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ABSTRACT:

Self-supervised learning has great potential for the remote sensing domain, where unlabelled observations are abundant, but la-
bels are hard to obtain. This work leverages unlabelled multi-modal remote sensing data for augmentation-free contrastive self-
supervised learning. Deep neural network models are trained to maximize the similarity of latent representations obtained with
different sensing techniques from the same location, while distinguishing them from other locations. We showcase this idea with
two self-supervised data fusion methods and compare against standard supervised and self-supervised learning approaches on a
land-cover classification task. Our results show that contrastive data fusion is a powerful self-supervised technique to train image
encoders that are capable of producing meaningful representations: Simple linear probing performs on par with fully supervised
approaches and fine-tuning with as little as 10% of the labelled data results in higher accuracy than supervised training on the entire
dataset.

1. INTRODUCTION

Increasing numbers of Earth-orbiting satellites produce large
quantities of remote sensing data every day. The analysis of
this data with machine-learning (ML) techniques is of great in-
terest for many applications in Earth Observation, such as land
use monitoring or change detection (Zhu et al., 2017). However,
many of the most frequently used ML algorithms for these tasks
are supervised, and thus depend on the availability of high-
quality labels for each observation (Scheibenreif et al., 2021).
Obtaining the labels is typically a laborious process, involving
expensive human expert annotators. This leaves the vast major-
ity of available remote sensing data unlabelled, and therefore
out of reach for supervised ML algorithms. Our work targets
all applications of ML in the remote sensing domain where it
is possible to obtain small amounts of labelled data at reason-
able expense, but not in quantities that are sufficient to train
large neural network models. In such scenarios, a combination
of self-supervised pre-training and subsequent supervised fine-
tuning makes it possible to leverage large unlabelled datasets in
conjunction with a small amount of labelled observations. In
particular, contrastive self-supervised learning (SSL) recently
emerged as a powerful way of fitting deep neural network mod-
els on unlabelled datasets and to obtain strong performance on
related down-stream tasks (Jaiswal et al., 2021). The central
idea of contrastive SSL is to compare and distinguish samples
from one instance with samples from other instances (Wu et
al., 2018). This incentivizes the model to learn meaningful fea-
tures that are constant for different observations of the same in-
stance, but vary across instances. In existing literature, multiple
observations of one instance (e.g., an image) are typically ob-
tained by applying strong random augmentations to the original
sample. The models are trained to match augmented versions
of the same image and thus learn to become invariant to the ap-
plied augmentations (Chen et al., 2020a). The direct application
of standard contrastive SSL methods for natural images to re-
mote sensing data is not straightforward given the different data
characteristics (Ayush et al., 2021). Commonly used augment-
ation techniques (e.g., changing image hue or saturation) might
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Figure 1. Contrastive SSL with multi-modal remote sensing

data. Convolutional encoders are trained to maximize the
similarity of latent representations between Sentinel-1/2 images
of the same location (positive pairs) while distinguishing them

from other scenes (negative samples).

not be well-defined for non-RGB remote sensing modalities, or
introduce undesirable invariances in the resulting model.

The contributions of our work are as follows:

• We propose an augmentation-free variant of contrastive
SSL. Same-instance (i.e., positive) samples are obtained
from near-in-time imagery of the same scene by satellites
with different sensing techniques (see Fig. 1).

• Our approach exploits the geo-location information of re-
mote sensing data to match observations between sensors.
This enables the model to jointly learn representations of
data from multiple sources, thus performing data fusion
without supervision.

• We show that this approach yields significant improve-
ments on down-stream classification tasks, particularly when
only small amounts of labelled data are available.
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Figure 2. Sample of Sentinel-1/2 image pairs (RGB bands of Sentinel-2 and VV polarization of Sentinel-1) with multi-labels obtained
from the DFC2020 dataset. The multi-label classes are given with the majority class in bold font.

