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Abstract

The macroeconomic experience of the last decade stressed the

importance of jointly studying the growth and business cycle fluc-

tuations behavior of the economy. To analyze this issue, we embed

a model of Schumpeterian growth into an estimated medium-scale

DSGE model. Results from a Bayesian estimation suggest that in-

vestment risk premia are a key driver of the slump following the

Great Recession. Endogenous innovation dynamics amplifies finan-

cial crises and helps explain the slow recovery. Moreover, financial

conditions also account for a substantial share of R&D investment

dynamics.
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1 Introduction

Medium-term growth prospects in the US and many developed countries

have deteriorated substantially. In particular, the US Great Recession of

2008-2009 seems to have generated a persistent downward shift in the GDP

trend displayed in Figure 1.

[Figure 1 about here.]

Since this has happened after the financial crisis of 2008, it suggests

that the sudden unavailability of credit to investment resulting from the

crisis has led to a not yet reverted GDP decline below its long-term trend.

Can a temporary financial shock generate such a persistent effect? It can

reduce physical capital accumulation during the crisis and the resulting

credit crunch, but, according to standard macroeconomics - which assumes

decreasing returns to physical capital - GDP should go back to trend after

the financial trouble has ended. Alternatively, we could think of an adverse

exogenous technology growth shock, perhaps occurred simultaneously with

the financial crisis, or even causing it. However, the above evidence would

suggest an unrealistically high persistence of such technological shock. We

claim that the puzzle is solved, if we realize that technology is not ex-

ogenously evolving, but is affected by research and development (R&D).

And in fact, R&D investment data feature a significant temporary negative

deviation of R&D investment from its trend during the financial crisis.

It is then natural to conjecture that if TFP growth results from R&D-

driven innovations, the drop in the right panel of Figure 1, by implying

a permanent negative deviation of productivity from its pre-crisis trend,

could be at least partially explain the GDP time series.

While this channel is certainly at work, others more common in standard

New Keynesian models, could be important as well: demand shocks, price

and wage distortions, etc. Hence, the correct question would be: how much

of the observed GDP data of Figure 1 is due to an R&D or physical capital

investment drop, persistently insufficient private or government demand,

ineffective monetary policy close to the zero lower bound (ZLB) or labor

and output market distortions?

If these factors are jointly at work they cannot be studied in isolation.

2



Therefore, a complete macroeconomic explanation of what has hap-

pened should include R&D, innovation, and growth in addition to the

standard dynamic stochastic general equilibrium (DSGE) framework. Mo-

tivated by this need, we construct an integrated growth and business cycle

medium scale macroeconomic model, which incorporates Schumpeterian

creative destruction à la Aghion and Howitt (1992) and Nuño (2011) into

a New Keynesian economic framework à la Smets and Wouters (2003) and

Kollmann et al. (2016).1 This setup allows us to estimate the model at

quarterly frequency for the US economy in a period - 1995Q1 to 2015Q1

- rich in important events involving innovation and growth - burst of the

bubble, the 2009 collapse in R&D - and in business cycles and monetary

policy events - financial crisis build-up and explosion, unprecedented fiscal

stimulus, ZLB hit by the Fed interest rate.

Despite the importance of such an analysis, the estimated models at-

tempting to do it so far are rare. Most notably Bianchi and Kung (2014)

estimate a model with R&D capital exerting a positive spillover on the

economy like in Frankel (1962) and Romer (1986), while Anzoategui et al.

(2016) adapt Comin and Gertler (2006) knowledge diffusion extension of

Romer’s 1990 expanding product variety growth mechanics to show how de-

mand driven slumps lead to business cycle persistence via endogenous R&D

activity. Varga et al. (2016) extend this framework to a semi-endogenous

growth medium scale model calibrated to US and EA data. Guerron-

Quintana and Jinnai (2015) highlight the role of financial frictions by deeply

microfounding them. Despite their insightful contributions to an emerging

integrated macroeconomics2 literature, none of these papers considers cre-

ative destruction, which is the only approach consistent with the microe-

conometric evidence that innovation and growth correlates positively with

firm entry and firm exit.3 In fact, the variety expansion models predict

firm exit to have a negative effect on growth, which is against industry

evidence suggesting that reallocation from less productive exiting firms to

1Previous successful attempts at integrating endogenous growth and business cycle
are Annicchiarico et al. (2011), Annicchiarico and Rossi (2013), and Annicchiarico and
Pelloni (2014).

2Integrating growth and business cycle in a unified way.
3See for example Foster et al. (2001) influential evidence that the ongoing replacement

of less productive with more productive plants hugely contributes to industry multifactor
productivity.
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more productive firms is an engine of productivity growth.4

In our model, growth is endogenously driven by Schumpeterian R&D

entrepreneurs’ activities and knowledge accumulation. In this formula-

tion, each innovation is a new intermediate good of enhanced quality. En-

trepreneurs collect funds from households to invest into R&D aimed at

capturing monopoly rents. In each period they face a probability that

the firm jumps to the technological frontier. If the innovation occurs, the

entrepreneur earns monopoly profits until the firm is replaced by a new in-

novator. On aggregate, growth of the technological frontier is the outcome

of positive knowledge spillovers from R&D activities. These spillovers are

subject to shocks which alter the basic research content of applied R&D.

Similarly to Varga et al. (2016), our main model assumes a semi-endogenous

growth structure in the innovative frontier evolution, while allowing its

adoption to follow a purely endogenous growth mechanism.

On the Keynesian side, we incorporate monopolistic competition in

product and labor markets as well as price and wage stickiness. Despite

the importance of creative destruction, only few papers have tried to join it

with price stickiness. Prominent examples are Benigno and Fornaro (2016),

Oikawa and Ueda (2015a,b,c), and Rozsypal (2016). Other standard as-

pects such as habit formation in leisure and consumption, flow adjustment

costs in investment, capacity utilization, endogenous fiscal rules, and gov-

ernment debt accumulation help fit observed quantity dynamics and a rich

set of macroeconomic shocks is used for the estimation. In addition, the

central bank follows a Taylor rule. Our analysis also considers consequences

of the ZLB constraint on the policy interest rate. To guarantee realistic

features also on the growth mechanism, we eliminate the strong scale effect

Jones (1995) and test our results both in a semi-endogenous and in a fully

endogenous approach.

We allow the model to nest exogenous growth as a special case, leav-

ing it to the data to decide. And indeed the data confirm that frontier

growth in potential GDP is driven by endogenous R&D investment. As in

Aghion and Howitt (1992) and Nuño (2011), innovations are the outcome

of a patent-race in every sector, with each innovation improving upon ex-

4For the importance of reallocation as an engine of growth also see Acemoglu et al.
(2013).
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isting goods. Innovating firms replace the incumbent monopolist and earn

higher profits until the next innovation occurs. Knowledge spillovers push

the technological frontier further. Unlike existing stylized Schumpeterian

growth models, the DSGE structure allows, for the first time in the endoge-

nous growth literature, a sophisticated estimation of the main innovation

and growth parameters. Semi-endogenous growth à la Jones (1995), Kor-

tum (1997), and Segerstrom (1998) is confirmed, but knowledge spillover

coefficient confidence intervals allow a very persistent effect of shocks af-

fecting R&D.

More generally, our Bayesian estimation allows us to quantify the rel-

ative contribution of the various shocks in explaining the recent adverse

growth experience. Investment dynamics emerges as a key driver of the

Great Recession, alongside the consumer saving shock: their interaction

characterizes the joint decline in physical capital, R&D investment, and

consumption.5

The paper is intendedly standard, and indeed we constrain ourselves to

putting together the already existing frameworks of New Keynesian and

Schumpeterian growth theory. The next section are divided as follows:

Section 2 describes the main model. Section 3 describes the Bayesian es-

timation approach and its results, and discusses numerical simulations.

Section 4 shows the robustness of our main model results under impor-

tant alternatives: a scale-free fully endogenous growth framework, and two

hybrid versions which allow some degree of exogenous growth in either

semi-endogenous and fully endogenous frameworks. Section 5 concludes.

2 Model

This section lays out the economic environment. Being ours a fairly rich

medium-scale macroeconomic model, we will here provide only the main

aspects of its components: households, manufacturing production, inno-

vation, monetary and fiscal authorities, market clearing conditions, and

5Anzoategui et al. (2016) use a “liquidity” shock to generate the positive co-movement
of consumption and investment during the crisis. We have also experimented with it
obtaining similar results. However, off crisis the empirical feature of this shock is slightly
less than that of two separate investment and saving shocks.
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exogenous structural shocks.6 To keep exposition lean, we relegate the

most cumbersome details to Appendix B.

2.1 Households

There is a continuum of households indexed by j ∈ [0, 1]. Households are

split in two groups: Savers (“Ricardians”, superscript s) who own the firms

and hold government bonds, and constrained households (“rule-of-thumb”

consumers, superscript c) whose only income is labor income and who do

not save nor borrow. The share of savers in the population is ωs. The

lifetime utility of a household of either type r = s, c is defined as

U r
jt =

∞∑
q=t

exp(εCt )βq−tus (·) , (1)

where β denotes the discount factor, and εCt is an exogenous savings shock

distorting the household’s discount factor. Both types of households en-

joy utility from consumption Cr
jt and incur disutility from labor N r

jt.
7 In

addition, the utility of Ricardian households depends on financial assets

held.

2.1.1 Ricardian Households

Ricardians work, consume, own all firms, purchase risk-free bonds as well as

government bonds and receive nominal transfers T sjt from the government.

They have access to financial markets and hold financial assets FAjt. Total

financial wealth consists of government bonds Bg
jt, private risk-free bonds

Brf
jt , and shares P S

t Sjt. P
S
t is the nominal price of shares in t and Sjt the

number of shares held by household j:

FAjt = Bg
jt +Brf

jt + P S
t Sjt. (2)

6The present model shares standard features with Kollmann et al. (2016), with the
major distinction of introducing endogenous innovation in place of fully exogenous tech-
nological progress.

