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1. Proof of the Lemmas 

1.1 Proof of Lemma 1 

Using iterated expectations, we get E g Y E E g Y X x . Since there is no cross 

restriction between E g Y X x  and E g Y X x  for x x , we can consider sepa-

rately the bounds evaluated at different values of x. This implies that 

gE E g Y X x E b x  and gE E g Y X x E b x . 

The bounds on the conditional expectation are tight and can be attained. Moreover, in the ab-

sence of cross restrictions, the lower (or the upper) bound could be attained at each point of 

the support of X. Therefore, the bounds on the unconditional expected value can be attained 

and are tight. The same arguments hold in all subpopulations defined by P and S. 

1.2 Proof of Lemma 2 

Note the following useful property: 
1 1 1 1

 and 
Y a Y b Y a Y b

a b b b b b . By definition, 

1 1
1 1 1 1

Y b Y a
b E Y b E Y b E b Y a E Y a b , that is the tight 

lower bound on YF a  cannot be lower than the tight lower bound on YF b . Similarly, 

1 1
1 1

Y a Y b
b E Y a E Y b b , that is the tight upper bound on YF b  cannot be 

above the tight upper bound on YF a . 

a) QYb is a tight lower bound. 

First, note that if 
1

lim
Y y

y
b 

, we cannot exclude that lim P
a

Y a  and, therefore, 

1

YF  is unbounded from below. Otherwise, suppose that the lower bound is given by 
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QYq b . By the definition of QYb , 
1 Y q

b  and it is, therefore, impossible that 

YF q . It follows that 
1

Y QYF r . 

To show that this bound is tight, suppose that 
1Y Y y

F y b 
  for y  in the support of Y, 

which is possible because the bounds are sharp. Then, 
1

Y QYF b  holds by the 

definition of a quantile. 

b) QYb  is a tight upper bound 

First, note that if 
1

lim
Y y

y
b 

, then we cannot exclude that lim P 1
a

Y a  and, there-

fore, 
1

YF  is unbounded from above. Otherwise, suppose that the upper bound is given by 

QYq b . By the definition of QYb , 
1 Y q

b  and it is therefore impossible that 

YF q . It follows that 
1

Y QYF b . 

To show that this bound is tight, suppose that 
1Y Y y

F y b 
  for y  in the support of Y, 

which is possible because the bounds are sharp. Then, 
1

Y QYF b  holds by the 

definition of a quantile. 

1.3 Proof of Lemma 3 

a) 1 0E S S T t  

Applying the law of iterated expectation:1 

|1 0 1 , 0 , ;
IE

X TE S S T t E S X x T t E S X x T t f x t dx   

All elements in the last expression are identified by Assumption 1. 

                                                           
1  Notation: IE means by the law of iterated expectation, A1 means by Assumption 1, OR means by the 

observation rule, TP means by the law of total probability. 
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b) To show the identification of the mean as well as the quantile effects of D on Y, it is suffi-

cient to show that respective counterfactual expectations of the g  functions that enter the 

mean as well as the distribution functions are identified. 

We first note that 

| ,

| ,

, , , , 1

1 , 0

S d X T

S d X T

E g Y d S d X x T t p x t E g Y d X x T t S d

p x t g
 

which is therefore identified by Assumption 1. Then, similarly to part a): 

|, ;
IE

X TE g Y d S d T t E g Y d S d X x T t f x t dx . 

All elements in the last expression are identified by Assumption 1. Thus, 
YSATE T t  and 

YSQTE T t  are identified. 

1.4 Proof of Lemma 4 

1 , 1 , 1
OR

E S X x D E S X x D  is observed for 1Dx . 

1'

0 , 1 0 , 0 , 0
A a OR

E S X x D E S X x D E S X x D  is observed for 1Dx . 

1
, 1, 1 1 , 1, 1

OR

YY
F y X x D S F y X x D S   is observed for 1Dx . 

1'

0 0
, 1, 0 1 , 0, 0 1 , 0, 1

A a OR

YY Y
F y X x D S F y X x D S F y X x D S    

is observed for 1Dx  

| ;1X DF x  is observed for 1Dx . 

1.5 Proof of Lemma 5 

We can apply Lemma 2.1 in Abadie (2002) conditional on X to obtain: 
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0 | ,

1 , 1 1 , 0
,1

, 1 , 0
S X C

E S D X x Z E S D X x Z
p x

E D X x Z E D X x Z
 and 

1 | ,

, 1 , 0
,1

, 1 , 0
S X C

E SD X x Z E SD X x Z
p x

E D X x Z E D X x Z
. 

By the definition of a conditional distribution: 

1
, 1, 1 1 1 1 , 1, 1 1

1 1 1 , 1
.

