need to derive the e¢ ciency bound for

��c = Q�Y 1jc �Q�Y 0jc.

For this it will be helpful to have an expression for fY 1jc and fY 0jc. From Theorem (1) it follows that

fY 1jc(u) =

�Z �
fY jX;D=1;Z=1(u)� (x; 1)� fY jX;D=1;Z=0(u)� (x; 0)

�
dFX

�
=Pc (63)

fY 0jc(u) = �
�Z �

fY jX;D=0;Z=1(u) (1� �(x; 1))� fY jX;D=0;Z=0(u) (1� �(x; 0))
�
dFX

�
=Pc (64)

where �(x; z) = Pr(D = 1jX = x;Z = z) and Pc =
R
(�(x; 1)� �(x; 0)) dFX is the fraction of compliers.

By Assumption 2 the quantiles Q�Y 1jc and Q
�
Y 0jc are unique and de�ned as

0 = E
h
1(Y 1 � Q�Y 1jc)� � jT = c

i
=

Z �
1(u � Q�Y 1jc)� �

�
� fY 1jc(u)du (65)

0 = E
h
1(Y 0 � Q�Y 0jc)� � jT = c

i
=

Z �
1(u � Q�Y 0jc)� �

�
� fY 0jc(u)du

where fY djc are given above. We thus have expressed the quantiles in terms of the densities of the observed
variables.

The joint density of the observed variables (Y;D;Z;X) with D and Z binary can be written as

f (y; d; z; x) = f (yjd; z; x) f (djz; x) f (zjx) f(x)

= f (yjd; z; x)
n
�(x; z)d � (1� �(x; z))1�d

on
p(x)z � (1� p(x))1�z

o
f(x).

Consider a regular parametric submodel indexed by � with �0 corresponding to the true model:

f (y; d; z; x; �0) = f (y; d; z; x). The density f (y; d; z; x; �) can be written as

f (y; d; z; x; �) = f11 (yjx; �)dz � f10z (yjx; �)d(1�z) � f01 (yjx; �)(1�d)z � f00 (yjx; �)(1�d)(1�z)n
�(x; z; �)d � (1� �(x; z; �))1�d

on
p(x; �)z � (1� p(x; �))1�z

o
f(x; �),

where fdz (yjx; �) = f (yjd; z; x; �).

We will assume throughout that all terms of the previous equation admit an interchange of the order

of integration and di¤erentiation, such thatZ
@f (y; d; z; x; �)

@�
dydddzdx =

@

@�

Z
f (y; d; z; x; �) dydddzdx = 0.
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Su¢ cient conditions for permitting interchanging di¤erentiation and integration are, for example, given
by Theorem 1.3.2 of Amemiya (1985).

The corresponding score of f (y; d; z; x; �) is

s (y; d; z; x; �) =
@ ln f (y; d; z; x; �)

@�

= dz �f11 (yjx; �) + d(1� z) �f10 (yjx; �) + (1� d)z �f01 (yjx; �) + (1� d)(1� z) �f00 (yjx; �)

+
d� �(x; z; �)
1� �(x; z; �) ��(x; z; �) +

z � p(x; �)
1� p(x; �) �p(x; �) +

�f(x; �),

where the subscript �f de�nes a derivative of the log, i.e. �f(x; �) = @ ln f(x; �)=@�.

At the true value �0 the expectation of the score is zero. The tangent space of the model is the set of

functions that are mean zero and satisfy the additive structure of the score:

= =

8<: dzs11 (yjx) + d(1� z)s10 (yjx) + (1� d)zs01 (yjx) + (1� d)(1� z)s00 (yjx)

+ (d� � (x; z)) � s�(x; z) + (z � p (x)) � sp(x) + sx(x)

9=; (66)

for any functions s11; s10; s01; s00; sx satisfying the mean-zero property: E
�
sdzjD = d; Z = z;X

�
= 0 =

E [sx(x)] and s�(x; z) and sp(x) being square-integrable measurable functions.

The semiparametric variance bound of ��c is the variance of the projection on = of a function

 (Y;D;Z;X) (with E [ ] = 0 and E[k (�)k2] <1) that satis�es for all regular parametric submodels

@��c (F�)

@� j�=�0
= E [ (Y;D;Z;X) � s(Y;D;Z;X)]j�=�0 (67)

If  itself already lies in the tangent space, the variance bound is given by E
�
 2
�
.