7At any given moment of time Nr
t households of type r work. We assume perfect

consumption insurance across household types so that in the equilibrium all households
within a given type consume the same amount of consumption goods.
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We define the gross nominal return of an asset St as ist . Therefore, the

budget constraint of a saver household j can be written as:

Pt(1 + τ c)Cs
jt + FAjt =

(
1− τN

)
WtN

s
jt +

(
P S
t + Ptdt

)
Sjt−1 + (1 + igt−1)B

g
jt

+ (1 + irft−1)B
rf
jt + T sjt + Πt − taxsjt exp(εTAX), (3)

where Pt denotes the GDP deflator and τ c is a consumption (VAT) tax.

τN is the tax rate levied on wages Wt, dt are dividends from intermediate

good producers, igt−1 is the interest rate of governmental bonds and irft−1

is the risk-free rate. T sjt are government transfers to savers. Πt denotes

the profits all the firms other than intermediate goods producers. taxsjt are

lump-sum taxes paid by savers subject to a tax shock εTAX .

Each Ricardian household j maximizes its lifetime utility:

us

(
Cs
jt, N

s
jt,
UA
jt−1

Pt

)
=

1

1− θ
(
Cs
jt − hCs

t−1
)1−θ

− ωn exp(εUt )

1 + θN
(Cs

t )
1−θ (N s

jt − hNN s
t−1
)1+θN

+
(
Cs
jt − hCs

t−1
)−θ UA

jt−1

Pt
, (4)

with Cs
t =

∫ ωs
0
Cs
jtdj. h and hN ∈ (0, 1) measure the strength of external

habits in consumption and labor, and ωn is the relative weight of labor

in the utility function. εUt is a labor preference shock common in the real

business cycle literature. To allow for realistic spreads, we microfound the

risk premium shock as in Kollmann et al. (2016) by assuming that savers’

preferences for real financial wealth, (FAjt)/(Pt), may fluctuate as well

according to

UA
jt−1 = exp(εBt )

(
αB0 Bjt−1

)
+ exp(εSt )

(
αS0P s

t−1 Sjt−1
)

, (5)

where εBt and εSt represent time varying risk premium shocks on bond and

stock holdings. Fisher (2015) uses a simpler version of this formulation

and gives a flight-to-quality interpretation, microfounded as a preference

for risk-free bonds. We here generalize this flight to quality by allowing for
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different marginal utilities for different assets captured by αB0 and αS0.8

2.1.2 Constrained households

Constrained households do not participate in financial markets. In every

period they consume all their disposable income from wages and govern-

ment transfers. This results in the following period-by-period budget con-

straint:

Pt(1 + τ c)Cc
jt =

(
1− τN

)
WtN

c
t + T ct − taxcjt exp(εTAX), (6)

where taxcjt are lump-sum taxes paid by constrained households. The in-

stantaneous utility function for a liquidity constraint households is

uc
(
Cc
jt, N

c
jt

)
=

exp(εCt )

1− θ
(
Cc
jt − hCc

t−1
)1−θ

− ωn exp(εUt )

1 + θN
(Cc

t )
1−θ (N c

jt − hNN c
t−1
)1+θN

, (7)

where Cc
t =

∫ 1

ωs
Cc
jtdj.

2.2 Intermediate Goods

Each ith differentiated intermediate good is produced by a monopolistically

competitive firm using total capital Ktot
it−1 and labor Nit. The production

function is Cobb-Douglas:

Yit = AYit (Nit)
a

(
cuit

Ktot
it−1

AYt

)1−a

, (8)

where a denotes the labor share, AYit is a sector specific productivity level

and cuit is firm-specific level of capital utilization. With more sophisticated

technologies, production becomes more capital-intensive. AYt =
∫ 1

0
AYitd i

is the average productivity across all sector in the differentiated goods

production. The average output across sectors is Yt =
∫ 1

0
Yitd i.

8Our steady state restrictions imply that αB0 is positive while αS0 is negative. In
equilibrium these values implies a positive equity premium and a treasury bill conve-
nience yield (del Negro et al. 2016).
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As a consequence of (8) sectors with higher relative technological sophis-

tication benefit more from the average technological level across sectors:9

Yit =

(
AYit
AYt

)
︸ ︷︷ ︸

rel. technology level

(
AYt Nit

)a (
cuitK

tot
it−1
)1−a

. (9)

Total Factor Productivity, TFP t, is therefore:

TFP t =
(
AYt
)a
. (10)

Firm i’s capital stock evolves as

Kit = (1− δ)Kit−1 + Iit, (11)

where δ is the capital depreciation rate, and Iit denotes gross investment

in physical capital. Public capital Kg
it follows an analogous law of motion.

Total capital is the sum of both

Ktot
it = Kit +Kg

it, (12)

assumed, for the sake of simplicity, to be perfect substitutes.

Intermediate good firms choose prices, employment, and capacity uti-

lization as well as capital and investment to maximize dividends subject to

the production technology (9) and the physical capital law of motion (11).

Dividends are given by

dit =
(
1− τK

)(
Yit −

Wt

Pt
Nit

)
+ τKδKit−1 − Iit − adjit, (13)

where τK is a corporate income tax, adjit are total adjustment costs as-

sociated with price and labor adjustment or changing capacity utilization,

and investment. The firm problem is standard and details are referred to

Appendix B.1.

9This formulation allows us to avoid keeping track a of a distribution of firms and
instead only look at average firms and frontier firms.
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2.3 Final Good Producers and Labor Markets

The remaining sectors of manufacturing production are kept intendedly

standard. Therefore, we only summarize key elements and refer details

to Appendix B.2-B.3. Perfectly competitive firms produce a final good Yt

using differentiated intermediate inputs. Wages in the intermediate good

production are set by a monopolistically competitive trade union at a mark-

up, µwt . To capture rich labor market dynamics, we allow for real wage

rigidities (see Blanchard and Gaĺı 2007), governed by parameter γwr.

2.4 Endogenous Innovation

We start with the detailed description of the endogenous technological

progress structure of our model.

Innovations. Innovations generate growth. In each period t the pro-

ductivity of a sector AYit jumps to the technology frontier AY,max
t with

probability nit−1. The frontier is publicly available and represents the

most advanced technological level across all sectors defined as AY,max
t ≡

max{AYit |i ∈ [0, 1]}. Productivity in each sector i evolves as:

AYit =

{
AY,max
t , with probability nit−1

AYit−1, with probability 1− nit−1

}
. (14)

Entrepreneurs. Innovations are the result of entrepreneurial investments

into R&D. The probability of reaching the frontier is itself endogenous. In

each sector i in each period t an entrepreneur is randomly selected with the

opportunity to try to innovate.10 If such entrepreneur’s R&D firm invests

R&D cost XRD
it it will produce a probability nit of a successful innovation,

which entails the discovery of a new intermediate good with next period’s

frontier productivity AY,max
t . We assume that research will be more difficult

if the overall technology frontier is more advanced, i.e. per unit research

costs increase with the frontier productivity AY,max
t . The probability of

innovation in the sector, assumed independent across sectors, has the fol-

10Hence, innovative ideas are scarce as they “arrive to random agents at random
times” (Erkal and Scotchmer, 2011, p.1).
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lowing production function:

nit =


(

XRD
it

λRDAY,max
it+1

) 1
(η+1)

, if XRD
it < λRDAY,max

t+1

1, if XRD
it ≥ λRDAY,max

t+1

 , (15)

where λRD > 0 is an R&D difficulty parameter and η > 0 accounts for

decreasing returns of R&D. In our discrete time setting, we will assume

that an innovation occurring at time t will permit production in period

t + 1. Moreover, the second line of (15) is needed to guarantee that the

probability of innovation per period11 is no larger than 1.

By Bertrand competition, the patent holder of the new good will pro-

duce by definition the good of highest quality and, following a price war,

will replace the existing incumbent monopolist and appropriate all the sec-

torial profits from t + 1 on. Hence, it is the prospects of becoming next

period’s incumbent manufacturing monopolist in the sector that creates the

incentives to invest in R&D at time t. Since the new entrant does not in-

ternalize the loss incurred by the previous incumbent, creative destruction

may imply too much or too little R&D investment.12

For symmetry with the other parts of the model estimation, which in-

clude adjustment costs, we will assume the existence of adjustment costs

in the R&D as well. The R&D adjustment cost function13 is defined as

adjRDit (XRD
it ) ≡ γRD

2Yt
(XRD

it −XRD
t−1gY )2, (16)

where gY denotes output trend which makes adjustment costs stationary.

Innovation at time t is like a static lottery, and given individual risk

aversion, we assume that the R&D firm in each sector finances the risky

innovation from a fund set up by Ricardian households to completely di-

versify, by the law of large numbers, innovation risk across the continuum

11Which instead in a continuous time framework could be any non-negative number.
12A horizontal innovation framework, by missing this business stealing externality,

would imply too little R&D in equilibrium.
13The interpretation of adjustment costs in a creative destruction environment re-

quires explanation: we are implicitly assuming that if a new entrant undertakes R&D,
the previous period R&D laboratory size (magnified by trend GDP growth) sets the
benchmark for the current R&D investment size, penalizing departures from it.
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of sectors, with uncorrelated risk, in the economy. To capture realistic fluc-

tuations of R&D investment, we allow for a stochastic R&D-specific invest-

ment risk premium required by the fund, εAYt . The R&D entrepreneurial

problem is then a simple expected profit maximization:

max
XRD
it

= nit

[
P Sdmax
it

Pt

]
−
[
XRD
it + adjRDit (XRD

it )
] (

1 + εAYt
)
, (17)

where P Sdmax
t is the nominal stock market value of the firm at the techno-

logical frontier.

The value of becoming the incumbent is the same across sectors and

hence, in equilibrium, the R&D investment cost is symmetric, XRD
it = XRD

t ,

as is the probability of success nit = nt. The R&D optimality condition,

after making use of (15), then becomes:

nt
(η + 1)

[
P Sdmax
t

Pt

]
= XRD

t

(
γRD

Yt
(XRD

it −XRD
t−1gY )

)
(1 + εAYt ). (18)

Note that R&D firms earn positive profits as long η > 0.14

Finally, by the law of large numbers, nt also measures the fraction of the

total number of sectors which innovate each period, as well as the fraction

of firms that exit and enter the market. The higher the equilibrium value of

nt the stronger innovation and creative destruction, and the more dynamic

the set of innovative industries.