1 , 1

Y
F y X x C S E Y y X x C S

E Y y S X x C

E S X x C

 

The denominator is already identified. For the numerator we apply again Lemma 2.1 in 

Abadie (2002): 

1 1 1 , 1

1 , 1 1 , 0
.

, 1 , 0

E Y y S X x C

E Y y SD X x Z E Y y SD X x Z

E D X x Z E D X x Z

 

The same result holds for 
0

, 1, 0 1
Y

F y X x C S . Finally, as noted by Frölich (2007), 

|

Pr 1|
;1

Pr 1

| , 1 | , 0
.

| , 1 | , 0

X C X

X

X

C X x
f x f x

C

E D X x Z E D X x Z
f x

E D X x Z E D X x Z f x dx

 

2. Proofs of the Theorems 

2.1 Proof of Theorem 1 

By the law of total probability, we obtain the following expression: 
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1 , 0 ,

1 ,

1 , 1 , 0 ,

1 ,

0 | , , 1 1

,
0 | , , 1 1, 0 1

,

, ,
0 | , , 1 1, 0 0 .

,

S S X T

S X T

S X T S S X T

S X T

E g Y X x T t S

p x t
E g Y X x T t S S

p x t

p x t p x t
E g Y X x T t S S

p x t

 (1) 

0 | , , 1 1, 0 0E g Y X x T t S S  is unobserved and bounded only by 
gK  and gK  

without further assumptions. Therefore, the worst case bounds are attained if 
1 , 0 ,

,
S S X T

p x t  

attains the smallest value compatible with the observed employment probabilities. The 

following set of equations restricts this probability: 

1 , 0 , 1 ,1 0 , 1 ,

1 , 0 , 1 1 , 0 , 0 ,

1 , 0 , 1 ,1 0 , 1 1 , 0 , 1 1 ,1 0 ,

, , ,

, , ,

, , , , 1.

S S X T S S X T S X T

S S X T S S X T S X T

S S X T S S X T S S X T S S X T

p x t p x t p x t

p x t p x t p x t

p x t p x t p x t p x t

 

We have three restrictions and four unknowns. Solving for the element of interest, we get 

1 , 0 , 0 , 1 , 1 1 ,1 0 ,
, , , 1 ,

S S X T S X T S X T S S X T
p x t p x t p x t p x t . 

We cannot exclude that 
1 , 0 ,

, 0
S S X T

p x t  if 
0 , 1 ,

, , 1
S X T S X T

p x t p x t . In this case, 

the observed values do not allow us to tighten the bounds on the support 
gK  and gK .  

If 
0 , 1 ,

, , 1
S X T S X T

p x t p x t , the smallest acceptable value for 
1 , 0 ,

,
S S X T

p x t  is given 

by 
0 , 1 ,

, , 1
S X T S X T

p x t p x t  and is strictly positive. In this case, we need to bound 

0 | , , 1 1, 0 1E g Y X x T t S S . The distribution of 

0 | , , 0 1g Y X x T t S  is identified by assumption 1. The population defined by 

, , 0 1X x T t S  is a 
1 , 0 ,

0 ,

,

,

S S X T

S X T

p x t

p x t
 and 

0 , 1 , 0 ,

0 ,

, ,

,

S X T S S X T

S X T

p x t p x t

p x t
 mixture of 



Lechner and Melly, revised 2010 TA.6 

the population with , , 0 1, 1 1X x T t S S  and , , 0 1, 1 0X x T t S S . Since 

1 , 0 , 0 , 1 ,
, , , 1

S S X T S X T S X T
p x t p x t p x t  the upper bound will be attained when the 

population with , , 0 1, 1 1X x T t S S  represents the 
0 , 1 ,

0 ,

, , 1

,

S X T S X T

S X T

p x t p x t

p x t
 

fraction of the population with , , 0 1X x T t S  with the largest value of g Y . 

Similarly, the lower bound will be attained when population with 

, , 0 1, 1 1X x T t S S  represents the 
0 , 1 ,

0 ,

, , 1

,

S X T S X T

S X T

p x t p x t

p x t
 fraction of the 

population with , , 0 1X x T t S  with the smallest value of g Y . This is the result of 

Theorem 1. 

We now show that the bounds can effectively be attained to prove the sharpness of the bounds. 

We consider only the lower bound because of the symmetry of the arguments. We have to 

distinguish two cases. 

1st case: 
0 , 1 ,

, , 1
S X T S X T

p x t p x t . In this case, it is possible that 
0 , 1 ,

, 0
S S X T

p x t , 

0 ,1 1 , 0 ,
, ,

S S X T S X T
p x t p x t , 

1 0 , 1 , 1 ,
, ,

S S X T S X T
p x t p x t , 

1 0 ,1 1 ,
,

S S X T
p x t  

0 , 1 ,
1 , ,

S X T S X T
p x t p x t . In this case, it can be that 0

g Y
g Y b  for the population 

defined by , , 1 1X x T t S  because 0Y  is never observed for this population. 