2. RELATED WORK

The idea of contrastive learning (Hadsell et al., 2006) has re-
cently received a lot of attention in the computer vision literat-
ure (Wu et al., 2018, Oord et al., 2018, Chen et al., 2020a, He et
al., 2020, Tian et al., 2020) and subsequently produced methods
that achieved stronger ImageNet classification results than su-
pervised training (Chen et al., 2020b). Following this success,
contrastive SSL was also adopted in the remote sensing domain.
Recently, the geo-information of remote sensing data was ex-
ploited to collect images of the same scene at different points in
time as temporal positives and contrasted against images from
other locations (Ayush et al., 2021). In combination with an
auxiliary geo-location classification task, this approach results
in improved performance across a number of downstream clas-
sification and segmentation problems. The Contrastive Predict-
ive Coding method (Oord et al., 2018) has been adapted to re-
mote sensing data by drawing positive pairs as different crops
from a satellite image, resulting in improved downstream clas-
sification accuracy over ImageNet pre-training, particularly in
the multi-spectral case (Stojnic and Risojevic, 2021). In Sea-
sonal Contrast, a two-step procedure for contrastive SSL on re-
mote sensing data has been proposed (Mañas et al., 2021). First,
a representative, unlabelled dataset is purpose-built and then a
SSL model based on MoCo-v2 (Chen et al., 2020c) with mul-
tiple embedding subspaces is trained with augmented and tem-
poral positives. Besides classification and segmentation, con-
trastive SSL has also recently been applied to tackle problems
that are more specific to the remote sensing domain like change
detection (Chen and Bruzzone, 2021a, Saha et al., 2021) or data
fusion (Chen and Bruzzone, 2021b). Most similar to our work,
self-supervised learning has been shown to enable change de-
tection with pre- and post-change satellite images of different
modalities (Saha et al., 2021). This technique differs from our
approach in the loss function, which combines deep clustering,
temporal consistency and contrastive losses, the backbone ar-
chitecture which starts to share latent representations of differ-
ent image modalities before a common convolutional layer, and
the change detection down-stream task. Another recent related
work on self-supervised data fusion with multi-modal satellite
data (Chen and Bruzzone, 2021b) utilizes model architectures
based on ResUnet blocks and operates on pixel-level represent-
ations, distinguishing it from our work.

3. DATA

This work uses multi-modal satellite data from the Sentinel-1
and Sentinel-2 satellites of the European Space Agency’s Co-
pernicus Program. Spatially aligned image pairs are obtained
from the SEN12MS dataset (Schmitt et al., 2019). See Fig. 2
for representative samples.

Sentinel-1 The Sentinel-1 mission consists of two polar-
orbiting satellites with C-band synthetic aperture radar (SAR)
devices (Torres et al., 2012). Sentinel-1 provides SAR imaging
at up to 5m resolution with dual polarization and revisit times
of about 1 week, even in cloudy conditions. We use the VV
and VH polarizations of the ground-range-detected Sentinel-1
products in interferometric wide swath mode (10m resolution).

Sentinel-2 Sentinel-2 consists of two polar-orbiting satellites
that provide multi-spectral imagery covering the visible, near
infrared, and short-wave infrared wavelengths with a ∼5 day
revisit rate and up to 10m resolution (Drusch et al., 2012).

SEN12MS SEN12MS is a large scale dataset of spatially
aligned Sentinel-1/2 images (180,662 paired observations ob-
tained in the same season), which we use in this work (Schmitt
et al., 2019). The resolution of all bands for both modalities is
pre-processed to 10m. SEN12MS also contains MODIS land-
cover information, which is not utilized here due to its low res-
olution (500m). Instead, we use a dataset of Sentinel-1/2 obser-
vations published by the IEEE GRSS for the Data Fusion Con-
test 2020 (DFC2020) with high-fidelity dense land-cover an-
notations for model evaluation in a classification task (Yokoya
et al., 2020). DFC2020 provides a split into test and validation
sets of 5,128 and 986 observations, respectively. The land-cover
labels are available on a pixel basis and cover the 8 classes:
Forest, Shrubland, Grassland, Wetland, Cropland, Urban/
Built-up, Barren and Water. To create classification targets,
we aggregate the dense labels of each scene by selecting the
majority class. For multi-label classification, each scene is la-
belled with all classes that cover more than 10% of the image,
following the approach by (Schmitt and Wu, 2021) (see Fig. 2).
We utilize VV and VH polarizations of Sentinel-1, and all 13
spectral bands of Sentinel-2.
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Figure 3. Overview of the model architectures for supervised (left) and self-supervised (middle) land-cover classification approaches
including fully-connected classification heads.