As a �rst step to calculating the variance bound, we need to derive

@��c (�)

@�
=
@Q�Y 1jc(�)

@�
�
@Q�Y 0jc(�)

@�
.

The identity (65) holds for all submodels � such that we obtain

@

@�

Z �
1(u � Q�Y 1jc(�))� �

�
� fY 1jc(u; �)du = 0

= (1� �) @
@�

Q�
Y 1jc(�)Z
�1

fY 1jc(u; �)du� �
@

@�

1Z
Q�
Y 1jc

(�)

fY 1jc(u; �)du

= fY 1jc(Q
�
Y 1jc(�); �) �

@Q�Y 1jc(�)

@�
+

Z �
1(u � Q�Y 1jc(�))� �

� @

@�
fY 1jc(u; �)du = 0.

by Leibniz�s rule of di¤erentiation. We thus obtain that the derivative evaluated at the true �0 is

@��c (�)

@� j�=�0
=

R �
� � 1(u � Q�Y 1jc)

�
@
@�fY 1jc(u; �0)du

fY 1jc(Q
�
Y 1jc)

�

R �
� � 1(u � Q�Y 0jc)

�
@
@�fY 0jc(u; �0)du

fY 0jc(Q
�
Y 0jc)
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where

@

@�
fY 1jc(u; �0) =

1

Pc

@

@�

�Z �
fY jX;D=1;Z=1(u)� (x; 1)� fY jX;D=1;Z=0(u)� (x; 0)

�
f(x)dx

�
� fY 1jc(u; �0)

@ lnPc(�0)

@�

such that

@��c (�)

@� j�=�0

=

R �
� � 1(u � Q�Y 1jc)

�
@
@�

�R �
fY jX;D=1;Z=1(u)� (x; 1)� fY jX;D=1;Z=0(u)� (x; 0)

�
f(x)dx

	
du

Pc � fY 1jc(Q
�
Y 1jc)

+

R �
� � 1(u � Q�Y 0jc)

�
@
@�

�R �
fY jX;D=0;Z=1(u) (1� �(x; 1))� fY jX;D=0;Z=0(u) (1� �(x; 0))

�
f(x)dx

	
du

Pc � fY 0jc(Q
�
Y 0jc)

De�ne

�dz(y; x) =
� � 1(y � Q�Y djc)

Pc � fY djc(Q
�
Y djc)

� #dz(x) (68)

and

#dz(x) =
E
h
� � 1(Y � Q�Y djc)jD = d; Z = z;X = x

i
Pc � fY djc(Q

�
Y djc)

=
� � FY jD=d;Z=z;X(Q�Y djc)

Pc � fY djc(Q
�
Y djc)

(69)

and choose  (Y;D;Z;X) as

 (Y;D;Z;X) =
ZD

p(X)
�11(Y;X)�

(1� Z)D
1� p(X) �10(Y;X) +

Z(1�D)
p(X)

�01(Y;X)�
(1� Z)(1�D)
1� p(X) �00(Y;X)

(70)

+

�
DZ � �(x; 1) (Z � p(x))

p(x)

�
#11(x)�

�
D(1� Z) + �(x; 0) (Z � p(x))

1� p(x)

�
#10(x)

+

�
(1�D)Z � (1� �(x; 1)) (Z � p(x))

p(x)

�
#01(x)�

�
(1�D)(1� Z) + (1� �(x; 0)) (Z � p(x))

1� p(x)

�
#00(x),

which, after some tedious calculations, can be shown to satisfy (67). For this it is helpful to note that in

every parametric submodel

E [�(X; 1) � #11(X)� �(X; 0) � #10(X)] = 0

E [(1� �(X; 1)) � #01(X)� (1� �(X; 0)) � #00(X)] = 0,

which can be derived from the calculations in the proof of Theorem (1).

Since  is mean zero and lies in the tangent set (66), the variance bound is

E
�
 (Y;D;Z;X)2

�
(71)
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= E

"�
ZD

p(X)
�11(Y;X)�

(1� Z)D
1� p(X) �10(Y;X) +

Z(1�D)
p(X)

�01(Y;X)�
(1� Z)(1�D)
1� p(X) �00(Y;X)

�2#

+ E
hh�DZ � �(x; 1) (Z � p(x))

p(x)

�
#11(x)�

�
D(1� Z) + �(x; 0) (Z � p(x))

1� p(x)

�
#10(x)

+

�
(1�D)Z � (1� �(x; 1)) (Z � p(x))

p(x)

�
#01(x)�

�
(1�D)(1� Z) + (1� �(x; 0)) (Z � p(x))