2nd case: 
0 , 1 ,

, , 1
S X T S X T

p x t p x t . It is possible that 
0 , 1 ,

,
S S X T

p x t  

0 , 1 ,
, , 1

S X T S X T
p x t p x t , 

0 ,1 1 , 1 ,
, 1 ,

S S X T S X T
p x t p x t , 

1 0 , 1 ,
,

S S X T
p x t  

0 ,
1 ,

S X T
p x t  and 

1 0 ,1 1 ,
, 0

S S X T
p x t . By the law of total probability and using these 

values for the employment probabilities: 
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0 ,

1 ,

0 , 1 ,

1 ,

0 , , 1 1

1 ,
0 , , 1 1, 0 0

,

, , 1
0 , , 1 1, 0 1 .

,

S X T

S X T

S X T S X T

S X T

E g Y X x T t S

p x t
E g Y X x T t S S

p x t

p x t p x t
E g Y X x T t S S

p x t

 

It can be that 0 gg Y b  for the population defined by , , 1 1, 0 0X x T t S S  

because 0Y  is never observed for this population. We can construct a distribution of 

0 , , 1 0, 0 1g Y X x T t S S  equal to the distribution of 

0 , , 0 1g Y X x T t S  truncated below 

0 , 1 ,1

0 | , , 0

0 ,

, , 1
; , ,1

,

S X T S X T

g Y X T S

S X T

p x t p x t
F x t

p x t
. Similarly, we can construct a distribution 

of 0 , , 1 1, 0 1g Y X x T t S S  equal to the distribution of 

0 , , 0 1g Y X x T t S  truncated above 

0 , 1 ,1

0 | , , 0

0 ,

, , 1
; , ,1

,

S X T S X T

g Y X T S

S X T

p x t p x t
F x t

p x t
. By construction, the mixture of these two 

distributions replicates the identified distribution of 0 , , 0 1g Y X x T t S . 

2.2 Proof of Theorem 2 

a) If g Y  is a monotonic increasing function of Y, then Assumption 2 implies that the 

distribution of 0g Y  given , , 0 1X x T t S  stochastically dominates the distribution 

of 0g Y  given , , 0 0X x T t S . The upper bound is attained when this assumption 

is just satisfied, that is when these two distributions are the same. 

As shown in the proof of Theorem 1, 
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1 , 0 ,

1 ,

1 , 1 , 0 ,

1 ,

0 | , , 1 1

,
0 | , , 1 1, 0 1

,

, ,
0 | , , 1 1, 0 0 .

,

S S X T

S X T

S X T S S X T

S X T

E g Y X x T t S

p x t
E g Y X x T t S S

p x t

p x t p x t
E g Y X x T t S S

p x t

 

The populations defined by , , 0 1X x T t S  and , , 0 0X x T t S  are mixtures of 

the two sub-populations defined by 1 {0,1}S . Since, in the worst case, 0g Y  given 

, , 0 0X x T t S  has the same distribution as 0g Y  given , , 0 1X x T t S , the 

upper bound is attained when the mixture proportions are the same for 0 0S  and 0 1S : 

1 , 0 , 1 ,1 0 ,

1 ,

0 , 1 0 ,

, ,
,

, ,

S S X T S S X T

S X T

S X T S X T

p x t p x t
p x t

p x t p x t
.2 

Thus, the upper bound will be attained when the population with ,X x T t , 

0 1, 1 1S S  represents the 
1 ,

,
S X T

p x t  fraction of the population with ,X x T t , 

0 1S  with the largest value of 0g Y . Simultaneously, the population with 

, 0X x D , 0 0, 1 1S S  represents the 
1 ,

,
S X T

p x t  fraction of the population 

, ,X x T t  0 0S  with the largest value of 0g Y . The distribution of 0g Y  is not 

observed for this last population but, by the positive selection assumption, it is bounded by 

the distribution of 0g Y  for the population with , , 0 1X x T t S . Therefore, 

1 ,

1 ,

max ,

max ,

0 , , 1 1, 0 1 0 , , 0 1

0 , , 1 1, 0 0 0 , , 0 1 .

S X T

S X T

p x t

p x t

E g Y X x T t S S E g Y X x T t S

E g Y X x T t S S E g Y X x T t S
 

Inserting these two bounds gives the result of Theorem 2-a). 