4. METHODS

We address the problem of learning meaningful data represent-
ations from spatially aligned multi-modal satellite imagery in
a self-supervised fashion. This paper presents two approaches
that extend recent advances in SSL of natural (Chen et al., 2020a)
and medical (Windsor et al., 2021) image representations to the
remote sensing domain. These approaches use contrastive SSL,
which tasks image encoders to map multiple views of an in-
stance close together in latent space, while maintaining distance
to other instances (see Fig. 1). Multiple views are typically
not available in natural images, thus necessitating the use of
random augmentations to simulate them. In medical imaging,
multiple views are available when multiple imaging techniques
are applied on the same the subject. Similarly, in the remote
sensing domain geo-location information facilitates the collec-
tion of multiple views per scene from different sensors, which
we leverage in this work. The resulting models are tested with
single- and multi-label land cover classification as down-stream
tasks.

4.1 Supervised Baselines

As point of comparison for the self-supervised methods presen-
ted in this paper, we provide the results of 4 supervised learn-
ing strategies. The two single-source methods OnlySen-1 and
OnlySen-2 are based on either Sentinel-1 or Sentinel-2 data
alone and consist of a ResNet18 network (He et al., 2016) with
adapted number of input channels (2 for OnlySen-1, 13 for
OnlySen-2). For the EarlyFusion data fusion approach, the
Sentinel-1/2 inputs are concatenated across the channel dimen-
sion and processed by a ResNet18 to estimate the land-cover
class for the given scene. Finally, the LateFusion model con-
sists of two ResNet18 encoders with adapted input layers for
the Sentinel-1 and Sentinel-2 inputs. The resulting embeddings
are concatenated before the ResNets’ fully connected layers and
then processed by a single linear classification layer (see Fig. 3).

4.2 SSL Approach 1: D-SimCLR

The Simple framework for Contrastive Learning of visual Rep-
resentation (SimCLR) is a commonly used approach for con-
trastive SSL with image data (Chen et al., 2020a). SimCLR
defines a contrastive loss in the latent space to maximize the
similarity of augmented versions of the same data sample (see
Eqn. 1). In the classical setup, the model is a siamese neural

network (Bromley et al., 1993) with weight sharing that consists
of a convolutional encoder f(·) followed by a non-linear multi-
layer perceptron (MLP) g(·). During training, each sample of
the mini-batch xi is randomly augmented twice to create two
visually different views of the same data point. The loss for the
positive pair i, j (augmented versions of the same image) over
a batch of 2N augmented samples is computed as:

Li,j = −log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i]exp(sim(zi, zk)/τ)
, (1)

where sim(·, ·) is the dot product
1 is the indicator function
τ is a so-called temperature parameter

The latent vectors zi result from a pass of sample xi through the
encoder and the subsequent projection MLP, i.e., zi = g(f(xi)).
We implement this standard formulation of SimCLR on the
RGB bands of Sentinel-2 images, following the original method
as closely as possible. The positive pairs are created by ran-
domly sampling strong augmentations such as ColorJitter,
Flipping, Grayscaling and GaussianBlur for each view.

Extension: D-SimCLR To adjust the SimCLR approach for
data fusion with satellite imagery, we omit the random aug-
mentations in favor of spatially aligned images from different
sensors. To account for the potentially large difference between
the two data modalities (e.g., SAR for Sentinel-1 and multi-
spectral imagery for Sentinel-2), we replace the weight shar-
ing with dedicated encoders fs1(·), fs2(·) and projection MLPs
gs1(·), gs2(·) for the different sources (called Dual-SimCLR,
or D-SimCLR). The latent vectors of different views there-
fore depend on distinct model components. To calculate the
contrastive loss (Eqn. 1), latent vectors of the positive pair i, j
(Sentinel-1/2 images of the same scene) and other elements of
the mini-batch k, are computed as:

zi = gs1(fs1(xi)) (2)
zj = gs2(fs2(xj)) (3)

zk =

{
gs1(fs1(xk)) if xk ∈ {Sentinel-1}
gs2(fs2(xk)) otherwise,

(4)



