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ABSTRACT
The comprehension of source code is a task inherent to many soft-
ware development activities. Code change, code review and de-
bugging are examples of these activities that depend heavily on
developers’ understanding of the source code. This ability is threat-
ened when developers’ cognitive load approaches the limits of their
working memory, which in turn affects their understanding and
makes them more prone to errors. Measures capturing humans’
behavior and changes in their physiological state have been pro-
posed in a number of studies to investigate developers’ cognitive
load. However, the majority of the existing approaches operate at
a coarse-grained task level estimating the difficulty of the source
code as a whole. Hence, they cannot be used to pinpoint the men-
tally demanding parts of it. We address this limitation in this paper
through a non-intrusive approach based on eye-tracking. We collect
users’ behavioral and physiological features while they are engag-
ing with source code and train a set of machine learning models to
estimate the mentally demanding parts of code. The evaluation of
our models returns F1, recall, accuracy and precision scores up to
85.65%, 84.25%, 86.24% and 88.61%, respectively, when estimating
the mental demanding fragments of code. Our approach enables
a fine-grained analysis of cognitive load and allows identifying
the parts challenging the comprehension of source code. Such an
approach provides the means to test new hypotheses addressing the
characteristics of specific parts within the source code and paves the
road for novel techniques for code review and adaptive e-learning.
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1 INTRODUCTION
Software is everywhere! All over the world, millions of lines of
code are running in our computers, devices and vehicles to support
our daily activities and facilitate almost all aspects of our lives. The
development of software systems is prone to faults, which can have
significant impacts on humans’ life and economy (e.g., [2, 8, 28–
30, 41]). With the widespread use of software systems and the speed
at which software requirements change and evolve overtime, there
is an increasing need to maintain these systems while ensuring that
the applied changes are free of faults.

Code comprehension plays an important role in this vein as typ-
ical software maintenance activities like code change, code review
and debugging depend heavily on developers’ understanding of the
code. This ability is threatened when the mental effort required to
comprehend the code exceeds developers’ mental capacity [6, 46].
As a result, developers experience very high levels of cognitive
load [38], which, in turn, manifests in increased difficulty, poor
understanding of the source code and higher risk of errors.

There is a considerable body of literature that has made attempts
to analyze developers’ cognitive load when engaging with source
code during code comprehension (overview in [15, 16, 34, 36, 42, 43,
50]). However, in the majority of these studies, cognitive load was
investigated only at a coarse-grained task level, providing global
estimates of the difficulty of the source code as a whole, without
pinpointing the mentally demanding parts of it.

In this paper, we propose an approach to pinpoint the men-
tally demanding parts of code using eye-tracking when reading
source code. We answer the following research questions: RQ1.
Can measures based on eye-tracking be used in estimating the
mentally demanding lines and fragments of source code? and
RQ2. Which classes of eye-tracking measures contribute the
most to the estimation of the mentally demanding parts of
code?. We base our approach on machine learning (ML) models
trained with features derived from fixation, saccade, pupil, scan-path
and cluster-based-AOI characteristics measured at a fine-grained
level. We evaluate the performance of our ML models when es-
timating the mentally demanding parts of code at both line and
fragment levels. Therein, we follow a cross-validation approach es-
timating the mentally demanding parts of code for new participants,
new tasks and new participants conducting new tasks. The results
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demonstrate high performance in identifying the difficult parts of
code in all these scenarios. Notably, we could identify the mentally
demanding fragments with a reliability of up to F1: 85.65%, recall:
84.25%, accuracy 86.24%, precision: 88.61%. Moreover, we inves-
tigate the importance of each class of features and demonstrate that
pupil and saccadic features are the most important when estimating
the mentally demanding lines and fragments of code respectively.