1� p(x)

�
#00(x)

i2i

= E

"�
ZD

p(X)
�11(Y;X)

�2#
+ E

"�
(1� Z)D
1� p(X) �10(Y;X)

�2#

+ E

"�
Z(1�D)
p(X)

�01(Y;X)

�2#
+ E

"�
(1� Z)(1�D)
1� p(X) �00(Y;X)

�2#

+ E
h�(X; 1)
p(X)

#211(X) +
1� �(X; 1)

p(X)
#201(X) +

�(X; 0)

1� p(X)#
2
10(X) +

1� �(X; 0)
1� p(X) #200(X)

� p(X)(1� p(X))
�
�(X; 1)

p(X)
#11(X) +

1� �(X; 1)
p(X)

#01(X) +
�(X; 0)

1� p(X)#10(X) +
1� �(X; 0)
1� p(X) #00(X)

�2 i

=
1

P 2c f
2
Y 1jc(Q

�
Y 1jc)

E

�
�(X; 1)

p(X)
FY jD=1;Z=1;X(Q

�
Y 1jc)

�
1� FY jD=1;Z=1;X(Q�Y 1jc)

��
+

1

P 2c f
2
Y 1jc(Q

�
Y 1jc)

E

�
�(X; 0)

1� p(x)FY jD=1;Z=0;X(Q
�
Y 1jc)

�
1� FY jD=1;Z=0;X(Q�Y 1jc)

��
+

1

P 2c f
2
Y 0jc(Q

�
Y 0jc)

E

�
1� �(X; 1)

p(X)
FY jD=0;Z=1;X(Q

�
Y 0jc)

�
1� FY jD=0;Z=1;X(Q�Y 0jc)

��
+

1

P 2c f
2
Y 0jc(Q

�
Y 0jc)

E

�
1� �(X; 0)
1� p(X) FY jD=0;Z=0;X(Q

�
Y 0jc)

�
1� FY jD=0;Z=0;X(Q�Y 0jc)

��
+ E

h�(X; 1)#211(X) + (1� �(X; 1))#201(X)
p(X)

+
�(X; 0)#210(X) + (1� �(X; 0))#200(X)

1� p(X)

� p(X)(1� p(X))
�
�(X; 1)#11(X) + (1� �(X; 1))#01(X)

p(X)
+
�(X; 0)#10(X) + (1� �(X; 0))#00(X)

1� p(X)

�2 i
because

E

"�
DZ

p(X)
�11(Y;X)

�2#
= E

�
E

�
DZ

p2(X)
�211(Y;X)jX

��
= E

�
E

�
�(X; 1)p(X)

p2(X)
E
�
�211(Y;X)jD = Z = 1; X

�
jX
��

and

E
�
�211(Y;X)jD = Z = 1; X

�
=
FY jD=1;Z=1;X(Q

�
Y 1jc)

�
1� FY jD=1;Z=1;X(Q�Y 1jc)

�
P 2c f

2
Y 1jc(Q

�
Y 1jc)

and analogously for the other terms.

E.2 Proof of Lemma (10):

Now we derive the semiparametric e¢ ciency bound when the function p(x) is known. As in the previous

theorem, we consider a regular parametric submodel indexed by � with �0 corresponding to the true model:
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f (y; d; z; x; �0) = f (y; d; z; x). The di¤erence to the preceding theorem is that p(x) is known and needs

not to be estimated. Therefore the propensity score enters as p(x) � p(x; �0) instead of p(x; �) in the

following density expression. The density f (y; d; z; x; �) can be written as

f (y; d; z; x; �) = f11 (yjx; �)dz � f10z (yjx; �)d(1�z) � f01 (yjx; �)(1�d)z � f00 (yjx; �)(1�d)(1�z)n
�(x; z; �)d � (1� �(x; z; �))1�d

on
p(x)z � (1� p(x))1�z

o
f(x; �),

where fdz (yjx; �) = f (yjd; z; x; �).

The corresponding score of f (y; d; z; x; �) is thus identical to the preceeding theorem with the exception

that the derivative of p(x) with respect to � is zero:

s (y; d; z; x; �) =
@ ln f (y; d; z; x; �)

@�

= dz �f11 (yjx; �) + d(1� z) �f10 (yjx; �) + (1� d)z �f01 (yjx; �) + (1� d)(1� z) �f00 (yjx; �)

+
d� �(x; z; �)
1� �(x; z; �) ��(x; z; �) +

�f(x; �),

where the subscript �f de�nes a derivative of the log, i.e. �f(x; �) = @ ln f(x; �)=@�.