                                                           
2 If these mixture proportions were not the same, then it would be possible to get a higher upper bound by 

increasing slightly the smallest mixing proportion and decreasing slightly the highest mixing proportion. 
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We prove now the sharpness of this bound. We construct the joint employment statuses such 

that they are independent: 
1 , 0 , 1 , 0 ,

, , ,
S S X T S X T S X T

p x t p x t p x t , 
1 ,1 0 ,

,
S S X T

p x t  

1 , 1 0 ,
, ,

S X T S X T
p x t p x t , 

1 1 ,1 0 , 1 1 , 1 0 ,
, , ,

S S X T S X T S X T
p x t p x t p x t , 

1 1 ,1 0 , 1 1 , 1 0 ,
, , ,

S S X T S X T S X T
p x t p x t p x t . 

For each 0,1d , we construct a distribution of 0 , , 1 1, 0g Y X x T t S S d  

equal to the distribution of 0 , , 0 1g Y X x T t S  truncated below 

1

1 ,0 | , , 0
, ; , ,1

S X Tg Y X T S
F p x t x t . Similarly, we construct a distribution of 

0 , , 1 0, 0g Y X x T t S S d  equal to the distribution of 

0 , , 0 1g Y X x T t S  truncated above 
1

1 ,0 | , , 0
, ; , ,1

S X Tg Y X T S
F p x t x t . 

The so-constructed distribution of 0 , , 0 1g Y X x T t S  replicates the identified 

distribution and is equal to the distribution of 0 , , 0 0g Y X x T t S , which satisfies the 

positive selection assumption. 

b) If g Y  is a monotonic decreasing function of Y, then Assumption 2 implies that the 

distribution of 0g Y  given , , 0 1X x T t S  is stochastically dominated by the 

distribution of 0g Y  given , , 0 0X x T t S . This implies that the positive selection 

assumption allows tightening the lower bound instead than the upper bound. The rest of the 

proof is along the lines of part a). 

2.3 Proof of Theorem 3 

Part a) 1 0 | , 1P S S X x T t  
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Assumption 3a) excludes the existence of observations with 0 1S  and 1 0S . There-

fore, 
0 ,1 1 ,

, 0
S S X T

p x t , 
0 , 1 , 0 ,

, ,
S S X T S X T

p x t p x t , 
1 0 , 1 ,

,
S S X T

p x t =
1 ,

,
S X T

p x t

0 ,
,

S X T
p x t  and 

1 0 ,1 1 , 1 ,
, 1 ,

S S X T S X T
p x t p x t . 

By the law of total probability, Bayes’ rule, and the implications of Assumption 3a) derived 

above: 

0 , , 1

0 , , 1

0 , , 1 1

0 , , 1 1, 0 1 , ,1

0 , , 1 1, 0 0 1 , ,1

TP

S X T S

S X T S

E g Y X x T t S

E g Y X x T t S S p x t

E g Y X x T t S S p x t

 

0 , 1 ,

1 ,

1 0 , 1 ,

1 ,

,
0 , , 1 1, 0 1

,

,
0 , , 1 1, 0 0

,

BR
S S X T

S X T

S S X T

S X T

p x t
E g Y X x T t S S

p x t

p x t
E g Y X x T t S S

p x t

 

3
0 ,

1 ,

1 , 0 ,

1 ,

,
0 , , 0 1

,

, ,
0 , , 1 1, 0 0 .

,

A a
S X T

S X T

S X T S X T

S X T

p x t
E g Y X x T t S

p x t

p x t p x t
E g Y X x T t S S

p x t

 (2) 

The only unidentified element in (2) is 0 , , 1 1, 0 0E g Y X x T t S S  bounded 

by 
gb  and gb . Using those bounds, we obtain the result of Theorem 3a). 

For the sharpness of the lower bound, we construct 
0 ,1 1 ,

, 0
S S X T

p x t , 

0 , 1 , 0 ,
, ,

S S X T S X T
p x t p x t , 

1 0 , 1 ,
,

S S X T
p x t =

1 , 0 ,
, ,

S X T S X T
p x t p x t  and 

1 0 ,1 1 , 1 ,
, 1 ,

S S X T S X T
p x t p x t . We construct 0 gg Y b  for the population with 
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0 0S . We construct the distribution of 0 , , 1 1, 0 1g Y X x T t S S  equal to 

the distribution of 0 , , 0 1g Y X x T t S . 

Part b) 1 0 | , 1P S S X x T t . 

Assumption 3b) excludes the existence of observations with 0 0S  and 1 1S . Thus, we 

get 
0 , 1 , 1 ,

, ,
S S X T S X T

p x t p x t , 
0 ,1 1 , 0 , 1 ,

, , ,
S S X T S X T S X T

p x t p x t p x t , and 

1 0 ,1 1 , 0 ,
, 1 ,

S S X T S X T
p x t p x t . These simplifications lead to the following equality: 

0 , , 1 1 0 , , 1 1, 0 1E g Y X x T t S E g Y X x T t S S . 