Stock Market Value. Differentiated goods producing firms are owned

by households. The value of these firms at time t is P S
t S

tot
t = P S

t where we

normalize the total number of stocks Stott to 1. In our economy firms are

heterogeneous and firm turnover follows innovation. Hence, due to Schum-

peterian creative destruction, a fraction nt−1 of obsolete firms belonging to

time t− 1 portfolio is lost at time t, replaced by new entrants with higher

stock market value P Smax
t . Taking that into account, the gross nominal

14As long as the equilibrium probability is less than 1, we could easily consider the
case η = 0, which nests a linear R&D technology and also a free-entry case. In this last
case ideas would not be scarce any more.
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return on the aggregate time t stock market portfolio is given by:

1 + ist =
Et
[
dt+1Pt+1 + P S

t+1 − ntP Smax
t+1

]
P S
t

. (19)

We include in the return on period t equities the value of the average

dividend payments dt+1, we also take into accounts capital gains and losses.

The average time t+1 portfolio, P S
t+1, also includes the innovative firms that

have replaced fraction nt of time t industry. Hence, we have to subtract

their aggregate value, ntP
Smax
t+1 , from it. This reasoning is reflected in (19).

Frontier Value. Frontier technology index net growth rate gAY,max
t

is

defined as

gAY,max
t

=
AY,max
t − AY,max

t−1

AY,max
t−1

. (20)

Entrepreneurs collect funds from households. They invest into R&D to

reach the technological frontier, patent its adaptation to their sector, and

appropriate the resulting production monopoly. Hence, each entrepreneur

at the frontier earns the monopoly profits resulting from the highest quality

intermediate good: these profits, and the resulting dividends, are (AY,max
t )/(AYt )

times bigger than those of the average technology firm. Therefore, the

nominal stock market value as of time t, P Smax
t , of a firm that will start

producing at the technology frontier at time t+ 1 must obey the following

expression:

P Smax
t =

Et

[
Pt+1dt+1

(
AY,max
t+1

AYt+1

)
+

PSmax
t+1

g
A
Y,max
t+1

(1− nt+1)

]
(1 + ist)

. (21)

Notice that since patents of the latest and most advanced technological

require one period of implementation, for an innovation developed in period

t, production and dividend flows only start in t + 1. Furthermore, the

continuation value in the stock market in t + 1 takes into account that

competitors may successfully innovate, with probability nt+1, and render

it unusable in period t+ 2. In case no innovation is found in the sector in

period t + 1, which happens with probability 1 − nt+1, the firm’s value -

along with its dividends - will remain positive, though they will be lower
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than that of a generic newly entered innovator by a factor equal to gAY,max
t+1

.

This explains the last part of the numerator of eq. (21).

Frontier and diffusion. The growth of technological frontier, gAY,max
t

, is

the outcome of positive knowledge spillovers from the aggregate innovation

efforts as in Howitt and Aghion (1998). According to this Schumpete-

rian view, R&D activities have an appropriable applied content, i.e. the

patentable sectorial adoption of the technological frontier, and an unappro-

priable basic aspect, which pushes the aggregate frontier further. The basic

content of aggregate R&D freely spills over to all sectors. The way in which

this R&D spillover operates is not deterministic, but as in Nuño (2011) it

is affected by time-varying spillovers σRDt . This captures the potentially

volatile basic research content of applied R&D, which could reflect, in re-

duced form, the scientists and engineers orientation, the university policies,

and variable regulatory aspects of intellectual property rights (IPRs). More

in detail, we assume that

AY,max
t = AY,max

t−1 +
(
AY,max
t−1

)ϕ(XRD
t−1

Yt−1
Nt−1

)λA
σRDt , (22)

where ϕ < 1 reflects decreasing returns to the intertemporal knowledge

spillover as in Jones (1995), while 0 < λA < 1 is a standard “stepping on

toes” R&D congestion externality parameter capturing research duplica-

tion, knowledge theft, etc. Jones and Williams (2000). This idea was also

used in the medium scale policy focused macroeconomic models of Roeger

et al. (2008) and Varga et al. (2016).

The instantaneous knowledge spillovers follows an exogenous process

given by

σRDt = σRD exp(εσt ), (23)

where εσt is an R&D spillover shock and σRD are steady state spillovers. Eq.

(22) says that the technological frontier increases in its previous period’s

value, and also in the fraction of the employees indirectly working in R&D

(given by
XRD
t−1

Yt−1
Nt−1) in the past period. We can then express the growth
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rate of the technological frontier as:

gAY,max
t

=

(
Xt−1

Yt−1
Nt−1

)λA
σRDt(

AY,max
t−1

)1−ϕ . (24)

Log-differencing the previous equation, it follows that in a balanced growth

path (BGP) - in which gAY,max
t

and Xt−1

Yt−1
are constant - the following holds:

gAY,max
t

=
λAgPOP
1− ϕ

. (25)

As in Jones (1995) the growth rate of the frontier, in the long-run, is gov-

erned by the growth rate of population gPOP . The factor of proportionality

depends on the extent of decreasing returns, inversely represented by λA.

It is important to notice that unlike Jones (1995) and Varga et al. (2016)

our growth of AY,max
t does not refer to the growth rate of patents but rather

to the growth rate of frontier productivity index. While this is obviously

derived from the flow of new patents invented, its numerical value is al-

ready filtered by effect of patents on productivity. Therefore, we should

expect a much lower value of λA than in Jones and Williams (2000) and

Varga et al. (2016).

Unlike Nuño (2011) and similarly to Varga et al. (2016), the evolution

of the technological frontier in our model is semi-endogenous, as in Jones

(1995) while its adoption remains fully endogenous, as in Comin and Gertler

(2006) and Anzoategui et al. (2016). This formulation not only permits

to eliminate the counterfactual strong scale effects that plagued the early

generation endogenous growth models, but also avoids steady state growth

effects of policy variables and shocks, which facilitates the comparison with

the standard exogenous growth DSGE models.

The average technological progress results from the adoption of the

frontier technology, and it is driven by the aggregation of the previously

described endogenous R&D entrepreneurial activity. In fact, the average

intermediate goods productivity in the economy is defined by the following
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aggregation:

AYt =

∫ 1

0

{
nit−1A

Y,max
t + (1− nit−1)AYit−1

}
d i

=nt−1

(
AY,max
t − AYt−1

)
+ AYt−1, (26)

where we have also used our previous symmetry result, nit−1 = nt−1. On a

balanced growth path the frontier AY,max
t grows at the same rate as average

technological level defined in (26).

2.5 Monetary and Fiscal Authorities

The nominal policy interest rate it is set by the monetary authority accord-

ing to a Taylor rule:

it − ī = ρi (it−1 − ī) +
(
1− ρi

) (
ηiπ (πt − π̄) + ηiyỹt

)
+ εit, (27)

where ī = r+ π̄ is the steady state nominal interest rate, equal to the sum

of the steady state real interest rate and steady state inflation. ỹt is the

output gap15 and ηiπ > 1 and ηiy > 0. εit is a white noise shock.

Government consumption and physical capital investment are set ac-

cording to the following fiscal policy rules:

cGt − cG =ρG(cGt−1 − cG) + εGt (28)

iGt − iG =ρIG(iGt−1 − iG) + εIGt , (29)

where cGt ≡ Gt
Yt

and iGt ≡
IGt
Yt

are government consumption and investment

as a share of GDP.16 εGt and εIGt are white noise disturbances. Government

transfers to households follow this policy rule:

τt−τ = ρτ (τt−1−τ)+ηdef
(
Bg
t −B

g
t−1

Yt
− def

)
+ηB

(
Bg
t

Yt
− b
)

+ετt , (30)

where τt ≡ Tt
Yt

are net nominal transfers normalized by GDP. Bg
t denotes

total nominal government debt owned by households, ηdef is a deficit coef-

15Output gap is measured by ỹt = log (Yt)− yt where yt is (log) output trend.
16Lower case letters without time subscript denote steady state values.
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ficient, ηB is a debt coefficient. εTt is a white noise transfer shock. Govern-

ment debt and transfers react to their associated GDP-adjusted targets,

def and b. The government budget constraint, is

Bg
t =

(
1 + igt−1

)
Bg
t−1 −RG

t + PtGt + PtI
G
t + Tt, (31)

where 1 + igt denotes the interest rate on government debt and RG
t is the

nominal revenue of the government.

2.6 Resource constraint

Market clearing requires

Ct = ωsCs
t + (1− ωs)Cc

t (32)

and, additionally, N s
t = N c

t = Nt and T st = T ct = Tt. Labor markets clear

and financial assets clearing requires St = 1 and Bt = Bg
t . Finally, the

aggregate budget identity takes R&D investment into account

Yt = Ct + It +Gt + IGt + adjt +XRD
t . (33)

2.7 Exogenous processes

All exogenous shock processes of type x (unless specified explicitly) follow

autoregressive processes of order one with an autocorrelation coefficient

|ρx| < 1 and innovation uxt . Thus,

εt = ρxεt−1 + uxt . (34)

3 Results

3.1 Data and Estimation Approach

We solve the model using a first-order approximation around its determin-

istic steady state. Following the literature on estimated DSGE models, we

set the values for a subset of parameters a priori. We estimate the remain-

17



ing parameters with Bayesian methods.17 In particular, we apply the Slice

sampling algorithm (Neal 2003 and Planas et al. 2015) because of its im-

proved efficiency and accuracy.18 In total we use data on 21 macroeconomic

time series ranging from 1995Q1 until 2015Q1. Data are taken from the

Bureau of Economic Analysis (BEA) and the Federal Reserve. Appendix

A provides additional details.