The outcome of this work is expected to have implications on
research, practice and education. Notably, as our approach allows
collecting and analyzing cognitive load at a fine-grained level, it
can be applied in the context of experiments where researchers are
interested in investigating the impact of different parts within the
same source code on readers’ cognitive load. Moreover, with further
development, our approach can be adapted in practical settings to
infer the parts of code susceptible to contain quality issues and guide
reviewers towards them during code review tasks. Furthermore,
the approach can be embedded in adaptive e-learning systems to
identify the challenging parts in learning materials and adjust to
the learning pace of each individual student. Sect. 2 elaborates
the requirements for a fine-grained estimation of the mentally
demanding parts of code and provides an overview on how these
requirements can be fulfilled. Sect. 3 presents the background and
related work. Sect. 4 describes our research method. Sect. 5 presents
and discusses the findings. Sect. 6 describes the threats to validity.
Finally, Sect. 7 concludes the paper and gives an overview of the
future work.

2 APPROACH REQUIREMENTS AND
OVERVIEW

To be able to pinpoint the mentally demanding parts of code at a
fine-grained level (code lines or fragments), a series of requirements
should be fulfilled. First and foremost, (R1) to infer developers’
mental effort while reading source code, it is necessary to have
continuous measurements of cognitive load, which can be derived
from behavioral measures capturing changes in humans volun-
tary behavior [6] (e.g., eye-movements captured with eye-tracking)
and physiological measures capturing variations in the human
autonomic nervous system [6, 50] (e.g., pupillary reactions from
eye-tracking, galvanic skin response (GSR), heart-rate variability
(HRV), electroencephalogram (EEG), functional magnetic resonance
imaging (fMRI) and functional near-infrared spectroscopy (fNIRS))
(overview in [15, 16, 34, 36, 42, 43, 50]). Secondly, since our goal is to
pinpoint difficult parts of code, it is not sufficient to conduct these
measurements at a task level (e.g., for an entire source code snippet).
Instead, (R2) an approach is required to scale down the continu-
ous measurement of cognitive load to capture it at a fine-grained
(spatial) level (i.e., lines and fragments). Third, (R3) the continu-
ous cognitive load measurements should be based on lightweight,
easy to carry and use sensors which can be adopted in day-to-day
settings. Fourth, (R4) the approach should be applicable to (large)
software systems and not only small source code snippets or static
stimuli (with a fixed position on the screen). This entails that the ap-
proach should deal with scrolling and switching between different
source code files. Fifth, (R5) the approach should be generalizable
and work as well across different developers and/or source code
reading tasks.

These requirements form the basis for our approach (explained
in Sect. 4). This approach is based on eye-tracking (using a non-
intrusive eye tracker) and provides a continuous measure of cogni-
tive load (addressing R1). Moreover, it is lightweight and thus easier
to use and more likely to be accepted in practical settings than EEG,
fMRI, fNIRS which rely on sensors requiring a close contact with
the human body (addressing R3). With respect to R2, we leverage
eye-tracking to establish a mapping between the fixated lines and
columns of code with developers’ behavioral and physiological
measures. Following the eye-mind hypothesis [23], we use (eye-
tracking) fixations as an intermediary step in this mapping (see
Sect. 4.1.4), associating fixations with internal mental processing
and cognitive load. In a second step, we contextualize fixations with
respect to the behavioral and physiological measures captured in
their temporal vicinity (see Sect. 4.2.1). When it comes to R4, to de-
velop an approach that can operate on both small and large source
code, we automate the mapping of fixations’ coordinates with the
underlying lines and columns of code, allowing, in turn, to present
source code (of any size) within the integrated development envi-
ronments (IDE) and to support scrolling and file navigation, while
maintaining the mapping between fixation coordinates and source
code lines and columns consistent. Finally, for R5, we validate our
approach with respect to its ability to operate across developers
and different tasks.

3 BACKGROUND AND RELATEDWORK
This section introduces the related concepts and literature. Sect. 3.1
presents the cognitive theory. Sect. 3.2 provides a background on
the behavioral and physiological measures based on eye-tracking.
These measures were used as a basis to derive the features intro-
duced in Sect. 4.2.1. Sect. 3.3 gives an overview of the state-of-art
literature investigating cognitive load at a fine-grained level.

3.1 Cognitive Load Theory
The cognitive load theory (CLT) investigates the characteristics of
the human’s working memory (i.e., a buffer storing and processes
information for short time spans [45, 55]). The theory defines the
concept of cognitive load as a “a multi-dimensional construct rep-
resenting the load imposed on the working memory during [the]
performance of a cognitive task”[6]. In addition, the theory empha-
sizes the limitation of the working memory, positing that it can
hold a small number of items at a time (7±2items) [35]. When the
limits of the working memory are approached, users are likely
to experience cognitive overload which can negatively affect their
performance and lead them to wrong decisions [6].