At the true value �0 the expectation of the score is zero. The tangent space of the model is the set of

functions that are mean zero and satisfy the additive structure of the score:

= =

8<: dzs11 (yjx) + d(1� z)s10 (yjx) + (1� d)zs01 (yjx) + (1� d)(1� z)s00 (yjx)

+ (d� � (x; z)) � s�(x; z) + sx(x)

9=; (72)

for any functions s11; s10; s01; s00; sx satisfying the mean-zero property: E
�
sdzjD = d; Z = z;X

�
= 0 =

E [sx(x)] and s�(x; z) being a square-integrable measurable function.

Repeating the calculations of the previous theorem one obtains that the expression for @��
c (�)
@� j�=�0

is

identical to that obtained in the previous proof and thus not a¤ected by knowledge of the propensity score.

Now we de�ne  (Y;D;Z;X) as in (70) and note that  also lies in the tangent set (72). To see that  lies

in the tangent set (72) it may be helpful to re-write  as

 (Y;D;Z;X) =
ZD

p(X)
�11(Y;X)�

(1� Z)D
1� p(X) �10(Y;X) +

Z(1�D)
p(X)

�01(Y;X)�
(1� Z)(1�D)
1� p(X) �00(Y;X)

+ (D � �(X; 1)) � Z #11(X)� #01(X)
p(X)

+ (D � �(X; 0)) � (1� Z) #00(X)� #10(X)
1� p(X)

+
�
�(X; 1)#11(X)� �(X; 0)#10(X)

�
+
�
(1� �(X; 1))#01(X)� (1� �(X; 0))#00(X)

�
.

Note that the last two terms only depend on X and are mean zero by (8). The terms �dz(Y;X) are
also mean zero conditional on D and Z. Finally, Z #11(X)�#01(X)

p(X) and (1� Z) #00(X)�#10(X)1�p(X) are square-
integrable because p(x) is bounded away from zero and one and #dz is bounded away from in�nity by
Assumption 2.
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After some tedious calculations, where we also make use of (8), we also obtain that

@��c (F�)

@� j�=�0
= E [ (Y;D;Z;X) � s(Y;D;Z;X)]j�=�0

which shows that the semiparametric e¢ ciency bound is not a¤ected by knowledge of p(x).

E.3 Proof of Theorem (11):

We consider two regressors sets X1 and X2 with X1 � X2. This contains the case where X1 is the empty

set. Suppose that both regressor sets satisfy the Assumption 1 and suppose further that

Pr (Z = 1jX1; X2) = Pr (Z = 1jX1) . (73)

Hence, the additional regressors in X2 that are not included in X1 do not a¤ect the instrument but may

be predictors of the potential outcomes. (If the additional regressors in X2 would have a causal e¤ect on

Z and on the potential outcomes, the regressor set X1 would generally not be satisfying Assumption 1. In

this case the estimator with X1 only would not be consistent for the QTE.) Let V2 be the semiparametric

variance bound when using regresor set X2 and V1 be the semiparametric variance bound when using

regresor set X1, both refering to the same quantile � of the QTE. We show in the following that

V1 � V2,

i.e. adding more regressors generally reduces the variance of the QTE.

We start from (71) which gave the semiparametric variance bound as:

V1 = E

"�
ZD

p(X1)
�11(Y;X1)

�2#
+ E

"�
(1� Z)D
1� p(X1)

�10(Y;X1)

�2#
(74)

+ E

"�
Z(1�D)
p(X1)

�01(Y;X1)

�2#
+ E

"�
(1� Z)(1�D)
1� p(X1)

�00(Y;X1)

�2#

+ E
h�(X1; 1)#

2
11(X1) + (1� �(X1; 1))#

2
01(X1)

p(X1)
+
�(X1; 0)#

2
10(X1) + (1� �(X1; 0))#

2
00(X1)

1� p(X1)

i
� E

h
p(X1)(1� p(X1))

h�(X1; 1)#11(X1) + (1� �(X1; 1))#01(X1)

p(X1)

+
�(X1; 0)#10(X1) + (1� �(X1; 0))#00(X1)

1� p(X1)

i2i
where �dz(y; x) and #dz(x) as de�ned in (68) and (69). The expressions for V2 are analogous.
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As a preliminary calculation consider the �rst term in (74)

E

"�
ZD

p(X1)
�11(Y;X1)