It is worth noticing that in the estimation procedure, we have a number

of parameters calibrated by directly using the steady state restrictions and

others which are obtained by Bayesian estimation. The two procedures are

interdependent, because the estimated parameters also affect the calibrated

parameters, which are usually functions of them, and vice versa. We here

mention an important example of this interdependence, in which the steady

state restriction equation (25) is used to determine λA as a function of the

estimated parameters. In fact, since

TFP t =
(
AYt
)a

, (35)

it follows that in steady state the observable growth rate of TFP is gTFP =

agAY = agAY,max . This equation in turn implies that we can use the steady

state growth rate relationship to calculate parameter λA as soon as we have

an estimated parameter ϕ̂ and a. In fact, based on the previous equations

we can write:

λA = (1− ϕ̂)−1
gTFP
agPOP

. (36)

3.2 Calibrated parameters

Table 1 reports values for calibrated parameters.

Table 1: Calibrated Parameters

Parameter Description Value

a Cobb-Douglas labor share 0.65
δ Capital depreciation rate 1.64%
αB0 Preference for government bonds -0.0016

(Continued on next page)
17We implement the solution and estimation in Dynare (Adjemian et al. 2011).
18Our findings are robust to other sampling algorithms, such as general Metropolis-

Hastings algorithms (see An and Schorfheide 2007).
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Table 1: (continued)

Parameter Description Value

αS0 Preference for stocks 0.0068
β Intertemporal discount factor 1.0032
ī Steady state nominal interest rate (quarterly) 0.75%
µw Wage mark-up 1.2
ωN Weight of the disutility of labour 58.36
σy Demand elasticity 18.90
τ c Consumption (VAT) tax 0.2
τK Corporate income tax 0.3
τN Labor tax 0.17
b Nominal government debt target 3.4
def Deficit target 3.62%
τ Steady state government transfers 0.10
iG Steady state private investment share of GDP 15.5%
C/GDP Steady state private consumption share of GDP 67.2%
cG Steady state government share of GDP 17.1%
η R&D decreasing returns 5.72
λRD R&D difficulty exp(17.61)
σRD Steady state R&D spillovers 0.82%
X̄RD Steady state value of cost of R&D 1.56%
λA Stepping on toes R&D congestion 0.25
ḡAY Constant for growth of productivity 0.36%
ḡPOP Constant for growth of population 0.24%
π̄ Constant for GDP deflator inflation 0.47%
ḡY Constant for growth of GDP trend 0.60%
īgBg Steady state Government interest payments 3.17%

The labor share in the production function, a, is set to 0.65. The capital

depreciation rate, δ, is implied by the empirical averages of private capital

and investment and equal to 1.64 percent quarterly. The discount rate, β,

implies a steady state value of the stochastic discount factor of 0.99. This

restriction allows to derive a value for the preference of households on hold-

ing stocks, αS0, from their optimal shares choice. The steady state wage

mark-up, µw, is set to 1.2, while ωN is endogenized from the labor supply

equation conditioning on the observed empirical average of the wage share.

Normalizing steady state employment to unity, allows to derive the steady

state price mark-up from the labor demand equation. Given the markup,

the pricing equation is used to determine the value of the demand elasticity,

σy. Consumption VAT tax and corporate income tax are set, respectively,
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to 0.2 and 0.3, while the labor tax is endogenized from the government

revenue. The targets for total nominal government debt and deficit as well

as public investment and consumption and government transfers, are set

equal to the respective empirical averages. The empirical average of the

interest payments on government bond (̄igBg around 3 percent) allows to

place a restriction on the parameter αB0. Steady state ratios of the pri-

vate consumption and investment share of GDP match empirical averages.

In the R&D block, we impose the empirical average of the share of R&D

investment over GDP and the estimated mean value of the probability

of reaching the frontier technology, n̄, to derive the implied value of the

R&D difficulty, λRD and the parameter η from the definition of production

function of nt (15) and the optimality condition of innovators (18). The

mean value of the R&D spillovers comes from the semi-endogenous frontier

definition (22) given the empirical value of the technology growth rate.

3.3 Estimated parameters

This section provides the estimates of the main model described in the

previous sections. The main results of our most refined estimation can be

seen in Table 2.

Table 2: Priors and Posteriors of Estimated Parameters

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

Innovation and Growth
n̄ beta 0.025 0.0120 0.047 0.0091 0.0327 0.0618
ϕ beta 0.700 0.2000 0.835 0.0958 0.7089 0.9715
Nominal and Real Frictions
γI,1 gamm 60.000 40.0000 50.779 21.4157 25.9600 88.6399
γI,2 gamm 60.000 40.0000 31.570 11.7829 12.4344 50.0310
γn gamm 60.000 40.0000 3.753 0.9323 2.1834 5.1981
γp gamm 60.000 40.0000 62.109 11.4730 39.6652 77.5183
γRD gamm 60.000 40.0000 151.840 30.9571 107.5168 200.9417
γu,2 gamm 0.020 0.0080 0.007 0.0026 0.0034 0.0105
γw gamm 5.000 2.0000 3.259 0.7432 1.9691 4.3739
γwr beta 0.500 0.2000 0.966 0.0121 0.9498 0.9839
sfp beta 0.500 0.1000 0.771 0.0540 0.6846 0.8546

(Continued on next page)

20



Table 2: (continued)

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

sfw beta 0.500 0.1000 0.519 0.0998 0.3378 0.6593
Fiscal Policy
ηB beta 0.010 0.0050 0.000 0.0001 0.0000 0.0003
ηdef beta 0.030 0.0080 0.013 0.0018 0.0106 0.0159
Monetary Policy
ηi,π beta 2.000 0.4000 1.970 0.3658 1.3740 2.5851
ηi,y beta 0.250 0.1000 0.149 0.0379 0.0894 0.2001
Preferences and Households
h beta 0.500 0.2000 0.839 0.0331 0.7880 0.8924
hN beta 0.500 0.2000 0.631 0.2051 0.3309 0.9339
θN gamm 2.500 0.5000 2.114 0.3850 1.5203 2.7155
θ gamm 1.500 0.2000 1.404 0.1603 1.1482 1.6191
ωs beta 0.650 0.0500 0.763 0.0151 0.7394 0.7860

This table reports values estimated parameters of the baseline model. HPD inf and

HPD sup refer to the 90 percent highest posterior density interval.

Table 3: Priors and Posteriors of Shock Processes

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

Autocorrelation
ρAY beta 0.500 0.2000 0.463 0.1727 0.1681 0.7352
ρB beta 0.500 0.2000 0.947 0.0195 0.9196 0.9818
ρG beta 0.700 0.1000 0.972 0.0112 0.9557 0.9889
ρi beta 0.700 0.1200 0.883 0.0252 0.8441 0.9281
ρIG beta 0.700 0.1000 0.920 0.0224 0.8864 0.9550
ρMUY beta 0.500 0.2000 0.416 0.1353 0.1893 0.6184
ρND beta 0.500 0.2000 0.692 0.0510 0.6049 0.7672
ρP beta 0.500 0.2000 0.763 0.0454 0.6886 0.8332
ρRD beta 0.500 0.2000 0.928 0.0344 0.8795 0.9815
ρS beta 0.500 0.2000 0.938 0.0259 0.9026 0.9826
ρτ beta 0.700 0.1000 0.966 0.0141 0.9468 0.9908
ρTAX beta 0.500 0.2000 0.915 0.0336 0.8606 0.9666
Standard Deviations of Innovations
uAY gamm 0.010 0.0040 0.043 0.0068 0.0327 0.0544
uB gamm 0.010 0.0040 0.001 0.0001 0.0011 0.0014
uC gamm 0.010 0.0040 0.016 0.0042 0.0098 0.0223
uG gamm 0.010 0.0040 0.001 0.0002 0.0012 0.0017

(Continued on next page)
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Table 3: (continued)

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

ui gamm 0.010 0.0040 0.001 0.0001 0.0009 0.0012
uIG gamm 0.010 0.0040 0.001 0.0001 0.0007 0.0009
uMUY gamm 0.020 0.0080 0.062 0.0129 0.0408 0.0830
uND gamm 0.005 0.0020 0.024 0.0026 0.0198 0.0281
uU gamm 0.010 0.0040 0.019 0.0037 0.0130 0.0247
uS gamm 0.010 0.0040 0.006 0.0011 0.0039 0.0073
uσ gamm 0.200 0.0800 0.283 0.0849 0.1549 0.4009
uτ gamm 0.010 0.0040 0.002 0.0002 0.0018 0.0025
uTAX gamm 0.010 0.0040 0.012 0.0010 0.0104 0.0137

This table reports values of autocorrelations and standard deviations of all shock

processes. HPD inf and HPD sup refer to the 90 percent highest posterior density

interval.

We report the assumed prior distribution of each parameter as well as its

prior mean and standard deviation, and the posterior distribution obtained

with our Bayesian estimation procedure, including its mean, standard de-

viation, and 90 percent confidence interval lower and upper bounds.

As we can see from Table 2, thanks to our extremely rich macroeco-

nomic model we have been able to estimate some important parameters for

semi-endogenous growth, which the literature on economic growth could

never satisfactorily estimate so far, but rather relied on simple calibration

procedures. Most notable is the knowledge stock intertemporal spillover

parameter ϕ̂, which has an estimated mean equal to 0.835. This param-

eter estimate is significantly below 1 even though, in particular, we have

included a non-zero prior density in ϕ = 1. Hence, the estimation supports

semi-endogenous growth in the US macroeconomy.

This finding is important for policy evaluations. It predicts that R&D

policy shocks cannot permanently affect the per capita GDP growth rate,

as originally predicted by Jones (1995). However, ϕ̂ being relatively high

implies that R&D policy shocks, or any other shocks directly or indirectly

affecting the R&D/GDP ratio, will have relatively long-lasting effects and

affect the macroeconomic behavior in the medium term. This estimate is

in line with Varga et al. (2016) predictions of their medium size calibrated
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model. The lower bound of the 90 percent confidence interval (0.7089)

is still close enough to 1 to guarantee a relatively long transition to the

semi-endogenous balanced growth path, while its upper bound, 0.9715, is

extremely close to 1, and hence suggesting that this model could have policy

predictions practically indistinguishable from those of a fully endogenous

growth model.

