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Main idea of code-based cryptosystems

@ Decoding a random linear code is a hard problem.

e Public key/information: the parity check matrix of a random
(looking) linear code, and a syndrome

@ Secret: the solution to the corresponding syndrome decoding
problem: usually a low-weight error vector (and/or the
corresponding message/codeword)

S = e . H'
~— ~— ~~

syndrome  error vector PC matrix
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Main idea of code-based cryptosystems

@ Decoding a random linear code is a hard problem.

e Public key/information: the parity check matrix of a random
(looking) linear code, and a syndrome

@ Secret: the solution to the corresponding syndrome decoding
problem: usually a low-weight error vector (and/or the
corresponding message/codeword)

s = e . H'
~~ ~~ ~~
syndrome  error vector PC matrix

Various weights:
o Hamming weight
e rank weight
o Lee weight
e etc. (homogeneous weight, sum rank weight)
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Reformulation and generalization

The syndrome decoding problem asks for a vector that is
@ an element of the coset of the subspace ker(H) given by s,
@ in the sphere {x | wt(x) = w} = {x | dg(x,0) = w}.
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Reformulation and generalization

The syndrome decoding problem asks for a vector that is

o
2]

an element of the coset of the subspace ker(H) given by s,
in the sphere {x | wt(x) = w} = {x | du(x,0) = w}.

= we can relax or generalize both of the above

But what do we really need?

o
2]

We need an efficient representation of the code (e.g. by linearity).

If we do not think about weights/distances any more, it is not
code-based crypto.

For PKE we need an efficient decoding algorithm.

For identification schemes decoding is not necessary. But we need
transitive ”linear” maps on the spheres (in the existing schemes),
and identifiers of the cosets (e.g. syndromes).
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How could we use the subspace metric?
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Quick reminder

Definition

Denote by Py(n) the set of all subspaces of Fy and by G,(k,n) the set
of all k-dimensional subspaces of Iy (”Grassmannian”).

@ A subset C C Py(n) is called a subspace code. If C C G,(k,n),
then it is also called a constant-dimension code.

@ The subspace distance on P,(n) is defined as

ds(U,V) := dim(U) + dim(V) —2dimU N V).
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Problems to solve

@ Efficient representation of the public key (”linearity”):

@ Distance measure for the correct solution (”weight”):

Yincluding multi-level construction and spread codes
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Problems to solve

@ Efficient representation of the public key (”linearity”):

» lifted rank-metric codes! — generator matrix of the rank-metric code
» orbit codes — generators of the group in GL,, defining the orbit code

@ Distance measure for the correct solution (”weight”):
» lifted rank-metric codes — rank weight (2 subsp. dist. to rs[I | 0])
» orbit codes — subspace distance to a prescribed ”zero” codeword

@ For McEliece/Niederreiter type systems we also need an efficient
decoding algorithm:
> lifted rank-metric codes — Gabidulin code decoders
» orbit codes — 777

Yincluding multi-level construction and spread codes
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© CBC with Lifted Rank-Metric Codes



McEliece with lifted Gabidulin codes

Secret key: Gabidulin code Cagp C F¥2F

qnfk

e Public key: Generator matrix Gpyp of Cpup = &(Caap)

Encryption (encoding plus random subspace errors):

Dy(sll | mGyu, ) @E
N——

expanded over Fy

such that p + dim(€) <t (error correction capability)
Decryption: Use lifted Gabidulin decoder with application of ¢!

2¢ can be any valid rank-metric disguising function.
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Decoding with transformation to secret code

By Silva-Kschischang (2009), decoding the ciphertext in the received
word can be translated to

T _ T I oa—1
argmin rk (é X ~ R> = argmin rk (g X -9 (R)>

X€ECpup E X'€Cqab E

which is in turn equivalent to a rank-metric decoding problem with row
and column erasures.

(ﬁ, E, R are given by the structure of the cipher vector space; L, E also
depend on ¢.)
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Decoding with transformation to secret code

By Silva-Kschischang (2009), decoding the ciphertext in the received
word can be translated to

T o T 1 oa—1
argmin rk (L X ~ R> = argmin rk <L X -9 (R)>
X€Cpub 0 £ X'€Cqap 0 E

which is in turn equivalent to a rank-metric decoding problem with row
and column erasures.

(ﬁ, E, R are given by the structure of the cipher vector space; L, E also
depend on ¢.)

—> For both the receiver and the attacker it is equivalent to a
rank-metric decoding problem with row/column erasures.

— Subspace metric not necessary, can just use rank metric.
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@ CBC with Orbit Codes



Multiplicative analog of linearity via orbit codes

e Group theoretic (multiplicative instead of additive) analog of
linear codes: orbit codes in G,(k,n)

Definition

Let G < GL,, be a group and Uy € G,(k,n). Then UpG is an orbit code
in Gy(k,n).

3except for the cases where the orbit code is also a lifted MRD or spread code
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Multiplicative analog of linearity via orbit codes

e Group theoretic (multiplicative instead of additive) analog of
linear codes: orbit codes in G,(k,n)

Definition

Let G < GL,, be a group and Uy € G,(k,n). Then UpG is an orbit code
in Gy(k,n).

o No efficient decoders known (yet)®> == not usable for McEliece

o But for identification scheme?!