The distribution of 0 | , , 0 1g Y X x T t S  is identified by assumption 1. The 

population defined by , , 0 1X x T t S  is a mixture of the population 

, , 0 1, 1 1X x T t S S  with probability 
1 ,

0 ,

,

,

S X T

S X T

p x t

p x t
 and of 

, , 0 1, 1 0X x T t S S  with probability 
0 , 1 ,

0 ,

, ,

,

S X T S X T

S X T

p x t p x t

p x t
. The upper 

bound will be attained when the population , , 0 1, 1 1X x T t S S  represents the 

1 ,

0 ,

,

,

S X T

S X T

p x t

p x t
 fraction of the population with , , 0 1X x T t S  with the largest value of 

0g Y . Similarly, the lower bound will be attained when the population 

, , 0 1, 1 1X x T t S S  represents the 
1 ,

0 ,

,

,

S X T

S X T

p x t

p x t
 fraction of the population with 

, , 0 1X x T t S  with the smallest value of 0g Y . 
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For the sharpness of the lower bound, we construct 
0 , 1 , 1 ,

, ,
S S X T S X T

p x t p x t , 

0 ,1 1 , 0 , 1 ,
, , ,

S S X T S X T S X T
p x t p x t p x t , and 

1 0 ,1 1 ,
,

S S X T
p x t

0 ,
1 ,

S X T
p x t . 

We construct a distribution of 0 , , 1 0, 0 1g Y X x T t S S  equal to the distribution 

of 0 , , 0 1g Y X x T t S  truncated below 
1 ,1

0 | , , 0

0 ,

,
; , ,1

,

S X T

g Y X T S

S X T

p x t
F x t

p x t
 . 

Similarly, we can construct a distribution of 0 , , 1 1, 0 1g Y X x T t S S  equal to the 

distribution of 0 , , 0 1g Y X x T t S  truncated above 

1 ,1

0 | , , 0

0 ,

,
; , ,1

,

S X T

g Y X T S

S X T

p x t
F x t

p x t
. By construction, the mixture of these two distributions 

replicates the identified distribution of 0 , , 0 1g Y X x T t S . 

2.4 Proof of Theorem 4 

Part a): We have shown in equation (2) that Assumptions 1 and 3-a) imply the following: 

0 ,

1 ,

1 , 0 ,

1 ,

0 , , 1 1

,
0 , , 0 1

,

, ,
0 , , 1 1, 0 0 .

,

S X T

S X T

S X T S X T

S X T

E g Y X x T t S

p x t
E g Y X x T t S

p x t

p x t p x t
E g Y X x T t S S

p x t

 

The only unknown element is 0 , , 1 1, 0 0E g Y X x T t S S . By Assumption 2 

and because g  is monotone increasing, the distribution of 0g Y  given 

, , 0 0X x T t S  is stochastically dominated by the (identified) distribution of 0g Y  

given , , 0 1X x T t S . The upper bound is attained when these two distributions are 

identical. The distribution of 0g Y  given , , 0 0X x T t S  is mixture of the sub-
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population 1 0S  with probability 
1 1 ,

1 0 ,

,

,

S X T

S X T

p x t

p x t
 and of subpopulation 1 1S  with 

1 , 0 ,

1 0 ,

, ,

,

S X T S X T

S X T

p x t p x t

p x t
. Therefore, the upper bound on 

0 , , 1 1, 0 0E g Y X x T t S S  is given by 

1 , 0 ,

1 0 ,

, ,
max

,

0 , , 0 1
S X T S X T

S X T

p x t p x t

p x t

E g Y X x T t S . 

For the sharpness of the bound, we construct 
0 ,1 1 ,

, 0
S S X T

p x t , 

0 , 1 , 0 ,
, ,

S S X T S X T
p x t p x t , 

1 0 , 1 ,
,

S S X T
p x t =

1 , 0 ,
, ,

S X T S X T
p x t p x t  and 

1 0 ,1 1 , 1 ,
, 1 ,

S S X T S X T
p x t p x t . We construct a distribution of 

0 , , 1 0, 0 0g Y X x T t S S  equal to the distribution of 

0 , , 0 1g Y X x T t S  truncated above 

1 , 0 ,1

0 | , , 0

1 0 ,

, ,
; , ,1

,

S X T S X T

g Y X T S

S X T

p x t p x t
F x t

p x t
. Similarly, we construct a distribution of 

0 , , 1 1, 0 0g Y X x T t S S  equal to the distribution of 

0 , , 0 1g Y X x T t S  truncated above 

1 , 0 ,1

0 | , , 0

1 0 ,

, ,
; , ,1

,

S X T S X T

g Y X T S

S X T

p x t p x t
F x t

p x t
. By construction, the mixture of these two 

distributions replicates 0 , , 0 1g Y X x T t S  and 0 , , 0 0g Y X x T t S , 

which is allowed by the positive selection assumption. 