Quite striking is also the estimate of the R&D adjustment costs pa-

rameter, γRD , whose estimated posterior mean, 151.84, is the highest

adjustment cost parameter of the whole model. This result is important

because it suggests that the R&D and growth models in the academic lit-

erature so far, by ignoring R&D adjustment costs, may lead to potentially

misleading predictions on the effect of policies on growth. So high R&D

adjustment costs indicate that the R&D response to policies could be much

more sluggish than usually thought.

Moreover, exogenous R&D spillover shocks in this model seem to be

very persistent. The autocorrelation coefficient of the R&D spillover shock

εσt , which appears in Table 3 as ρRD, has a 90 percent confidence interval

ranging from 0.8795 to 0.9815. This estimate has policy implications too.

As long as the R&D spillover shock is influenced by IPRs policy, a policy or

jurisprudence shift of researcher’s incentives towards more narrow focus on

the adaptation of the frontier to marketable products, rather than on more

basic research discovery, may have long lasting negative effects on frontier

productivity growth. This persistence could also be due to the common

law structure of the United States legislative process, which implies that a

civil law policy change could fully disclose it potential for the economy only

after a long enough series of court precedents have been ruled, as predicted

by Cozzi and Galli (2014). The next section will highlight the dynamics of

the estimated shocks by studying the impulse response functions (IRFs) of

our main model.

3.4 Model Dynamics

Based on our estimates, we can simulate the effects of structural shocks

on the macroeconomy. In what follows we will see some of the impulse

responses to give an idea of the potential effects of structural shocks hitting
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the economy. All shocks are assumed temporary, i.e. lasting only one term.

An important shock in this model is the shock on the R&D risk pre-

mium requested by investors to finance R&D firms. Figures 2 displays the

corresponding IRFs.

[Figure 2 about here.]

[Figure 3 about here.]

As predicted based on the posterior estimates of Table 2, despite the

absence of permanent growth effects of temporary shocks due to the semi-

endogenous nature of R&D-driven growth of this model, a temporary (one

quarter) R&D investment risk premium shock could have implications last-

ing several years. Since the quarter (i.e. three months) is our assumed time

unit, we can see that the average technology and GDP effects of a tempo-

rary R&D investment shock will be getting stronger and stronger even 40

quarters (that is 10 years) after its initial impulse. This long-lasting effect

advises financial authorities to put effort into guaranteeing that innovators

are not declined funding at reasonable conditions.

It is also interesting to see, in Figure 3, the IRFs following a temporary

shock to R&D spillovers. The effect of a one quarter shock to the R&D

spillover on GDP and productivity can be long lasting. This persistence

advices the IPR and research policy institutions to be careful in guarantee-

ing that the R&D focus of researchers remains broad and supporting for an

open science environment: this will benefit frontier knowledge expansion

and will allow overall TFP and GDP to prosper.

The estimated effects of other important shocks could be described. For

example those of a temporary shock to the overall investment risk premium.

This risk premium does not only affect R&D investment, but also physical

capital investment. However, lower physical capital investment, by reduc-

ing production, will decrease the market size of innovative intermediate

products, thereby decreasing the profitability of R&D. As a consequence,

this shock will have direct and indirect consequences on R&D investment

and the innovative dynamics of technology, and therefore on the aggregate

productivity growth. The direct effects could be negative, due to less in-

vestment in general, but also positive for R&D, because it could liberate
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savings that would otherwise go to a different form of investment, while the

indirect effects are likely negative due to reduced market size generated by

the drop in investment demand and ensuing multiplier effects.

[Figure 4 about here.]

[Figure 5 about here.]

As suggested from Figure 4, an increase in the investment risk premium

will reduce GDP, but will have an ambiguous and non-monotonic effect on

the R&D investment, due to the complex general equilibrium dynamics

involved, including the above mentioned direct and indirect effects. While,

as would be normal in a model without endogenous productivity, there

is a negative medium term impact on GDP, the presence of R&D in the

model allows to identify a partially offsetting effect of the earlier recovery

of R&D investment and ensuing recovery of technological and total factor

productivity growth.

It is useful to contrast the IRFs to a model without semi-endogenous

growth (i.e., an exogenous TFP model). Also in this exogenous TFP model,

we allow for stochastic components of productivity growth. However, in-

stead of being determined endogenously via a Schumpeterian growth mech-

anism, productivity follows an exogenous (stochastic) law of motion:

AYt = gAY,t + εTAY,t (37)

where gAY,t = ρGAY gAY,t−1+(1−ρGAY )gAY +εLAY,t is a stochastic productiv-

ity trend. εTAY,t and εLAY,t are exogenous shocks as in eq. (34). This model

abstracts from innovation, i.e. the probability to innovate is nt = 0∀t. To

facilitate comparison, all shocks are normalized to one percent standard

deviation.

In our baseline model with semi-endogenous growth, an exogenous shock

to investment risk premia is greatly amplified. The increased internal prop-

agation mechanism leads to larger contractions in output, consumption,

and investment. Moreover, with semi-endogenous growth, the shocks are

more persistent: The effects on most variables do not die out even after ten

years. There is still a notable difference between both models and a much

slower return to steady state in the baseline model.
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In the IRF graphs we have seen so far, we have used the estimated

parameters and therefore policy and transition functions to simulate the

effect of each structural shock in isolation. This procedure is interesting

to better identify the associated macroeconomic channels and to suggest

policy implications, but of course it is still a theoretical exercise under

ideal controlled conditions. In the real observed data we never see only

one shock operating and only one impulse of it: all shocks are active in

changing sizes and directions and in every period. Therefore, the resulting

macroeconomic dynamics of our DSGE model is much more complex than

we could see from the above impulse response graphs. It is this complexity

that permits to replicate the complex features of the observed data, and

we will exploit it in the next section.

3.5 Historical Decomposition

We proceed to quantify the relative contribution of exogenous shocks in

explaining the data through the lens of our estimated fully-fledged DSGE

model with Schumpeterian growth. Figure 6 presents a historical variance

decomposition of the observed time series of real GDP growth. Each panel

shows the contribution of an innovation. The continuous line displays the

observed demeaned time series. Stacked vertical bars indicate the estimated

relative contribution of this shock.

[Figure 6 about here.]

Several important features of the US economy in the 1995Q1-2015Q1 pe-

riod emerge from our estimated shock decomposition. In particular, the

most important negative contribution during the Great Recession of 2008-

2009 came from the overall investment risk shock (pink) and the private

saving shock (black). Their joint occurrence reflected a sudden and strong

deterioration of the financial sector: the credit channels from the household

savings to the private firms investing in physical capital and R&D became

less reliable, and the production and the R&D sectors could not get funding

comparable to the pre-crisis trend.

At the same time, savers are more pessimistic about the future. The in-

creased propensity to save leads to a drop in consumption expenditure. As

26



a result of the simultaneous drops in consumption and investment aggre-

gate private demand fell, negatively affecting GDP growth. While at first

monetary policy turned to an expansionary stance, reflected by the positive

contribution of the green shock, when it hit the ZLB it became unable to

bring the policy interest rates into the negative territory, as would have

been dictated by the pre-crisis Taylor rule, and it became unable to give

enough relief to the financially strained firms and households. The Fed was

necessarily forced to run a more restrictive monetary policy than dictated

by the Taylor rule, which is reflected by the negative contribution of the

monetary policy shock to GDP growth. Other aspects of the Fed’s policy,

however, seem to have succeeded in repairing the post-crisis financial sec-

tor, and in fact we see it reflected by the end of the negative contribution

of the investment and saving risk premium shocks starting in 2010.

The blue bars dynamics suggest that fiscal policy must have helped the

US economy only upon impact, but its overly-expansionary character, by

increasing public debt accumulation nearly out of control (even eventually

hitting the government shutdown bound) was not able to give a persistently

positive contribution to GDP growth: its cumulative contribution became

negative in the second part of 2009.19

Following the crisis, firms seem to have been subject to a more com-

petitive environment, as shown by the positive GDP growth effects of the

negative price mark-up shocks (light red bars). Instead, the labor market

seems to have suffered rigidities in the two years after the crisis, represented

by harmful wage mark-up shocks - shown in yellow in the figure.

Interesting is also the picture emerging from the shock decomposition

around the 2001 dotcom bubble burst. The adverse financial conditions

associated with the potentially persistent harmful investment and saving

shocks in the figures were at least partially offset by a strongly expansionary

monetary policy stance, also corroborated by expansionary fiscal policy.

Our estimated macroeconomic model allows to identify interesting as-

pects of the R&D and innovation sector. In fact, we observe a persistently

negative contribution of the R&D spillover shock (brown bar) starting in

19This observation may also reflect the expectation of higher future taxes associated
with the persistently higher future government spending resulting from the Affordable
Care Act (popularly known as “Obamacare”) announced to Congress in September 2009
and enacted in March 2010.
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2002. This observation is a startling confirmation of the negative effects

of too strict IPRs which penalized academic and basic research in the US

innovation system following the Madey vs Duke Supreme Court verdict of

2002, which formally ended the so called “research exemption” doctrine,

which previously permitted patented discoveries to be freely used for re-

search purposes without incurring the risk of patent infringement (see Cozzi

and Galli 2014).

[Figure 7 about here.]

How does the model interpret the time series on R&D investment?

Figure 7 presents a variance decomposition of R&D investment. Our es-

timation explains the drop in R&D investment mainly by a rise in R&D

risk premia and, during periods of financial distress, also in investment

risk premia. The malfunctioning of financial markets has a strong adverse

effect on R&D investment. The constrained ability of financial markets

to channel savings thus helps explain the low growth following the Great

Recession. The slow recovery from severe financial crises has also been

emphasized by recent literature (e.g., Boissay et al. 2016). Apart from the

dot-com bubble and the short pre-crisis boom, R&D spillovers affect R&D

investment mostly negative. Moreover, wage mark-up and monetary policy

shocks contribute to fluctuations in R&D investment.

3.6 Shocks at the Zero Lower Bound

Following the Great Recession, at least through late 2015, the ZLB on

interest rates was effectively binding and hampered the Fed’s ability to

stimulate the economy by further lowering the policy rate. Formally, we

impose the ZLB constraint on the net nominal interest rate by modifying

the Taylor rule in equation (27) to:

it =

{
ρiit−1 + (1− ρi) (−ī+ ηiπ (πt − π̄) + ηiyỹt) + εit, if it > iLB

iLB, otherwise

}
.