3except for the cases where the orbit code is also a lifted MRD or spread code
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Theoretical setup for McEliece with orbit codes

Secret key: Generators of orbit code Corp = UpG C Gy(k, 1)
Public key: Generators of disguised code Cpyp := ¢(Corp)

Encryption (encoding plus random subspace errors):

Dp(wsll [ mGpupy ) E
N——

expanded over F,

such that p + dim(€) <t (error correction capability)

Decryption: Use orbit decoder with application of ¢~
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Theoretical setup for McEliece with orbit codes

e Secret key: Generators of orbit code Corp = UoG C Gy(k,n)
e Public key: Generators of disguised code Cpyp := ¢(Cors)

e Encryption (encoding plus random subspace errors):

D,(rs[I} | mGpuy  |)®E
——

expanded over F

such that p + dim(€) <t (error correction capability)
e Decryption: Use orbit decoder with application of ¢!

Questions:

@ What could ¢ be?
It should keep the orbit structure (for representability), but hide
the structure of the secret code.

@ Do we find orbit codes with an efficient decoder?
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Idea for a subspace metric ZK-ID scheme

e Secret: coset leader V € G,(k, n), s.t.
» argmin dg(Uy, VB) = I,
BeG
> ds(Up, V) =t
@ Public information:
» group G < GL,(¢) and Uy € G,(k,n) (orbit code C := UyG)
» an identifier S of the orbit VG
» distance t
e Interactive protocol: Prove to the verifier one of the two per
round:
» secret is on the orbit VG
» secret has subspace distance t to Uy
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Idea for a subspace metric ZK-ID scheme

e Secret: coset leader V € G,(k, n), s.t.

» argmin dg(Uy, VB) = I,
BEG
> ds(Up, V) =1t
e Public information:
» group G < GL,(¢) and Uy € G,(k,n) (orbit code C := UyG)
» an identifier S of the orbit VG
» distance ¢t

e Interactive protocol: Prove to the verifier one of the two per
round:

» secret is on the orbit VG
» secret has subspace distance t to Uy

Questions:
e How to implement the interactive protocol (computationally)?
e What could the orbit identifier (= syndrome) be?

e How difficult is the general coset leader decoding problem for orbit
codes ( = security)?
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Ideas and problems with the interactive protocol
Let E € GL,, such that V = UyE.

orbit codes

’ Hamming metric codes

sample lin. isometry 7 and u € Fj | sample o and U € GL,,
reveal y = 7(u + e) and hashes reveal Y = ¢(UFE) and hashes
of u, 7(u),uH " of U,o(U), identifier of UYyUG

|
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Ideas and problems with the interactive protocol

Let E € GL,, such that V = UyE.

Hamming metric codes

orbit codes

sample lin. isometry 7 and u € Fy
reveal y = 7(u + e) and hashes
of u, 7(u),uH "

sample o and U € GL,
reveal Y = ¢(UFE) and hashes
of U,o(U), identifier of UYyUG

1) secret is solution to syndr. eq.
reveal 7, verify that
Hash(7~'(y)H" — s) = Hash(uH ")

1) secret is on the orbit VoG

reveal o, verify that (hashed)
identifier of Uyo 1 (Y)G®S is
equal to the one of UyUG

2) secret has weight t
reveal ¢/ = 7(e),
verify that wt(e’) =t and
Hash(y — €¢’) = Hash(7(u))

2) secret has distance t to Uy
reveal £’ = o(F),

verify that dg(UpE’,Uy) =t and
Hash(Y (E')~!) = Hash(o(U))

Need operation ®.5, mapping identifier of UyU EG to the one of UyUG,
and o with ds(UE,Uy) = ds(Uyo (E),Uy) and o(UE) = o(U)o(E).
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Essential open problems

@ We need a complexity estimate for a generic orbit decoder in
Gq(k,n) = security level

© We need a syndrome-like identifier for the orbits, and a corres-
ponding map ©® such that we can recover the orbit UyUG from the
orbit UyU EG.
(Non-commutativity makes this problem really hard.)

@ We need a "Up-isometry” o with dg(UoE,Uy) = ds(Upo (E),Up) and
o(UE)=0(U)o(E).

@ The maps/operators need to come from large enough sets to make
it cryptographically secure.
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@ Summary and Conclusions



Summary and conclusions

e Using different metrics in code-based cryptography has shown to
be beneficial — what about the subspace metric?

e We need efficient representation of the code.
= lifted rank-metric or orbit codes

e For lifted rank-metric codes the decoding problem is equivalent to
rank-metric decoding with row and column erasures.
—> no real advantage

e For orbit codes we have no efficient decoder.
= no McEliece/Niederreiter system
But possibly a ZK-ID scheme... = many open questions!*

4You can do the same for any type of group code, with similar questions.
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e Using different metrics in code-based cryptography has shown to
be beneficial — what about the subspace metric?

e We need efficient representation of the code.
= lifted rank-metric or orbit codes

e For lifted rank-metric codes the decoding problem is equivalent to
rank-metric decoding with row and column erasures.
—> no real advantage

e For orbit codes we have no efficient decoder.
= no McEliece/Niederreiter system
But possibly a ZK-ID scheme... = many open questions!*

Thank you for your attention!
Questions? — Comments?

4You can do the same for any type of group code, with similar questions.
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