Part b) The proof is similar to part a), but with the stochastic dominance inverted. 
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2.5 Proof of Theorem 5 

a) We have shown in equation (2) that Assumptions 1 and 3-a) imply the following: 

0 ,

1 ,

1 , 0 ,

1 ,

0 , , 1 1

,
0 , , 0 1

,

, ,
0 , , 1 1, 0 0 .

,

S X T

S X T

S X T S X T

S X T

E g Y X x T t S

p x t
E g Y X x T t S

p x t

p x t p x t
E g Y X x T t S S

p x t

 

By Assumptions 3 and 4 and because g  is monotonic increasing, 

4

3

0 , , 1 1, 0 0

0 , , 1 1, 0 1

0 , , 0 1 .

A

A a

E g Y X x T t S S

E g Y X x T t S S

E g Y X x T t S

 (3) 

Inserting (3) in (2) we get the result of Theorem 5-a). 

For the sharpness of the bound, we construct 
0 ,1 1 ,

, 0
S S X T

p x t , 

0 , 1 , 0 ,
, ,

S S X T S X T
p x t p x t , 

1 0 , 1 ,
,

S S X T
p x t =

1 , 0 ,
, ,

S X T S X T
p x t p x t  and 

1 0 ,1 1 , 1 ,
, 1 ,

S S X T S X T
p x t p x t . We construct a distribution of 

0 , , 1 0, 0 0g Y X x T t S S  as well as a distribution of 

0 , , 1 0, 0 1g Y X x T t S S  equal to the distribution of 

0 , , 0 1g Y X x T t S . This construction replicates the identified quantities and satisfy 

the positive selection assumption. 

b) Similar to part a). 
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3. Additional Theorems 

The following 2 theorems do not appear in the main paper since they are not useful for the 

application. However, they may be of interest in many other applications. These results are 

therefore stated and proved here. 

3.1 Exclusion restriction 

Assumption A1 (exclusion restriction) 

a) There is a random variable Z with support  such that: 

0 , , 1 1Y Z X x T t S , T tx . 

b) Assumption 1 holds with Z included in the list of control variables X. 

Theorem A1 (exclusion restriction) 

Assumptions 1 and A1 hold. For the case 
0 , , 1 , ,

( , , ) ( , , ) 1
S X Z T S X Z T

p x z t p x z t , define: 

0 , , 1 , ,

0 , ,

, , , , 1
min

, ,

0 , , 1 , , 0 , ,

1 , , 1 , ,

0 , , , 0 1

, , , , 1 1 , ,

, , , ,

S X Z T S X Z T

S X Z T

g
p x z t p x z t

p x z t

S X Z T S X Z T S X Z T

g

S X Z T S X Z T

b z E g Y X x Z z T t S

p x z t p x z t p x z t
b

p x z t p x z t

  

0 , , 1 , ,

0 , ,

, , , , 1
max

, ,

0 , , 1 , , 0 , ,

1 , , 1 , ,

0 , , , 0 1

, , , , 1 1 , ,

, , , ,

S X Z T S X Z T

S X Z T

g
p x z t p x z t

p x z t

S X Z T S X Z T S X Z T

g

S X Z T S X Z T

b z E g Y X x Z z T t S

p x z t p x z t p x z t
b

p x z t p x z t

 

If 
0 , , 1 , ,

( , , ) ( , , ) 1
S X Z T S X Z T

p x z t p x z t , we get ( )g gb z b  and ( )g gb z b . The lower bound 

on 0 , , 1 1E g Y X x T t S  is given by sup g
z

b z  and the upper bound by 

inf g
z

b z . 
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Proof of Theorem A1 

All the results of Theorem 1 hold also conditionally on Z z . By Assumption A1-a), for 

T tx  and z Z , we get 

0 , , , 1 1 0 , , 1 1E g Y X x Z z T t S E g Y X x T t S . 

Therefore, 0 , , 1 1E g Y X x T t S  lies in the intersection of the bounds evaluated 

at different z. 

The sharpness of the bounds follows from the sharpness of the bounds of Theorem 1. 

3.2 Alternative definition of positive selection 

Note that neither Theorem 3 nor Theorem 4 allows to tighten the bounds if 

1 0 | , 1P S S X x T t . The intuition for this result is that in this case, all 

observations with 1 1S  also have 0 1S . Thus, the problem for identifying the 

counterfactual mean is not that we do not know the value for the population with 0 0S  

(this is irrelevant for the estimation of the effects on our target population), but that we do not 

know which of the observations with 0 1S  have 1 1S  as well. To tighten the bounds in 

this particular case, we suggest Assumption A2: 

Assumption A2 (positive selection into employment for 0Y  with respect to 1S ) 

0 | , , 0 , 1 0 | , , 0 , 1
; , ,1,0 ( ; , ,1,1)

Y X T S S Y X T S S
F y x t F y x t  . 