3.2 Behavioral and Physiological Measures
Based on Eye-tracking

3.2.1 Fixation Measures. A fixation refers to the time the eyes stay
fixed at a position of the stimulus [21]. Based on the eye-mind
hypothesis [23], measures such as fixation duration and fixation
count have been used to capture long and recurrent fixations as
indicators of cognitive load [21]. In software engineering, fixation
measures were adopted in a number of studies investigating de-
velopers’ visual effort when engaging with source code (overview
in [15, 16, 34, 36, 42]). In past studies, fixations have also been used
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to discern shallow information scanning (i.e., effortless) from deep
mental processing (i.e., mentally demanding). According to [14, 48],
the former is exhibited in short fixations with a duration under 250
ms, while the latter manifests in long fixations exceeding 500ms.

3.2.2 SaccadeMeasures. A saccade refers to the rapid eye-movements
occurring between consecutive fixations [21]. The amplitude (i.e.,
distance) of saccades tends to decrease as a response to high levels of
cognitive load [24, 32]. This phenomenon is referred to in the litera-
ture as the tunnel vision effect, which manifests to prevent memory
overload when the amount of information (to be processed) within
the visual field exceeds the limits of the working memory [31, 32].
Consequently, saccades occur within a narrowed visual field which
in turn is reflected in a short amplitude. Following the literature
review presented in [42], saccadic amplitude was not yet used in
a software engineering context. The authors of the review have,
nevertheless, introduced the measure and highlighted its possible
applications in empirical software engineering studies. Saccadic
direction is another relevant measure used to infer the predominant
direction of saccades within a particular area of the artifact [21].
This measure is typically used in scene viewing studies [21], but
has been also recently referred to in empirical software engineering
studies. In [7], the authors suggested that the navigation between
parts of code (namely, "re-visits of code sections") depicts users’
strategies of reading and may relate to cognitive load, which sup-
ports the relationship with the saccadic direction.

3.2.3 Pupil Measures. Pupil dilation is a physiological response to
increased cognitive load caused by the activation of the sympathetic
division of the human autonomic system [47, 50]. Increases in pupil
size [19, 27], pupil peak count [44], and pupil peak amplitude [3]
have been associated with task difficulty and cognitive load in a
number of studies [3, 19, 27, 47]. In software engineering, pupil-
based measures have been used in several studies (overview in [15,
16, 34, 50]). Notably, in [13], pupil size was used as a feature of an
ML model providing estimates of task difficulty.

3.2.4 Scan-path Measures. A scan-path denotes a sequence of con-
secutive fixations (or visits to areas of interest – AOIs [21]) and
saccades (or transitions between AOIs) recorded during a certain
period of time [21]. The analysis of scan-paths reflects the complex-
ity of the visual search, i.e., the process of identifying a target item
among a set of distractors [21, 52]. A short and simple scan-path
indicates an easy and directed search, while a long and complex one
reflects a rather challenging search [21]. The complexity of visual
search can be associated with the CLT. During a task involving
visual search (e.g., source code comprehension), humans’ working
memory is used to store the intermediate information leading to a
particular target item [40]. When this item is difficult to identify
and extract, readers are required to store an increased amount of
information in their working memory to keep track of the search
progress and the potentially relevant information allowing to locate
the target item. Due to the limited capacity of the human working
memory, this increase of information intake can raise readers’ cog-
nitive load. In the literature, several measures have been proposed
to evaluate the complexity of visual search through scan-path prop-
erties such as length, density and entropy [21]. These measures
are either derived from the scan-path itself, which can be seen as

a graph, or the underlying transition matrix [21]. Typically they
are extracted at the task level [21], but some studies have also ex-
tracted these measures at a more fine-grained level (i.e., fixed time
windows) [22]. In software engineering, users’ scan-paths have
been investigated in several studies covering both source code and
conceptual models (overview in [36, 42, 42]).

