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Main idea of code-based cryptosystems

Decoding a random linear code is a hard problem.
Public key/information: the parity check matrix of a random
(looking) linear code, and a syndrome
Secret: the solution to the corresponding syndrome decoding
problem: usually a low-weight error vector (and/or the
corresponding message/codeword)

s︸︷︷︸
syndrome

= e︸︷︷︸
error vector

· H>︸︷︷︸
PC matrix

Various weights:

Hamming weight
rank weight
Lee weight
etc. (homogeneous weight, sum rank weight)
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Reformulation and generalization

The syndrome decoding problem asks for a vector that is

1 an element of the coset of the subspace ker(H) given by s,

2 in the sphere {x | wt(x) = w} = {x | dH(x,0) = w}.

=⇒ we can relax or generalize both of the above

But what do we really need?

1 We need an efficient representation of the code (e.g. by linearity).

2 If we do not think about weights/distances any more, it is not
code-based crypto.

3 For PKE we need an efficient decoding algorithm.

4 For identification schemes decoding is not necessary. But we need
transitive ”linear” maps on the spheres (in the existing schemes),
and identifiers of the cosets (e.g. syndromes).
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How could we use the subspace metric?
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Quick reminder

Definition

Denote by Pq(n) the set of all subspaces of Fnq and by Gq(k, n) the set
of all k-dimensional subspaces of Fnq (”Grassmannian”).

1 A subset C ⊆ Pq(n) is called a subspace code. If C ⊆ Gq(k, n),
then it is also called a constant-dimension code.

2 The subspace distance on Pq(n) is defined as

dS(U ,V) := dim(U) + dim(V)− 2 dim(U ∩ V).
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Problems to solve

1 Efficient representation of the public key (”linearity”):

I lifted rank-metric codes1 – generator matrix of the rank-metric code
I orbit codes – generators of the group in GLn defining the orbit code

2 Distance measure for the correct solution (”weight”):

I lifted rank-metric codes – rank weight (∼= subsp. dist. to rs[I | 0])
I orbit codes – subspace distance to a prescribed ”zero” codeword

3 For McEliece/Niederreiter type systems we also need an efficient
decoding algorithm:

I lifted rank-metric codes – Gabidulin code decoders
I orbit codes – ???

1including multi-level construction and spread codes
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1 General Setup for CBC

2 CBC with Lifted Rank-Metric Codes

3 CBC with Orbit Codes

4 Summary and Conclusions



McEliece with lifted Gabidulin codes

Secret key: Gabidulin code CGab ⊆ Fκ×k
qn−k

Public key: Generator matrix Gpub of Cpub := φ(CGab) 2

Encryption (encoding plus random subspace errors):

Dρ(rs[Ik | mGpub︸ ︷︷ ︸
expanded over Fq

])⊕ E

such that ρ+ dim(E) ≤ t (error correction capability)

Decryption: Use lifted Gabidulin decoder with application of φ−1

2φ can be any valid rank-metric disguising function.
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Decoding with transformation to secret code

By Silva-Kschischang (2009), decoding the ciphertext in the received
word can be translated to

argmin
X∈Cpub

rk

(
L̂ X −R
0 Ê

)
= argmin

X′∈CGab

rk

(
L̄ X ′ − φ−1(R)
0 Ē

)
which is in turn equivalent to a rank-metric decoding problem with row
and column erasures.
(L̂, Ê, R are given by the structure of the cipher vector space; L̄, Ē also
depend on φ.)

=⇒ For both the receiver and the attacker it is equivalent to a
rank-metric decoding problem with row/column erasures.

=⇒ Subspace metric not necessary, can just use rank metric.
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Multiplicative analog of linearity via orbit codes

Group theoretic (multiplicative instead of additive) analog of
linear codes: orbit codes in Gq(k, n)

Definition

Let G ≤ GLn be a group and U0 ∈ Gq(k, n). Then U0G is an orbit code
in Gq(k, n).