�2#
= E

24 ZD

p(X1)2

 
� � 1(Y � Q�Y djc)

Pc � fY djc(Q
�
Y djc)

� #11(X1)

!235
= E

24 ZD

p(X1)2

 
� � 1(Y � Q�Y djc)

Pc � fY djc(Q
�
Y djc)

� #11(X2) + #11(X2)� #11(X1)

!235
= E

�
ZD

p(X1)2
(�11(Y;X2) + #11(X2)� #11(X1))

2

�
= E

�
ZD

p(X1)2
(�11(Y;X2))

2

�
+ E

�
ZD

p(X1)2
(#11(X2)� #11(X1))

2

�
+ 2E

�
ZD

p(X1)2
�11(Y;X2) (#11(X2)� #11(X1))

�
where the last term is zero by using iterated expectations and conditioning on X2. Using (73) we obtain

= E

�
ZD

p(X2)2
(�11(Y;X2))

2

�
+ E

�
ZD

p(X1)2
(#11(X2)� #11(X1))

2

�
. (75)

The derivations for the second, third and fourth term in (74) are analogous.

We will also use that

E [�(X2; 1) � #11(X2)jX1] = �(X1; 1) � #11(X1) (76)

or

E [�(X2; 1)#11(X2)� �(X1; 1)#11(X1)jX1] = 0

because

=
1

Pc � fY djc(Q
�
Y djc)

� E
h
�(X2; 1)E

h�
� � 1(Y � Q�Y 1jc)

�
jX2; D = Z = 1

i
jX1

i
� 1

Pc � fY djc(Q
�
Y djc)

� E
h
�(X1; 1)E

h�
� � 1(Y � Q�Y 1jc)

�
jX1; D = Z = 1

i
jX1

i
=

1

Pc � fY djc(Q
�
Y djc)

� E
�
E

�
ZD

p(X1)

�
� � 1(Y � Q�Y 1jc)

�
jX2

�
� E

�
ZD

p(X1)

�
� � 1(Y � Q�Y 1jc)

�
jX1

�
jX1

�
=

1

Pc � fY djc(Q
�
Y djc)

� E
�
ZD

p(X1)

�
� � 1(Y � Q�Y 1jc)

�
� ZD

p(X1)

�
� � 1(Y � Q�Y 1jc)

�
jX1

�
= 0,

and analogously for the other terms �(X2; 0) � #10(X2) and (1 � �(X2; 1)) � #01(X2) and (1 � �(X2; 0)) �
#00(X2).

Using (75) we obtain

V1 � V2 =
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E

�
ZD

p(X2)2
(�11(Y;X2))

2

�
+ E

�
ZD

p(X1)2
(#11(X2)� #11(X1))

2

�
+ E

"
(1� Z)D
(1� p(X2))

2 (�10(Y;X2))
2

#
+ E

"
(1� Z)D
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2

#

+ E
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(�01(Y;X2))
2
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+ E
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p(X1)2
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2

�
+ E
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(1� Z)(1�D)
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2 (�00(Y;X2))
2

#
+ E

"
(1� Z)(1�D)
(1� p(X1))

2 (#00(X2)� #00(X1))
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+ E
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�(X1; 0)#

2
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� E
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p(X1)

+
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i2i

� E
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ZD

p(X2)
�11(Y;X2)
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� E
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i2i
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h�(X1; 1)#11(X1) + (1� �(X1; 1))#01(X1)

p(X1)

+
�(X1; 0)#10(X1) + (1� �(X1; 0))#00(X1)

1� p(X1)

i2i
� E
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2
11(X2) + (1� �(X2; 1))#

2
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+
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2
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2
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+ E

h
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i2i
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noting that E[ ZD
p(X1)2

(#11(X2)� #11(X1))
2
+
�(X1;1)#

2
11(X1)

p(X1)
� �(X2;1)#

2
11(X2)

p(X2)
jX1] = 0 by (76) and analogously

for the other terms we obtain

= E
h
p(X2)(1� p(X2))

h�(X2; 1)#11(X2) + (1� �(X2; 1))#01(X2)

p(X2)

+
�(X2; 0)#10(X2) + (1� �(X2; 0))#00(X2)

1� p(X2)

i2i
� E
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p(X1)(1� p(X1))

h�(X1; 1)#11(X1) + (1� �(X1; 1))#01(X1)
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i2i
again making use of (76) it follows