3.2.5 Cluster-based AOI Measures. Cluster-based AOIs are gen-
erated using clustering algorithms, dividing a given set of data
samples into subsets (i.e., clusters, or AOIs) with similar proper-
ties [21]. Spatial proximity is among the common features used
to generate cluster-based AOIs [21]. This class of AOIs has been
used in several domains [21]. Notably, in software engineering,
cluster-based AOIs derived from a set of spatial and temporal (i.e.,
spatial-temporal) gaze features have been associated with parts of
code where users have been challenged [7]. However, they have
not yet been emphasized by the existing literature reviews.

3.3 Fine-grained Estimation of Cognitive load
The difficulty of code comprehension tasks has been related to
several factors including, for instance, the complexity of the control
and data flows encoded in the source code [39], the presence of
anti-patterns [10] and the existence of atoms of confusion [17, 53].
Behavioral and physiological measures of cognitive load [6] are
among the measures used to investigate such a relationship. These
measures have been adopted in a wide array of studies (overview
in [15, 16, 34, 36, 42, 43, 50]). Although their results were promising
(e.g., [13]), the majority of the used approaches cannot be adopted to
pinpoint thementally demanding parts of code. To address this need,
some studies have attempted to deliver fine-grained source code
annotations hinting towards the mentally demanding parts of code.
However, none of them cover all the requirements for developing
such an approach (cf. Sect. 2). These studies are discussed in this
section.

The majority of the empirical studies using behavioral mea-
sures based on eye-tracking (overview in [34, 36, 42, 43]) represents
source code as a static stimulus (i.e., not satisfying R4). This set-
ting does not support scrolling and switching between source code
files, which does not reflect the real-world use of source code as
developers usually engage with large code bases within IDEs sup-
porting these basic features among a wide set of others. “iTrace”
was proposed to address this limitation by automating the mapping
between developers’ fixations and the underlying lines and columns
of the source code when eye-tracking data is being collected [18].
This in turn, allows to present source code within the IDE and
supports scrolling and file navigation. However, the aims of the
studies using iTrace to analyze users’ cognitive load using behav-
ioral measures at a fine-grained level [10, 25] differ from ours. For
instance, in [10], the authors compared fixation duration on source
code identifiers in the presence and absence of lexical anti-patterns
to infer the cognitive load associated with each of these two condi-
tions, while in [26], fixation-based and AOI-based measures [21]
were collected a fine-grained level, but their interpretation was
used to estimate developers’ challenges at the task level.

Physiological measures have been used to estimate cognitive
load at a fine-grained level in a wider array of studies (cf. overview
in [15, 16, 50]). The authors in [7], adopted a clustering approach
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based on spatial-temporal features to identify cluser-based AOIs
that are likely to reflect cognitive load. The regions identified by
the clusters were visually compared with plots of HRV and pupil-
lography to derive qualitative insights suggesting a relationship
between these measures. Being exploratory, the generalizability of
the reported insights remains to be demonstrated (i.e., not satisfy-
ing R5). Our approach differs from [7] as it follows a quantitative
analysis based on ML and uses a cross-validation method demon-
strating its generalizability across developers and different tasks.
The authors in [20] investigated the ability of pupillography, HRV
and eye-tracking to infer the challenging part of code, while in [10],
the authors adopted fNIRS and eye-tracking for the same purpose.
Similar to our setting (cf. Sect. 4.1.2), these two studies collect high-
lights of the mentally demanding parts of code from the participants
and use them as a ground truth against which the performance
of ML and statistical models is compared. Likewise, in [33], the
authors investigated whether EEG and eye-tracking can differenti-
ate the mentally demanding parts of code. The approaches in [10]
and [33] use fNIRS and EEGmeasures that are challenging to collect
in workplaces (i.e., not satisfying R3). As for the approach in [20],
it relies on HRV features requiring long time windows (above a
minute) to make reliable estimates of cognitive load [4]. With such
an approach, it is not possible to scale down the measurement of
cognitive load to a fine-grained (spatial) level. This is because in
a time interval of minute, the user would have visited too many
lines and fragments of code, making it difficult to contextualize the
cognitive associated with each of them (i.e., not satisfying R2).