Table 1. Accuracy (%) for single-label classification on the test set (i.e., DFC2020 validation split). Supervised methods OnlySen-1,
OnlySen-2, EarlyFusion and LateFusion are trained from scratch, SSL methods SimCLR, D-SimCLR and MMA are fine-tuned on

labelled data. OA indicates the overall accuracy. Dashed line separates supervised and self-supervised methods. Values are averaged
over 5 runs with different random seeds. We note that individual runs of the supervised methods specialize on different classes

(resulting in high standard error across runs) but converge to similar average performance.

Accuracy (%) Forest Shrubland Grassl. Wetl. Cropl. Urban Barren Water Average OA
OnlySen-1 80± 15 57± 2 18± 17 0± 0 75± 10 67± 9 58± 2 97± 2 57± 3 62± 1
OnlySen-2 43± 26 78± 12 45± 29 11± 6 59± 9 62± 5 61± 18 96± 6 57± 6 62± 5
EarlyFusion 60± 12 66± 37 62± 8 1± 1 66± 10 73± 6 66± 18 99± 0 62± 4 66± 2
LateFusion 62± 23 76± 14 51± 18 1± 2 64± 11 71± 5 75± 9 100± 1 62± 4 65± 3

SimCLR (RGB) 11± 12 69± 13 45± 14 3± 3 66± 22 26± 23 77± 14 99± 1 49± 3 58± 4
D-SimCLR 78± 11 84± 6 62± 10 10± 6 63± 3 84± 4 82± 7 99± 0 70± 2 70± 1
MMA 68± 17 89± 5 53± 13 8± 9 71± 7 80± 6 81± 7 100± 0 69± 2 69± 1

where {Sentinel-1} represents the set of all observations
from Sentinel-1 in the training data

In our experiments, both encoders are identical ResNet18 net-
works with adjusted input layers for the Sentinel-1/2 bands. The
projection heads are MLPs with two fully connected layers and
ReLU activation functions that map to a latent dimensionality
of 128. For downstream land-cover classification, the vectors
fs1(x

s1
i ) and fs2(x

s2
i ) are concatenated and processed by a lin-

ear layer to obtain classification scores (see Fig. 3).

4.3 SSL Approach 2: Multi Modal Alignment

In medical imaging, contrastive SSL has been used to align
whole body scans of a subject obtained with different scan mod-
alities for the purpose of unsupervised cross-modal scan regis-
tration (Windsor et al., 2021). The contrastive learning proced-
ure is defined as a matching problem where the model tries to
maximize the similarity of latent representations derived from
scans of one subject, while distinguishing it from those of other
subjects. Multi Modal Alignment (MMA) uses two spatial en-
coders fvgg(·) with identical architecture inspired by the VGG
network to compute spatial feature maps (see Fig. 3 and (Wind-
sor et al., 2021)). A correlation map for the scans is computed
as the 2D convolution of the two feature maps over each other:
Ci,j = zi ∗ zj , with zi = fvgg(xi). The contrastive loss then
follows Eqn. 1 with sim(zi, zj) defined as the maximum value
of the correlation map Ci,j . Unlike SimCLR, this method com-
putes the similarity at the level of 2D feature maps rather than
between vectors, which retains spatial information at the em-
bedding level. Additionally, this method omits the projection
heads. We adapt this approach by replacing medical data (i.e.,
whole body scans with different modalities) with remote sens-
ing data from different sensing techniques. The matching prob-
lem thus tasks the model to match scenes rather than individuals
across modalities. For evaluation with land-cover classification,
the encoders’ feature maps are average-pooled, concatenated
and then passed to a linear classification layer.