Note that this assumption is conceptually different from Assumptions 2 and 4 because it re-

lates the control outcome to the treated employment status and is therefore more restrictive. 

Similar assumptions have been made by Angrist, Bettinger, Bloom, King, and Kremer (2002, 

especially footnote 20), Zhang and Rubin (2003, Assumption 2) and Angrist, Bettinger, and 
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Kremer (2006, especially proposition 1). To motivate this assumption, suppose that 

1 0Y Y , with 0  and suppose further that unemployed individuals accept a job if 

their potential earnings exceeds the reservation wage RY : 1 RS d Y d Y , for {0,1}d

. This implies the following inequalities: 

0 0 1, 1 1 0 1 0 0

0 0 0 0 1 .

R R

R

E Y S S E Y Y Y E Y Y Y

E Y Y Y E Y S
 

Since 0 0 1E Y S  is a weighted average of 0 0 1, 1 1E Y S S  and 

(0,1) (0) 1, (1) 0E Y S S , the inequality implies that Assumption A2 is satisfied: 

0 0 1, 1 1 0 0 1, 1 0 .E Y S S E Y S S  

Theorem A2 (positive selection into employment with respect to 1S  and monotonicity) 

a) Assumptions 1, 3-b), and A2 hold. If ( )g  is a monotone increasing function, then: 

0 , , 0 1 0 , , 1 1E g Y X x T t S E g Y X x T t S . 

b) Assumptions 1, 3-b), and A2 hold. If ( )g  is a monotone decreasing function, then: 

0 , , 0 1 0 , , 1 1E g Y X x T t S E g Y X x T t S . 

Proof of Theorem A2 

Part a): By the law of total probability, and Assumption 3-b): 
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0 , 1 ,

0 ,

0 , 0 , 1 ,

0 ,

3
1 ,

0 ,

0 , , 1 1

,
0 , , 0 1, 1 1

,

, ,
  0 , , 0 1, 1 0

,

,
0 , , 0 1, 1 1

,

    0 , , 0 1, 1

TP
S S X T

S X P

S X T S S X T

S X T

A b
S X T

S X T

E g Y X x T t S

p x t
E g Y X x T t S S

p x t

p x t p x t
E g Y X x T t S S

p x t

p x t
E g Y X x T t S S

p x t

E g Y X x T t S S
0 , 1 ,

0 ,

, ,
0 .

,

S X T S X T

S X T

p x t p x t

p x t

 (4) 

By Assumptions A2 and the fact that g  is monotonic increasing, 

2

0 , , 0 1, 1 0

0 , , 0 1, 1 1 .
AA

E g Y X x T t S S

E g Y X x T t S S

 (5) 

Inserting (5) into (4), we obtain: 

3

0 , , 1 1

0 , , 0 1, 1 1

0 , , 0 1
A b

E g Y X x T t S

E g Y X x T t S S

E g Y X x T t S

 

which is the result of Theorem A2-a). 

For the sharpness of the lower bound, we construct 
0 , 1 , 1 ,

, ,
S S X T S X T

p x t p x t , 

0 ,1 1 , 0 , 1 ,
, , ,

S S X T S X T S X T
p x t p x t p x t , and 

1 0 ,1 1 ,
,

S S X T
p x t

0 ,
1 ,

S X T
p x t . 

We construct a distribution of 0 , , 1 1, 0 1g Y X x T t S S  equal to the distribution 

of 0 , , 0 1g Y X x T t S . This replicates the identified quantities, satisfies monotonicity 

and positive selection and attains the bound. 

Part b) Proof is similar to the proof of part a). 



Lechner and Melly, revised 2010 TA.19 

4. Monte Carlo simulations 

In this section, we evaluate the estimation and inference procedures proposed in section 6.2 of 

the paper. The codes in R available at www.sew.unisg.ch/lechner/earnings replicate all the 

results in this section. 

4.1 Data generating processes 

We consider only average treatment effects because of time and space constraints. We 

consider only the most informative bounds, which are the bounds resulting from our Theorem 

5. Therefore, our data generating processes will respect the positive selection and conditional 

monotonicity assumptions. 

We calibrate the data generating processes to match many characteristics of the data in our 

application. Their values in the dataset determine the number of observations, the distribution 

of the control variables X, the conditional treatment and employment probabilities and the 

conditional distribution of the outcome variable. However, for computational reasons, we 

have to limit the number of covariates to 3 (instead of 89). 

In detail, the joint distribution of 1X  (gender), 2X  (age) and 3X  (education) is given by the 

empirical distribution in our sample. 306 different combinations of value for 1X , 2X  and 3X  

are observed in the data. The treatment probability, 1 2 31Pr D | X ,X ,X , is also given by 

the empirical distribution in the sample. 