4 RESEARCH METHOD
This section describes the method used to collect and analyze the
data. To enable a continuous measurement of cognitive load (i.e., R1,
cf. Sect. 2) using devices that can be adopted in day-to-day settings
(i.e., R3) we have based our method on eye-tracking. Section 4.1
describes the data collection procedure, while Section 4.2 presents
the data analysis approach.

4.1 Data Collection
4.1.1 Subjects. The data collection covered 16 participants. Fol-
lowing our demographic survey (cf. Sect. 4.1.3), the recruited partic-
ipants were 6 researchers, 6 PhD students, 3 Bachelor/Master stu-
dents and 1 IT administrator. All the participants had a background
in programming and software engineering (13 intermediates, 2 ex-
perts, 1 novice). Moreover, all the participants knew object-oriented
programming and thus had the necessary knowledge to take part in
the experiment. Although we collected data from all the 16 partici-
pants, the data for one participant was excluded during the analysis
due to a poor calibration of the eye-tracking device.

4.1.2 Experiment Tasks. The experiment included 9 comprehen-
sion tasks, each comprising a source code in Java and a comprehen-
sion question. The tasks were inspired by those in [13, 39]. However,
since the authors in [13, 39] investigated users’ cognitive load at a
task level, they used snippets that were either simple or complex
as a whole. In our study, we investigate cognitive load at a fine-
grained level. To collect data supporting such an analysis, we had
to adapt the tasks in the literature [13, 39] to comprise both easy
and difficult parts. The simple parts contained variable declarations

and simple variable assignments, while the complex ones covered
loops (normal and recursive) together with if-else conditions and
several arithmetic operations. The used source code snippets had a
size varying between 25 and 53 lines of code (i.e., average 34 lines of
code). Scrolling was needed in the IDE to read the entire code (i.e.,
R4). As for the questions, the participants were asked to mentally
execute the given source code and derive the final output. In some
tasks, the participants were given multiple-choice questions (i.e.,
selecting a correct execution trace among a set of traces), while in
other tasks, they were asked inference questions (i.e., inferring the
full execution trace from the source code).

The experiment included also a set of code-highlighting tasks.
Therein, the participants were asked to highlight the mentally de-
manding parts of code (e.g., tokens, lines, fragments of code). These
tasks were conducted both during the experiment (i.e., following
each comprehension task) and by the end of the experiment as part
of a retrospective think-aloud.

Familiarization with
the experiment

tasks
Quiz

Screening form &
demographic

survey

Task-block

Task Initial code-
highlighting

Device placement,
instructions and

calibration

Rest

Retrospective
think-aloud


(revised code-
highlighting)


Figure 1: Experiment procedure

4.1.3 Experiment Procedure. The experiment was conducted in a
controlled lab environment. All data was collected with informed
consent and participants were allowed to withdraw at any stage
of the data collection. Figure 1 illustrates the procedure followed
in the individual sessions. Each participant was invited to a tuto-
rial session where he/she was familiarized with the patterns used
in the java source code (e.g., control-flow structures such as nor-
mal/recursive loops, if-else statement and arithmetic operations
such as modulo) and the types of experiment questions (multiple-
choice, inference questions). Following that, the participant was
given a quiz comprising two tasks sharing the same characteristics
as those used in the experiment. Afterward, screening and demo-
graphic forms were administered to collect general information
about his/her experience in programming and software engineering.
The quiz and the forms served as basis to assess the participant’s
ability to take part in the experiment.