5. EXPERIMENTS

The supervised baseline models are trained on the test split of
the DFC2020 dataset (see Section 3) with the Adam optimizer
and cross entropy loss function. Similarly, the SSL models with
classification head are fine-tuned on the DFC2020 dataset after
self-supervised training on SEN12MS. The targets are single-
and multi-label land cover classes at the scene-level. We use
an image size of 128×128 pixel, cut at random locations from
the native 256×256 pixel images. To mitigate the unbalanced

class distribution (e.g., 1600 instances of Forest, but only 99 of
Barren), we oversample rare classes during training by draw-
ing multiple 128×128 pixel crops at random locations from the
original images. This results in a dataset of 10,393 observations
with approximately uniform class distribution. This dataset is
randomly divided into training and validation splits which con-
tain 80% and 20% of the data, respectively (resulting in 4102
unique training samples). We tune hyperparameters (batch size,
learning rate, number of training epochs) with random search
based on the performance on the validation split. Model per-
formance is evaluated on the validation split of the DFC2020
dataset (i.e., the test set in our work). We again use 128×128
pixel crops but evaluate the entire images by drawing 4 non-
overlapping 128×128 pixel crops in a sliding window fashion
from the original data, resulting in 3,944 images.

Evaluation Metrics The classification models are evaluated
based on accuracy (see Eqn. 5) for single label classification,
and F1-Score (see Eqn. 8) for multi-label classification. We
provide class-wise metrics for the 8 land-cover classes, the av-
erage of class-wise values, and the overall average across all
samples (i.e., without first aggregating by class). This ensures
fair evaluation despite the unbalanced class distribution in the
DFC2020 validation set. We report the arithmetic mean and
standard deviation over 5 runs with different random seeds for
each metric.

Accuracy =
TP + TN

TP+ TN+ FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 Score =
2 · Precision · Recall

Precision + Recall
(8)

where TP, TN, FP, FN are the numbers of
true/false positive/negative predictions

5.1 Supervised Setup

The 4 supervised baseline models are based on single mod-
alities (OnlySen-1, OnlySen-2) and different data fusion ap-
proaches (EarlyFusion, LateFusion). We train these methods
for up to 200 epochs for single- and multi-label classification.



Table 2. F1-Score (%) for multi-label classification on the test set (i.e., DFC2020 validation split). Supervised methods OnlySen-1,
OnlySen-2, EarlyFusion and LateFusion are trained from scratch, SSL methods SimCLR, D-SimCLR and MMA are fine-tuned on

labelled data. O-F1 indicates overall F1-Score. Dashed line separates supervised and self-supervised methods. See notes for Table 1.

F1 Score (%) Forest Shrubland Grassl. Wetl. Cropl. Urban Barren Water Average O-F1
OnlySen-1 69± 2 46± 6 29± 5 8± 8 68± 7 81± 3 60± 8 96± 1 57± 2 62± 2
OnlySen-2 37± 20 51± 14 43± 20 23± 18 76± 2 79± 6 63± 10 94± 2 58± 3 63± 2
EarlyFusion 48± 10 53± 7 45± 13 13± 11 69± 5 84± 4 71± 4 94± 1 60± 3 62± 3
LateFusion 56± 6 45± 11 33± 9 18± 24 64± 3 69± 16 53± 15 96± 1 54± 7 61± 5

SimCLR (RGB) 3± 4 49± 11 24± 16 10± 8 63± 24 40± 36 49± 15 73± 6 39± 10 49± 6
D-SimCLR 62± 2 61± 3 53± 7 31± 2 72± 3 87± 0 77± 1 96± 1 67± 1 69± 1
MMA 58± 5 57± 5 35± 8 10± 6 77± 3 89± 1 73± 5 97± 0 62± 2 66± 1
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Figure 4. Average accuracy at different label fractions for
supervised EarlyFusion/LateFusion, and fine-tuned

self-supervised D-SimCLR/MMA methods.

Single-label For single-label classification, OnlySen-1 and
OnlySen-2 achieve average (overall) accuracies of 57±3%
(62±1%) and 57±6% (62±5%), respectively. In the data fusion
setting, these results improve to 62±4% (66±2%) for EarlyFu-
sion and 62±4% (65±3%) for LateFusion (see Table 1). Closer
inspection of class-wise accuracies reveals that each of the uni-
modal approaches struggles with some classes (e.g., Grassland
for OnlySen-1 and Forest for OnlySen-2), while EarlyFusion
and LateFusion achieve good accuracy on any class that can
be detected well from at least one of the modalities, thus il-
lustrating the central advantage of data fusion. We also note
that individual runs with different random seeds “specialize“
for different classes (i.e., reach high accuracy), leading to high
class-specific standard deviations across runs.