No efficient decoders known (yet)3 =⇒ not usable for McEliece

But for identification scheme?!

3except for the cases where the orbit code is also a lifted MRD or spread code
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Theoretical setup for McEliece with orbit codes

Secret key: Generators of orbit code Corb = U0G ⊆ Gq(k, n)

Public key: Generators of disguised code Cpub := φ(Corb)
Encryption (encoding plus random subspace errors):

Dρ(rs[Ik | mGpub︸ ︷︷ ︸
expanded over Fq

])⊕ E

such that ρ+ dim(E) ≤ t (error correction capability)

Decryption: Use orbit decoder with application of φ−1
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])⊕ E

such that ρ+ dim(E) ≤ t (error correction capability)

Decryption: Use orbit decoder with application of φ−1

Questions:

1 What could φ be?
It should keep the orbit structure (for representability), but hide
the structure of the secret code.

2 Do we find orbit codes with an efficient decoder?

9 / 13



Idea for a subspace metric ZK-ID scheme
Secret: coset leader V ∈ Gq(k, n), s.t.

I argmin
B∈G

dS(U0,VB) = In

I dS(U0,V) = t

Public information:
I group G ≤ GLn(q) and U0 ∈ Gq(k, n) (orbit code C := U0G)
I an identifier S of the orbit VG
I distance t

Interactive protocol: Prove to the verifier one of the two per
round:

I secret is on the orbit VG
I secret has subspace distance t to U0

Questions:

How to implement the interactive protocol (computationally)?

What could the orbit identifier (∼= syndrome) be?

How difficult is the general coset leader decoding problem for orbit
codes ( =⇒ security)?
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Ideas and problems with the interactive protocol

Let E ∈ GLn such that V = U0E.

Hamming metric codes orbit codes

sample lin. isometry τ and u ∈ Fnq sample σ and U ∈ GLn
reveal y = τ(u+ e) and hashes reveal Y = σ(UE) and hashes
of u, τ(u), uH> of U, σ(U), identifier of U0UG

1) secret is solution to syndr. eq. 1) secret is on the orbit V0G
reveal τ , verify that reveal σ, verify that (hashed)
Hash(τ−1(y)H> − s) = Hash(uH>) identifier of U0σ−1(Y )G�S is

equal to the one of U0UG
2) secret has weight t 2) secret has distance t to U0

reveal e′ = τ(e), reveal E′ = σ(E),
verify that wt(e′) = t and verify that dS(U0E′,U0) = t and
Hash(y − e′) = Hash(τ(u)) Hash(Y (E′)−1) = Hash(σ(U))

Need operation �S, mapping identifier of U0UEG to the one of U0UG,
and σ with dS(U0E,U0) = dS(U0σ(E),U0) and σ(UE) = σ(U)σ(E).
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Essential open problems

1 We need a complexity estimate for a generic orbit decoder in
Gq(k, n) =⇒ security level

2 We need a syndrome-like identifier for the orbits, and a corres-
ponding map � such that we can recover the orbit U0UG from the
orbit U0UEG.
(Non-commutativity makes this problem really hard.)

3 We need a ”U0-isometry”σ with dS(U0E,U0) = dS(U0σ(E),U0) and
σ(UE) = σ(U)σ(E).

4 The maps/operators need to come from large enough sets to make
it cryptographically secure.
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Summary and conclusions

Using different metrics in code-based cryptography has shown to
be beneficial – what about the subspace metric?

We need efficient representation of the code.
=⇒ lifted rank-metric or orbit codes

For lifted rank-metric codes the decoding problem is equivalent to
rank-metric decoding with row and column erasures.
=⇒ no real advantage

For orbit codes we have no efficient decoder.
=⇒ no McEliece/Niederreiter system

But possibly a ZK-ID scheme... =⇒ many open questions!4

Thank you for your attention!
Questions? – Comments?

4You can do the same for any type of group code, with similar questions.
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