(38)

To account for the occasionally binding constraint, we solve the model using

an algorithm build on the OccBin tool (Guerrieri and Iacoviello 2015).

We then use the piecewise linear solution to obtain smoothed estimates of
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latent variables under the constraint. In a last step we use these estimates

to assess the impact of specific shocks on GDP growth.20

Figure 8 displays contributions of policy shocks on GDP growth ob-

tained from a standard linear estimation (blue bars) and a piecewise linear

solution (red bars). Accounting for the non-linearity of the ZLB implies

a stronger positive effect of fiscal policies (top panel) at the beginning of

the Great Recession. Subsequent contractionary fiscal policy shocks during

the slump are also amplified and more visible. Moreover, in the piecewise

linear solution, the ZLB absorbs the negative monetary policy shocks. In

contrast, the linear solution shows negative monetary shocks because the

Taylor Rule would imply negative nominal interest rates during the Great

Recession (middle panel). The central bank’s inability to reduce the policy

rate also amplifies financial disturbances. Consequently, investment risk

premium shocks propagate more at the onset of the crisis (bottom panel).

[Figure 8 about here.]

3.7 Financial Market Dynamics

Our model has two shocks that mainly affect financial markets: investment

risk premium shocks, εSt and savings shocks εCt . It is instructive to com-

pare the smoothed shocks of our baseline to a model without endogenous

R&D and innovation. Consider Figure 9, which displays the unobserved

smoothed shocks computed by the Kalman smoother.

[Figure 9 about here.]

Both models display the same basic patterns: Low investment risk premia

until the dot-com bubble bursted in 2001 and again during the build-up

of the financial crisis. Then, during the Great Recession, we see a large

increase in investment risk premia. However, there are striking differences

between the model with R&D (light blue continuous line) and the exoge-

nous TFP model (orange dashed line). The estimated shocks to mimic

financial crisis dynamics are smaller and within a smaller confidence set in

20We set the lower bound for quarterly policy rates to iLB = 0.0016. See Ratto and
Giovannini (2017) for further technical details on the algorithm and its implementation.
Anzoategui et al. (2016) use a similar approach.
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the model with R&D. Consequently, the implied time series of the estimated

investment risk premium shock in the model with R&D is much smoother

than in the exogenous TFP model. Accounting for semi-endogenous growth

thus helps address the criticism that large shocks - which are unlikely to

be observed - are necessary to explain the Great Recession using a DSGE

methodology. Moreover, variables oscillate less around their steady state

value. A linearized model with semi-endogenous growth may therefore be

able to capture crisis dynamics with a higher accuracy.

4 Extensions

4.1 Fully Endogenous Growth

The comparative statics as well as the policy implications of the semi-

endogenous models are often quite different from those of endogenous growth

models: for example, R&D subsidies have huge long-term effects in endoge-

nous growth models, while no long term effect in semi-endogenous growth

models. Hence, we explore the robustness of the semi-endogenous model

laid down in the previous sections against alternative growth modeling

frameworks.

The most important alternative to the semi-endogenous growth ap-

proach used in the previously described main model is the so called scale-

effect free fully endogenous growth model, developed by Smulders and

van de Klundert (1995), Young (1998), Peretto (1998), Dinopoulos and

Thompson (1998), Howitt (1999) among others.21 Among the interesting

aspects of this approach is that R&D policies have a steady state effect

on the growth rate of per capita GDP without implying that this growth

rate is affected by the population size, as instead counterfactually implied

by the first generation endogenous growth models à la Romer (1990) and

Aghion and Howitt (1992).

To switch to a fully endogenous growth framework it is enough to modify

21See Madsen (2008) for empirical support.
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eq. (22) to this form:

AY,max
t = AY,max

t−1 + AY,max
t−1

(
XRD
t−1

Yt−1

)λA
σRDt , (39)

which amounts to setting parameter ϕ equal to 1 and dropping the labor

force variable from the term in brackets. Therefore, we eliminate the de-

creasing returns to the intertemporal knowledge spillover, while maintain-

ing the static decreasing returns to R&D represented by the “stepping on

toes” R&D congestion externality parameter λA (Jones and Williams 1998).

Notice that by dividing both sides of eq. (39) by AY,max
t−1 and subtracting

1 we obtain the equilibrium growth rate of the technological frontier - and

in steady state of the aggregate productivity - in the following expression:

AY,max
t − AY,max

t−1

AY,max
t−1

=

(
XRD
t−1

Yt−1

)λA
σRDt . (40)

The permanent effect policies can be seen from eq. (40): Whatever per-

manently affects the R&D investment as a share of GDP will also affect

the trend growth rate permanently. The R&D spillover shock σRDt will

only make the growth rate fluctuate around such policy determined long-

term level. Since σRDt = σRD exp(εσt ), its deterministic steady state value

is σRD. Therefore, the steady state growth rate, denoted by dropping time

t indexes, of this economy is:

gAY = gAY,max =

(
XRD

Y

)λA
σRD, (41)

where XRD

Y
is the steady state R&D/GDP ratio, which can be affected by

policies. In fact, all long term policies, independently of their specific focus,

may influence directly or indirectly XRD

Y
and therefore its long-term value,

and this is enough to affect long term growth.

As a consequence, the steady state growth rate eq. (25) of the previous

semi-endogenous growth model will no longer be valid. The remaining

equations of the main model of the previous section continue to hold, and

therefore we do not replicate them here.
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4.2 Some degree of Exogenous Growth

What if growth were truly exogenous? In that case the traditional DSGE

macromodels would be right. So far we have just assumed that growth was

not exogenous, and therefore we have closed this possibility by assumption.

It would be insightful, instead, to open the door to at least some degree

of exogenous growth in view of letting the data speak and tell us how

much growth is exogenous. We can indeed generalize the previously set

framework to allow the presence of exogenous growth in the picture, and

generalize the model to nest, as a special case, the fully exogenous growth

case. Then the final word on whether or not growth is exogenous will just

be a matter of estimating a more general model. In this section we briefly

delineate how to achieve that, both in the semi-endogenous growth frame-

work of the main model, and in the fully endogenous growth framework of

the previous subsection.

4.2.1 Exogenous and Semi-endogenous Growth model

We will here assume that there is a deterministic exogenous trend com-

ponent A∗t growing at rate gA∗ , in the production function (9), which now

becomes:

Yit =

(
AYit
AYt

)(
A∗tA

Y
t Nit

)a (
cuitK

tot
it−1
)1−a

. (42)

Therefore, total Factor Productivity, TFP t, now becomes:

TFP t =
(
AYt A

∗
t

)a
. (43)

As in the semi-endogenous model of the main section, the endogenous tech-

nological frontier AY,max
t growth rate will still converge to

gAY,max
t

=
λAgPOP
1− ϕ

, (44)

while the total TFP growth rate will be

gTFPt = a
(
gA∗ + gAY,max

t

)
→
t→∞

a

(
gA∗ +

λAgPOP
1− ϕ

)
, (45)
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which asymptotically includes both a purely exogenous and a semi-endogenous

part. Notice that we have introduced an exogenous growth term gA∗
t

as an

unconstrained parameter, so that we can let the Bayesian estimation tell

whether it is positive, negative, or insignificantly different from zero. We

define the share of purely exogenous growth αexo ≡ (g∗A)/(gA∗ + gAY,max).

Correspondingly, (1−αexo) describes the share of the semi-endogenous fron-

tier growth rate. In the extreme case of purely exogenous growth, αexo = 1,

total frontier growth will only be driven by gA∗ .

4.2.2 Hybrid Exogenous and Fully Endogenous Growth model

Here too we will introduce a deterministic exogenous trend component A∗t

growing at rate gA∗ , in the production function (9):

Yit =

(
AYit
AYt

)(
A∗tA

Y
t Nit

)a (
cuitK

tot
it−1
)1−a

. (46)

Again, total Factor Productivity, TFP t, is:

TFP t =
(
AYt A

∗
t

)a
. (47)

Notice that the endogenous technological frontier AY,max
t growth rate will

now be

gAY,max
t

=

(
XRD
t−1

Yt−1

)λA
σRDt , (48)

while the total TFP growth rate will be

gTFPt = a
(
gA∗ + gAYt

)
→
t→∞

a

(
gA∗ +

(
XRD

Y

)λA
σRD

)
, (49)

which asymptotically includes a pure exogenous and a fully endogenous

part. Here too we leave gA∗
t

free, so that estimation will tell us whether it

is positive, negative, or insignificantly different from zero.

4.3 Empirical Results

Table 4 shows the empirical results of the three extensions we have just

sketched: the fully endogenous growth version, the hybrid exogenous and
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semi-endogenous, and the hybrid exogenous and fully endogenous. Prior

choices are kept identical. We have listed the mean estimates of key param-

eters governing the growth and innovation dynamics across different model

extensions. Additional details and results are reported in Appendix C.4.

Table 4: Estimated parameters across extensions

αexo γRD n̄ λA ϕ ρAY uAY ρRD uσ

Baseline 0 151.84 0.05 0.25 0.83 0.46 0.04 0.93 0.28
Fully Endogenous 0 133.38 0.05 0.50 1 0.42 0.04 0.92 0.30
Exo. & Semi-Endo. 0.13 135.51 0.05 0.26 0.81 0.43 0.04 0.93 0.32
Exo. & Fully Endo. 0.10 133.17 0.04 0.34 1 0.54 0.04 0.92 0.32

This table reports mean values for estimated parameters. Bold values indicate cali-
brated parameters. Values are rounded to the second decimal.

First, consider the estimate αexo for which we have chosen a wide prior.

This parameter describes what share frontier growth is purely exogenous

according to our model. In both hybrid extensions which allow for purely

exogenous growth the estimated share αexo is small and consistently esti-

mated at around 10 − 13 percent. Thus, our estimations confirm endoge-

nous R&D investment as a key driver of frontier growth. By the same

token, the modest share of the exogenous component suggests a strong

role for R&D policies. This result is well in line with the estimates of

our baseline model. The large intertemporal knowledge spillover parame-

ter ϕ implies long-lasting impacts of policies and shocks (such as financial

disturbances) affecting R&D dynamics. Moreover, the estimated share of

exogenous growth, αexo, should be interpreted as an upper bound: It may,

for instance, also reflect technological spillovers from other countries which

we do not explicitly model here.