Multi-label We obtain similar results for all 4 baseline meth-
ods in the multi-label case. The average F1-Scores for OnlySen-
1 and OnlySen-2 are are 57±2%, and 58±3%, respectively.
The EarlyFusion approach results in 60±3% and LateFusion
in 54±7% average accuracy (see Table 2).

Label fraction We also evaluate the influence of dataset size
(i.e., number of labelled observations) on model performance.
To that end, the EarlyFusion and LateFusion models are trained
for single-label classification on random subsets of the DFC2020
test split comprising 1%, 10% or 50% of the original dataset
(corresponding to about 80, 800 and 4,000 samples). We find
moderate performance differences between training on 50% or
100% of the data, however accuracy is greatly reduced when
using 10% or 1% (-12 and -22 average accuracy points for Late-
Fusion) of labelled samples (see Fig. 4).

5.2 Self-Supervised Setup

The self-supervised models are trained on the SEN12MS data-
set without access to land-cover labels. Standard SimCLR util-
izes the RGB channels of Sentinel-2 images with batch-size 768
and learning rate of 3 · 10−5 for 100 epochs. For D-SimCLR,
we use a batch-size of 128, learning rate of 3 · 10−5 and tem-
perature value of 0.07 for 50 epochs. MMA is trained with a
learning rate of 10−5 for 100 epochs while the batch size and
temperature are 128 and 0.005, respectively. To evaluate the
quality of resulting image encoder models, we add a classific-
ation head consisting of a single linear layer to the pre-trained
models. The performance is then evaluated by fine-tuning them
for single-label and multi-label land-cover classification with
labelled samples of the DFC2020 dataset.

Single-label Fine-tuning for single-label classification results
in average (overall) accuracies of 70±2% (70±1%) for
D-SimCLR and 69±2% (69±1%) for MMA (see Table 1). The
SimCLR baseline performs significantly worse at 49±3% aver-
age accuracy (58±4% overall accuracy). The contrastive data
fusion SSL models thus strongly outperform standard SimCLR
(+21 and +20 average accuracy points) and the supervised
baselines (+8 and +7 for D-SimCLR and MMA over LateFu-
sion).

Multi-label Fine-tuning the pre-trained SSL models for multi-
label classification yields F1-Scores of 39±10% for SimCLR,
67±1% for D-SimCLR and 62±2% for MMA (see Table 2).
The corresponding overall F1-Scores are 49±6%, 69±1% and
66±1%. As for the single-label classification, D-SimCLR per-
forms strongest among the SSL methods and also increases the
average F1-Score by +7 points over the best supervised ap-
proach (EarlyFusion).

Label fraction We investigate the degree to which a lack of
labelled samples can be offset by self-supervised pre-training of
the image encoders. To that end, the SSL models are fine-tuned
with varying amounts of labelled data (see Section 5.1). This
reveals strong performance of the SSL approaches at any label
fraction, but particularly when little labelled data is available
(see Fig. 4). Using only 10% of labels, D-SimCLR still outper-
forms the strongest supervised approach (LateFusion) trained
on 100% of the data by +3 average accuracy points.

Table 3. Average accuracy and F1-Score (%) of linear probe on
single- and multi-label classification on the test data.