= E
h
p(X1)(1� p(X1)) � V ar

h�(X2; 1)#11(X2) + (1� �(X2; 1))#01(X2)

p(X2)

+
�(X2; 0)#10(X2) + (1� �(X2; 0))#00(X2)

1� p(X2)
jX1

ii
which is always non-negative.
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Table 1: Probit regression of the instrument Z on X 
 

 Coef. Std.err z-value 
Experience -0.004 0.026 -0.14 
Experience squared -1e-4 0.001 -0.10 
Black 0.180* 0.075 2.40 
SMSA 1976 0.264* 0.072 3.65 
Dummy for lived in south in 1976 -0.081 0.098 -0.83 
SMSA 1966 1.005* 0.070 14.30 
Regional dummies for 1966    

Region 2 0.027 0.162 0.17 
Region 3 -0.483* 0.153 -3.15 
Region 4 -0.386* 0.169 -2.28 
Region 5 -0.607* 0.174 -3.49 
Region 6 -0.991* 0.184 -5.38 
Region 7 -0.864* 0.184 -4.68 
Region 8 -0.690* 0.204 -3.39 
Region 9 -0.267 0.171 -1.56 

Father's education 0.021 0.017 1.23 
Mother's education -0.017 0.016 -1.06 
Father's education missing -0.245 0.204 -1.20 
Mother's education missing -0.027 0.135 -0.20 
Interactions of parental education:    
Mom and dad both > 12 yrs ed 0.002 0.305 0.01 
Mom & dad >=12 and not both exactly 12 -0.307 0.276 -1.11 
Mom=dad=12 -0.194 0.253 -0.77 
Mom >=12 and dad missing -0.177 0.175 1.01 
Father >=12 and mom not in f1-f4 -0.208 0.250 -0.83 
Mom>=12 and dad nonmissing -0.221 0.239 -0.93 
Mom and dad both >=9  -0.199 0.256 -0.78 
Mom and dad both nonmissing -0.109 0.220 -0.50 
Living with mother and father at age 14 -0.084 0.102 -0.83 
Living only with mother at age 14 0.034 0.139 0.25 
Constant 0.460 0.345 1.33 

Note: Same specification as in Card (1995). Binary dependent variable: proximity of an accredited 4-year college in 
1966. A * indicates that the coefficient is different from 0 at the 5% significance level. Potential experience in 1976 is 
constructed as age minus years of education minus 6. 
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Figure 1: Unconditional QTE of the JTPA training program 
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Note: Same data (only men) and same specification as in Abadie, Angrist and Imbens (2002). 
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Figure 2: Precision gain obtained by incorporating covariates 
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Note: The results plotted in Figure 1 have been bootstrapped 1000 times. We have calculated 95% percentile con-
fidence intervals both with and without covariates. The bold points indicate the length of the confidence intervals 
incorporating covariates relatively to the length of the confidence interval without covariates. The empty circles in-
dicate the same relative lengths of the standard deviation. Values below 1 indicate a reduction in standard deviation 
or a shortening of the confidence interval. 
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Figure 3: Bias arising from the manipulation of the instrument 
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Note: The corrupted instrument Z  is set to 1 with probability 0.5 if Z=0 and the individual is married. In all other 
cases, Z Z= . We eliminate the random component of this data manipulation by averaging the results over 1000 
corrupted samples. 
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Figure 4: Distribution of P(Z=1|X) in the Z=0 and Z=1 subpopulation 
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Note: Kernel density estimates of the propensity score ( )p x  estimated by a parametric probit for the two sub-
samples defined by the value of Z. 
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Figure 5: Nonparametric estimators of the QTE of college attendance 
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Note: Unconditional QTE of having a college degree on the log hourly wage. The weighting estimator defined in 
equation (14) with ( )p x  estimated by local logit regression has been used. When we assume exogeneity, college at-
tendance is used as its own IV. The bandwidths have been chosen by cross-validation. The covariates included are 
the same as those used by Card (1995) and in our Table 1 (naturally without experience squared and the interaction 
terms because our model is non-parametric). 
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Figure 6: QTE of college on earnings: the role of the covariates 
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Note: The results assuming exogeneity and using all covariates are the same as those in Figure 5. The other estima-
tors differ only in the covariates used to estimate the weights. Only a constant has been used to calculate the “IV 
without covariates” results. All covariates except parental education and the family structure at age 14 have been 
used to calculate the “IV without control for family background” results. All covariates except the region of resi-
dence in 1966 and 1976 have been used to calculate the “IV without control for region of residence” results. 