Second, in the extensions using a fully endogenous growth framework,

we can estimate the “stepping-on-toes” parameter (Jones and Williams

2000). In our baseline version this parameter was a function of estimated

parameters and pinned down via the steady state growth rate eq. (25). A

fully endogenous growth framework, however, allows us to estimate its value

at 0.50. This estimate indicates substantially decreasing returns to R&D.

It is lower (0.34) in the hybrid version with exogenous growth because some

frontier growth is purely exogenous in that case and not affected by effort
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duplication. In their calibrated model, Jones and Williams (2000) suggest

0.50 as a lower bound of λA. However, as argued before in Section 2.4,

gAY,max
t

refers to the growth of frontier productivity, and not to the growth

rate of patents. Consequently, we already account for the effects of patents

on productivity growth. This difference in growth accounting explains the

relatively low value of λA compared to Jones and Williams (2000).

Finally, other estimates of growth and innovation parameters are con-

firmed across the extensions considered here. We find high R&D adjust-

ment costs and the steady state share of innovating sectors is estimated at

around 5 percent per quarter. R&D spillover shocks are large and persis-

tent, whereas shocks to R&D investment risk premia are smaller and of a

more temporary nature.

5 Conclusion

The macroeconomic experience of the last decade stressed the importance

of jointly studying the growth and fluctuations behavior of the economy.

In fact, trend and business cycle seemed quite intertwined, suggesting the

need to quantify key drivers of these quite complex and unprecedented dy-

namics. To that aim we have here built an integrated medium-scale DSGE

model featuring a New Keynesian part built upon a rich set of features

common to Smets and Wouters (2003) and related literature, as well as

a Schumpeterian endogenous and/or semi-endogenous growth engine. To

guarantee independence of the long-term growth approach used, we also

have allowed the model to nest exogenous growth as a special case, leav-

ing it to the data to decide. As in Aghion and Howitt (1992) and Nuño

(2011), innovations are the outcome of a patent-race in every sector, with

each innovation improving upon existing goods. Innovating firms replace

the incumbent monopolist and earn higher profits until the next innovation

occurs. Knowledge spillovers push the technological frontier further.

We have estimated the main model and its extensions using Bayesian

methods, and have applied it to the quarterly data of the US economy.

Shocks to investment risk premia emerge as the core driver of the Great

Recession. In line with recent literature (e.g., Justiniano et al. 2011) this

finding can be interpreted as a malfunctioning financial sector which we
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do not explicitly model. Positive mark-up and household savings shocks

also contributed to the recent slump. Fiscal and monetary policies could

partially offset these adverse shocks.

Our data analysis confirms that the generality of frontier growth in

potential GDP is driven by endogenous R&D investment. In addition,

we have provided a sophisticated estimation of key innovation and growth

parameters. Our results support Jones’ (1995) semi-endogenous growth

model where R&D policy shocks cannot permanently affect the per capita

GDP growth rate. However, we have found evidence for strong intertem-

poral knowledge spillovers which implies that R&D policy shocks, or any

other shocks directly or indirectly affecting the R&D/GDP ratio, will have

relatively long-lasting effects.
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Appendix

A Data Description

All data sets (unless otherwise noted) are post-war US data observed from 1995Q1

on. Data of macroeconomic observables come from the Bureau of Economic Analysis

(BEA) and the Federal Reserve. Observables include time series of: GDP, GDP defla-

tor, population, total employment, employment rate, employment in hours, participa-

tion rates, relative prices with respect to GDP deflator (VAT-consumption, government

consumption, and private investment), government investment price relative to private

investment, nominal policy rate, and nominal shares of GDP (consumption, govern-

ment consumption, investment, government investment, R&D investment, government

interest payment, transfers, public debt, and wage bill).

We use quarterly R&D data from the US. Bureau of Economic Analysis (NIPA

Table 5.3.5. Private Fixed Investment by Type). The data are seasonally adjusted

at annual rates. In particular, we employ the series on intellectual property rights

Y001RC1 from which we subtract the investment in Entertainment, literary, and artis-

tic originals (Y020RC1). The data are available at http://www.bea.gov/national/

nipaweb/DownSS2.asp.

B Additional Model Details

B.1 Intermediate good firms

Firms maximize a stream of future dividends dit discounted at the real stock return rst :

max
PSt
PYt
≡ max

∞∑
s=t+1

Msdis, (B.1)

by choosing labor, capital, investment, capacity utilization, and prices. The stock market

specific stochastic discount factor Ms : is defined as:

Ms =
1 + rst∏s

r=t (1 + rsr)
(B.2)

In period t dividends are:

dit =
(
1− τK

)(
Yit −

Wt

PYt
Nit

)
+ τKδKtot

it−1 − Iit − adjit, (B.3)

where Wt is the wage rate, Iit is physical capital investment, τK is the profit tax, δ is

capital depreciation rate and adjit are total adjustment costs associated with price Pit

and labor input Nit adjustment or moving capacity utilization cuit, and investment Iit
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away from their optimal level.

For tractability, we make two more assumptions. (i) When a new incumbent starts

production, she inherits the previous stocks (employment, capital) and costs of the

previous firm that dropped out. (ii) As discussed in the main text, moving closer to

the frontier implies higher adjustment costs due to sophistication. As a consequence,

adjustment costs reflect the relative technological position
(
AYit
AYt

)
of the sector i.

adjit = adjPit + adjNit + adjcuit + adjIit (B.4)

with

adjPit =
γp

2
Yt

(
Pit
Pit−1

− exp(π)

)2(
AYit
AYt

)
(B.5)

adjNit =
γn

2
Yt

(
Nit
Nit−1

− exp(gpop)

)2(
AYit
AYt

)
(B.6)

adjcuit = Ktot
t−1

(
γu,1 (cuit − 1) +

γu,2

2
(cuit − 1)

2

)(
AYit
AYt

)
(B.7)

adjIit =

γI,1
2
K
t−1

(
Iit
Ktot
t−1

− δt
)2

+
γI,2

2

(
Iit − e∆trendKt Iit−1

)2

Ktot
t−1

(AYit
At

)
. (B.8)

Firms maximize dividends subject to the production technology (8), the demand sched-

ule for final goods (B.10), and the capital law of motion (11).22 We allow for shocks to

labor demand and price mark-ups, denoted εNDt and εMUY
t , respectively.

B.2 Final Goods

A single final good Yt is produced by perfectly competitive firms by combining a contin-

uum of differentiated intermediate goods, Yit where i ∈ [0, 1]. We adopt a Dixit-Stiglitz

production technology

Yt =

[∫ 1

0

(Yit)
σy−1
σy di

] σy

σy−1

, (B.9)

where σy is the exogenous substitution elasticity between intermediate goods which

governs the mark-up on differentiated goods. The demand for a differentiated good i is

then:

Yit =

(
Pit
Pt

)−σy
Yt, (B.10)

22Note that δt 6= δ, as long as we require that capital adjustment costs are zero on

the trend-path. δt is time-varying if capital trend is time-varying. Finally e∆trendKt = ḡt
is endogenous and grows at the rate of the balanced growth path. Accordingly, δt is

defined as follows: δt = e∆trendKt − (1− δk). Moreover, firms do not pay for the rental
of public capital.
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where Pit is the price of the good and:

Pt =

[∫ 1

0

(Pit)
1−σy

di

] 1
1−σy

. (B.11)

B.3 Wage Setting

The trade union sets wage rates at a mark-up, µwt over the marginal rate of substitution

between working and consuming. Let us denote the marginal disutility of labor for

household type r = {s, c} by

V rN,jt = ωN εUt (Crt )
1−θ (

Nr
jt − hNNr

t−1

)θN
. (B.12)

We assume that real wages adjust sluggishly as in Blanchard and Gaĺı (2007) and follow

(
1− τN

) Wt−1

Pt−1
+ γw

(
πwt (1− sfw)πwt−1

)
(1 + πwt )

γw
Nt+1

Nt

1 + πyt+1

1 + ist+1

(
πwt+1 (1− sfw)πwt+1

) (
1 + πwt+1

)
=

(
µw

ωsV sN,jt + (1− ωs)V cN,jt
ωsUsC,jt + (1− ωs)U cC,jt

πC,vatt

)1−γwr ((
1− τN

) Wt−1

Pt−1

)1−γwr

, (B.13)

where the parameters γwr and γw govern real and nominal wage rigidities, respectively.

πw ≡ log(Wt/Wt−1) and πC,vatt denote wage inflation and consumption price inflation,

respectively. sfw is the share of forward-looking labor supply. τN is labor income

tax. Wage adjustment costs introduce nominal rigidities and the costs are borne by the

household.
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C For Online Publication

C.1 Additional Derivations: Intermediate Good Pro-

ducers

Lagrangian formulation The Lagrangian formulation of firm i reads as follows:

maxEt

∞∑
s=t

βs−tMs

[((
1− τK

)(Pis
Ps

(
Pis
Ps

)−σY
Ys −

Ws

Ps
Nis

)
+ τK δ̃Kis−1 −

P Is
Ps
Iis − adjis
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(C.14)

where µkis and µyis denote the Lagrangian multipliers on the capital law of motion and

the production technology. This optimization problem implies the following first-order

conditions (FOCs) where we drop firm-specific indices when the equilibrium conditions

are derived due to the representative firm assumption.

FOC w.r.t. labor:

Mt

(
−
(
1− τK

) Wt

Pt
−
(
AYit
AYt

)
γn

Yt
Nit−1

(
Nit
Nit−1

− 1

)
+ µyitα

Yit
Nit

)
(C.15)
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so we get in a symmetric equilibrium
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and

µyt a
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Nt
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(C.17)

where use was made of the fact that in the equilibrium sector-specific firms are sym-

metric so that Nit = Nt. Note also that Mt+1

Mt
≡ 1+πt+1

1+ist+1
. We also defined gNt :=

Nt−exp(gpop)Nt−1

Nt−1
and πt := 4P t

Pt−1
. Moreover, we used the fact that for the average firm

∫ 1

0

(
AYit
AYt

)
d i = 1. (C.18)

FOC w.r.t. capital implies
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k
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k
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= 0, (C.19)
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or,
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Further simplifying gives
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where Qt := µkt is the Tobin’s (marginal) Q.