Accuracy/F1-Score (%) Single-label Multi-label
D-SimCLR 59± 6 60± 0
MMA 57± 1 56± 1



Linear-probe We evaluate the quality of the image repres-
entations obtained from the self-supervised encoders by linear
probing on the DFC2020 land-cover classification problem. To
that end, the self-supervised embeddings are fixed and we train
only the parameters of a linear layer for single-label classifica-
tion. This setting allows us to assess how well the SSL methods
encode the samples into linearly separable land-cover groups in
the latent space. In this simple linear probing setup, D-SimCLR
still performs on par with the supervised methods (trained from
scratch) and achieves single-label and multi-label accuracies of
59±6% and 60±0%, respectively (see Table 3). Qualitative
visual inspection of the latent spaces of our supervised baselines
and the SSL methods with t-SNE (Van der Maaten and Hinton,
2008) reveals that MMA and D-SimCLR structure the latent
space by land-cover classes to a similar degree as the super-
vised approaches (see Fig. 5).
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Figure 5. Visualization of the latent space of supervised baseline
methods (top uni-modal, middle data fusion) and self-supervised
methods (bottom), generated with t-SNE. Samples are colored

by land-cover class.

5.3 Cross-dataset Evaluation

To assess if the power of self-supervised pre-training transfers
across datasets, we fine-tune MMA and D-SimCLR models which
were trained on SEN12MS for land cover classification on the
EuroSAT dataset (Helber et al., 2019). EuroSAT consists of
27,000 Sentinel-2 images with land-cover labels from 10 classes.
We randomly split the dataset into train (60%), validation (20%),
and test (20%) sets. The OnlySen-2 model is used as super-
vised baseline. After 20 training epochs, this yields an average
classification accuracy of 91±1% on the test set. After self-
supervised pre-training on SEN12MS, we fine-tune MMA and
D-SimCLR for the EuroSAT classification task. To that end, the
Sentinel-1 backbones are dropped from the models. We find
that the pre-trained models converge fast to strong land-cover
classifiers and achieve average accuracies of 97±1% (MMA)
and 95±0% (D-SimCLR) after 20 training epochs, outperform-
ing the supervised baseline.

6. DISCUSSION

Our experiments with contrastive self-supervised data fusion
focus on two aspects: (1) We fine-tune image encoders that
were pre-trained on an unlabelled dataset in a self-supervised
fashion. This reveals strong performance on the land-cover
classification downstream task in both the single- and multi-
label setting. Fine-tuning the D-SimCLR method results in bet-
ter classification accuracy than any of the supervised baseline
approaches. This illustrates that contrasting multi-modal satel-
lite imagery is a useful target in SSL that effectively learns
Sentinel-1/2 data characteristics from unlabelled datasets. This
insight is particularly valuable when training labels are scarce.
As our experiments with varying label fractions reveal, the self-
supervised pre-training strategy consistently outperforms su-
pervised training, even when few labelled observations are avail-
able. (2) We use linear probing to evaluate the self-supervised
image embeddings. Here we find that linear classification of
frozen D-SimCLR embeddings can provide better accuracy than
standard supervised training. This result further establishes the
utility of SSL for data fusion. Across our experiments, D-
SimCLR consistently outperforms the MMA method. MMA
was initially designed to preserve spatial information from the
input image in the embedding space. This property is useful
for tasks like scan registration or dense prediction, but is not
properly utilized in our single- and multi-label classification
problems, which might explain the performance difference to
D-SimCLR. The results of the original SimCLR approach also
were not competitive with our D-SimCLR. Putatively, this is
due to a reduced amount of spectral information in the RGB
input data and the problem that strong augmentations as sug-
gested in the original paper result in hardly recognizable scenes
when applied to remote sensing data. The D-SimCLR method
on the other hand is tailored to remote sensing data and by-
passes the challenges of the original approach by leveraging
multi-modal satellite data.

7. CONCLUSION

This work investigated the idea of leveraging the geo-location
information of remote sensing data for contrastive self-supervis-
ed data fusion. We present two techniques that utilize multi-
modal remote sensing data of the same location (but from dif-
ferent satellites) as positive pairs in contrastive SSL. Both tech-
niques produce meaningful representations of Sentinel-1 and
Sentinel-2 images, as illustrated by linear probing. Fine-tuning
the contrastive SSL models strongly outperforms standard su-
pervised data fusion approaches for both single-lablel and multi-
label classification. With only 10% of labels, D-SimCLR per-
forms better than any of the supervised approaches trained on
the entire dataset. These results demonstrate the potential of
SSL for data fusion. Future work could extend the presented
methods to dense prediction tasks, or investigate the utility of
incorporating additional satellite data modalities.
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