The employment probabilities 1 2 30 1Pr S | X ,X ,X  and 1 2 31 1Pr S | X ,X ,X  cannot 

be taken from the nonparametric empirical distribution because there are not enough treated 

observations. Therefore, we estimated this probabilities by linear probit regressions of S on 

1X , 2X  and 3X  in the treated and non-treated samples. The values of these coefficients along 

with randomly generated normal errors are used to generate 0S  and 1S . 

http://www.sew.unisg.ch/lechner/earnings
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The conditional distribution of 0Y  and 1Y  given X were estimated by 100 quantile 

regressions of Y  on 1X , 2X , 2

2X , 3X , 2

3X , and 1 3X X . Then, for each observation, we 

randomly draw one percentile and impute the fitted value given X at this quantile. 

In these Monte Carlo simulations, we consider three scenarios. In all of them the true 

treatment effect is zero because we simulate both conditional distributions using the 

coefficients obtained in the non-treated sample. In the first scenario, the true treatment effect 

corresponds to the lower bound, because the positive sample selection assumption is just 

satisfied. This means that sample selection is random. In the second case, the true effect is 

about half way between both bounds because we have positive selection. In the third scenario, 

the true effect corresponds to the upper bound. We implement that by setting the unobserved 

control wages to 0. 

4.2 Inference procedure 

We apply the estimators of the lower and upper bounds described in the paper to each 

simulated sample and obtain l
ˆ  and u

ˆ . We bootstrap the bounds 50 times to estimate the 

standard errors of the bounds, l
ˆ  and u

ˆ .3 We construct the confidence interval as 

 l u
l u

ˆ ˆc cˆ ˆCI ,
n n

 

where 1  is the confidence level and c  solves 

1
u l

l u

ˆ ˆn
c c

ˆ ˆmax ,
 

4.3 Results 

The number of Monte Carlo simulations was set to 500. Table A1 reports statistics that are 

useful to evaluate the quality of the point estimates of the bounds. Especially of interest are 

                                                           
3 In the application, the number of bootstrap draws is 200. 
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the lower bound in scenario 1 and the upper bound in scenario 2 because the true effect, 

which is equal to zero, corresponds to these bounds. The mean and median biases are small, 

always less than 10% of the standard deviation. 

Another interesting result of Table A1 concerns the quality of the normal approximation. In 

all cases, the skewness is very close to 0 and the kurtosis slightly below 3. The p-values of the 

Jarque-Bera test confirm this impression. 

 

Table A1: Point estimates 

 Scenario 1 Scenario 2 Scenario 3 

 Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Mean -23.66 4703.26 -3537.55 3437.93 -7074.67 -99.19 

Median -30.97 4764.57 -3534.64 3457.98 -7046.25 -91.74 

Standard 

deviation 
726.06 825.53 532.35 884.03 792.84 1036.25 

Skewness -0.02 -0.13 -0.004 -0.11 -0.11 0.001 

Kurtosis 2.57 2.72 2.66 2.77 2.79 2.83 

Jarque-Bera 

p-value 
0.1436 0.2132 0.3059 0.3600 0.3896 0.7353 

 

Table A2 evaluates the quality of the inference procedure. We first compare the standard 

errors observed in the Monte Carlo simulations with the mean bootstrap based estimated 

standard errors. The differences are small with a maximum difference of 5% and with one 

exception the estimated standard errors are slightly larger than the observed ones, which 

should lead to conservative inference. 

Table A2 also reports the observed rejection probabilities of the correct null hypothesis that 

the treatment effect is equal to zero. Since we bound the treatment effect, we reject this null 

hypothesis either if the lower bound of the confidence interval is above zero or if the upper 

bound of this interval is below zero. However, since the bounds are wide, it never happened 

that the upper bound was negative in scenario 1 or that the lower bound was positive in 
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scenario 3. In the second scenario, 0 was always between both bounds and, therefore, we 

never rejected the null hypothesis. 

We report the results for three levels (1, 5 and 10%). In the two cases where the true treatment 

effect is equal to one bound, the observed rejection probabilities are very close to the 

theoretical ones and the differences are never statistically significant. This shows that the 

inference procedure used in our application has a correct size when the true treatment effect is 

equal to a bound and is conservative when the true effect is between the bounds. 

 

Tables A2: Inference 

 Scenario 1 Scenario 2 Scenario 3 

 Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Observed s.e. 726.06 825.53 532.35 884.03 792.84 1036.25 

Mean 

estimated s.e. 
710.46 845.64 575.73 893.44 838.06 1053.25 

Rejection 

probabilities 
      

0 01.  0.01 0 0 0 0 0.008 

0 05.  0.036 0 0 0 0 0.05 

0 10.  0.094 0 0 0 0 0.122 
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