The FOC w.r.t. investment is
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or,

Qt = 1 +
(
AYit
AYt

)
γI,1

(
It

Kt−1
− δkt

)
+
(
AYit
AYt

)
γI,2 It−e

∆trendKt It−1

Kt−1
−

1+πt+1

1+ist+1

(
AYit
AYt

)
γI,2 It+1−e

∆trendKt+1It
Kt

.
(C.23)

The FOC w.r.t. capacity utilization is given by
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or,
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Finally, the FOC w.r.t. differentiated output price reads:
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and since
∫ 1

0
Pitd i = Pt, we can rewrite
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Assuming symmetry:
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(C.28)

45



C.2 Additional Calibrated Parameters

In this table we report additional calibrated values governing the autocorrelation of

exogenous shock processes.

Table 5: Additional Calibrated Parameters

Parameter Description Value

ρG Governmental consumption shock 0
ρIG Governmental investment shock 0
ρi Taylor rule 0
ρU Phillips curve shock 0
ρW Labor demand shock 0

This table reports values for calibrated parameters.

C.3 RMSE and Fit of the Model

In this section we report goodness of fit results across models. gX denotes the growth

rate of variable X.

Table 6: Goodness of Fit

Baseline Model Exogenous TFP

RMSE R2 RMSE R2

gY 0.0058262 0.21773 0.0060261 0.16314
gC 0.0051311 0.053886 0.0048975 0.13808
gI 0.03133 0.15329 0.028189 0.15553
gItot 0.02849 0.16956 - -

gX
RD

0.012924 0.16312 - -
gG 0.0074899 0.074295 0.0075029 0.072558
gIG 0.0168 -0.11174 0.016613 -0.087635
gBG 0.0036565 0.90771 0.0036284 0.90913
gL 0.0036159 -0.15697 0.0035868 -0.1384
gN 0.0045941 0.39249 0.0047076 0.36211
ip 0.0010315 0.96771 0.0010382 0.96729
π 0.001955 0.23318 0.0020662 0.14349
πW 0.0073016 0.11153 0.0073008 0.11172
πWR 0.0073708 0.11234 0.0074104 0.10279

This table reports goodness of fit measures for our baseline model and the exogenous
TFP model.
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C.4 Estimation Results Across Specifications

Table 7: Estimated Parameters Across Model Versions

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

Baseline

αexo calibrated 0 - 0 - - -

γRD gamm 60.000 40.0000 151.840 30.9571 107.5168 200.9417

n̄ beta 0.025 0.0120 0.047 0.0091 0.0327 0.0618

λA calibrated 0.251 - 0.251 - - -

ϕ beta 0.700 0.2000 0.835 0.0958 0.7089 0.9715

ρAY beta 0.500 0.2000 0.463 0.1727 0.1681 0.7352

uAY gamm 0.010 0.0040 0.043 0.0068 0.0327 0.0544

ρRD beta 0.500 0.2000 0.928 0.0344 0.8795 0.9815

uσ gamm 0.200 0.0800 0.283 0.0849 0.1549 0.4009

Fully Endogenous

αexo calibrated 0 - 0 - - -

γRD gamm 60.000 40.0000 133.381 27.6431 91.2347 177.0417

n̄ beta 0.040 0.0160 0.048 0.0093 0.0333 0.0627

λA beta 0.500 0.2000 0.497 0.2017 0.1715 0.8316

ϕ calibrated 1 - 1 - - -

uAY gamm 0.010 0.0040 0.039 0.0068 0.0289 0.0510

ρAY beta 0.500 0.2000 0.425 0.2216 0.0632 0.7205

ρRD beta 0.500 0.2000 0.924 0.0529 0.8537 0.9819

uσ gamm 0.200 0.0800 0.298 0.0911 0.1573 0.4436

Hybrid Exogenous Semi-Endogenous

αexo beta 0.000 0.4000 0.126 0.1591 -0.0982 0.3432

γRD gamm 60.000 40.0000 135.511 26.9539 84.9601 173.1705

n̄ beta 0.025 0.0120 0.046 0.0116 0.0285 0.0616

λA calibrated 0.257 - 0.257 - - -

ϕ beta 0.700 0.2000 0.807 0.1511 0.6257 0.9850

ρAY beta 0.500 0.2000 0.434 0.2180 0.1089 0.7802

uAY gamm 0.010 0.0040 0.039 0.0060 0.0288 0.0491

ρRD beta 0.500 0.2000 0.933 0.0332 0.8828 0.9818

uσ gamm 0.200 0.0800 0.324 0.0984 0.1723 0.4675

Hybrid Exogenous Fully Endogenous

αexo beta 0.000 0.4000 0.103 0.1494 -0.0985 0.3195

γRD gamm 60.000 40.0000 133.170 25.8453 94.4226 178.4717

(Continued on next page)
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Table 7: (continued)

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

n̄ beta 0.025 0.0120 0.045 0.0098 0.0304 0.0612

λA beta 0.500 0.2000 0.344 0.1595 0.0822 0.5826

ϕ calibrated 1 - 1 - - -

ρAY beta 0.500 0.2000 0.543 0.1709 0.2678 0.8133

uAY gamm 0.010 0.0040 0.041 0.0054 0.0327 0.0499

ρRD beta 0.500 0.2000 0.918 0.0430 0.8557 0.9781

uσ gamm 0.200 0.0800 0.324 0.0984 0.1723 0.4675

This table reports values of selected estimated parameters across model versions.

HPD inf and HPD sup refer to the 90 percent highest posterior density interval. The

rows uAY and uσ report the standard deviations of the innovations.
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Figure 1: Real GDP and R&D Investment

Left panel: The blue continuous line depicts real GDP in Billions of Chained
2010 dollars in the US. Shaded areas denote NBER recessions. The dashed
red line (dashed black line) fits a linear trend from 1995Q1 until 2007Q3 (from
2009Q3 until 2015Q1). Right panel: The blue continuous line depicts real R&D
investment in Billions of Chained 2010 dollars (excluding software expenses).
Shaded areas denote NBER recessions.
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Figure 2: Impulse Response Functions: R&D Risk Premium Shock

This figure displays the dynamic response to a positive temporary R&D risk
premium shock of one estimated standard deviation. Variables are displayed in
percentage points deviations from their steady state value. The interest rate
is reported in annualized basis points. Impulse responses are displayed for 40
periods, corresponding to 10 years.
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Figure 3: Impulse Response Functions: R&D Spillover Shock

This figure displays the dynamic response to a positive temporary knowledge
spillover shock of one estimated standard deviation. Variables are displayed in
percentage points deviations from their steady state value. The interest rate
is reported in annualized basis points. Impulse responses are displayed for 40
periods, corresponding to 10 years.
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Figure 4: Impulse Response Functions: Investment Risk Premium
Shock

This figure displays the dynamic response to a positive temporary investment
risk premium shock of one percent standard deviations. Variables are displayed
in percentage points deviations from their steady state value. The interest rate
is reported in annualized basis points. Impulse responses are displayed for 40
periods, corresponding to 10 years. The light blue continuous line depicts values
of the baseline model with semi-endogenous growth. The dashed orange line
depicts values of a model with exogenous TFP growth.
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Figure 5: Impulse Response Functions: Savings Shock

This figure displays the dynamic response to a positive temporary savings shock
of one percent standard deviation. Variables are displayed in percentage points
deviations from their steady state value. The interest rate is reported in annual-
ized basis points. Impulse responses are displayed for 40 periods, corresponding
to 10 years. The light blue continuous line depicts values of the baseline model
with semi-endogenous growth. The dashed orange line depicts values of a model
with exogenous TFP growth.
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Figure 6: Historical decomposition of real GDP growth rate (year-
on-year)

This figure shows a historical variance decomposition of the observed time series
of real GDP. The black continuous line displays demeaned series of real GDP
growth (year-on-year). Vertical bars indicate the relative contribution of each
(group of) shocks to (i) fiscal policy rules (blue), (ii) monetary policy (light
green), (iii) price mark-ups (red), (iv) saving preferences (black) (v) investment
risk premia (pink), (vi) labor demand (dark green), (vii) wage mark-up (yellow),
as well as innovation specific shocks, such as shocks to (viii) the R&D risk pre-
mium (light blue) and (ix) R&D spillovers (brown). All remaining shocks (x)
are grouped in Others (gray).
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Figure 7: Historical decomposition of R&D investment growth rate
(year-on-year)

This figure shows a historical variance decomposition of the observed time series
of private R&D investment. The black continuous line displays demeaned series
of real private R&D investment growth (year-on-year). Vertical bars indicate the
relative contribution of each (group of) shocks to (i) fiscal policy rules (blue), (ii)
monetary policy (light green), (iii) price mark-ups (red), (iv) saving preferences
(black) (v) investment risk premia (pink), (vi) labor demand (dark green), (vii)
wage mark-up (yellow), as well as innovation specific shocks, such as shocks to
(viii) the R&D risk premium (light blue) and (ix) R&D spillovers (brown). All
remaining shocks (x) are grouped in Others (gray).
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Figure 8: Contributions of Shocks at the ZLB

This figure displays the (non-additive) contribution of shocks to year-on-year
GDP growth. Blue (red) bars indicate results from a linear (piecewise linear) so-
lution. Additional technical details are reported in Ratto and Giovannini (2017).
Note the larger Y-scale in the bottom panel.
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Figure 9: Smoothed Shocks across Versions

This figure displays the values of the unobserved investment risk premium shock
(left panel) and the unobserved savings shock (right panel) over the sample. Both
are computed via the Kalman smoother. The light blue continuous line (dashed
orange line) depicts values of the baseline model with semi-endogenous growth
(model with exogenous TFP growth). Shaded areas denote NBER recessions.
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