Prior to the (main) data collection, the participant was seated
in front of the eye-tracker and instructed following existing guide-
lines to minimize head movements and avoid any kind of external
distractions [21]. Moreover, the illumination in the lab was con-
trolled to ensure no optical artifacts or pupillary reactions due to
variations in the light intensity [21]. As a last step, the eye-tracking
device was calibrated and the mapping between gaze points and
the screen coordinates was verified. During the data collection, the
participant was exposed to a series of task-blocks displayed in a
randomized order. Each block comprised a rest screen, a source code
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comprehension task and a code-highlighting task (cf. Sect. 4.1.2).
By the end of the data collection, the participant was invited to a
retrospective think-aloud session. Therein, for each comprehension
task, the participant was shown a (1) heatmap of his/her own gazes
on the underlying source code and (2) a copy of his/her initial code-
highlights. Based on the eye-mind hypothesis (cf. Sect. 3.2.1), the
“dark” areas of heatmaps are likely to reflect parts of code where the
participants have been challenged. Accordingly, the participant was
asked to compare the gaze heatmaps with the initial highlights and
double-check that the highlighted parts of code correspond to those
that have been mentally demanding during the experiment. The
participant was allowed to update the initial highlights. However,
the revised highlights were saved in a different file, allowing us to
use both initial and revised highlights in our analysis (cf. Sect. 4.2.2).
The use of heatmaps in retrospective think-aloud is a common prac-
tice allowing participants to recall their behavior during the task
and reflect on it [10, 21]. During this procedure, the participant was
also asked to verbalize his/her thoughts and explain the reason for
highlighting different parts of code.

4.1.4 Instrumentation. To support a continuous measurement of
cognitive load at a fine-grained (spatial) level (i.e., R2, cf. Sect. 2),
we had to collect eye-tracking data where fixations coordinates are
mapped with the fixated lines and columns of code. As mentioned
in Sect. 2, this constitutes the first step of our mapping between
the fixated lines and columns of code and developers’ behavioral
and physiological measures through fixations. Moreover, to en-
sure the applicability of our approach to both small and large code
bases (i.e., R4), such a mapping had to be automated. We incor-
porated these needs in the instrumentation of our experiment as
follows. We used a Tobii X3-120 eye tracker to capture participants’
gazes on the screen. The gaze data was forwarded to two devices:
iTrace [18] and iMotions (Version 8.21). We used both iTrace and
iMotions to leverage their strengths. In particular, iTrace was used
to automatically map the forwarded gaze data with the lines and
columns gazed by the participant when reading the source code
in Eclipse IDE. iMotions, in turn, was used to design and run the
protocol of the experiment as well as to record pupil data and de-
rive fixations (using the I-VT algorithm [37]) from the forwarded
gaze data. Moreover, the tool allowed us to monitor developers’
eye-movements and keep a constant eye on the data quality during
the data collection. Furthermore, since we have collected Galvanic
Skin Response (GSR) data (which will be analyzed in a follow-up
study), we used iMotions to handle the synchronization between
the GSR and the eye-tracking data. The data collected by iTrace and
iMotions was linked using a common identifier attributed to gaze
points in both iTrace and iMotions logs. As a result, we derived an
enriched dataset joining the data from both logs. In this dataset,
the fixations (derived from iMotions) were mapped to the fixated
lines and columns of code (derived from iTrace).

4.2 Data Analysis
We followed a predictive analysis approach based on supervised
ML [1]. Sect. 4.2.1 introduces the derived features (i.e., independent
variables). Sect. 4.2.2 describes the labels used as outcome measures

1See https://imotions.com/release/

(i.e., dependent variables). Finally, Sect. 4.2.3 explains the adopted
model training and validation methods.

4.2.1 Feature Extraction. Our feature extraction approach was
based on a set of measures derived from fixation, saccade, pupil,
scan-path and cluster-based AOI characteristics (overview in Ta-
bles 1 and 2). At first, we contextualized each fixationwith respect to
these measures (cf. Sect. 4.2.1.1), then we derived a set of features at
the fixation, line and fragment levels of granularity (cf. Sect. 4.2.1.2).

4.2.1.1 Contextualization of Fixations. Supporting a measure-
ment of cognitive load at a fine-grained (spatial) level (i.e., R2, cf.
Sect. 2) can be addressed using the mapping approach of which
the first step consists of mapping fixations coordinates with the
underlying lines and columns of code (cf. Sect. 4.1.4). The second
step, in turn, consists of contextualizing fixations with respect to
the behavioral and physiological measures captured in their tem-
poral vicinity. As mentioned in Sect. 2, this contextualization is
motivated by the eye-mind hypothesis associating fixations with
mental processing and cognitive load [23].

Figure 2 illustrates the proposed contextualization approach. The
first contextualization of fixations was with respect to the preceding
saccade (cf. Fig. 2 a ). As mentioned in Sect. 3.2.2, saccadic prop-
erties associated with their amplitude and direction can provide
insights about users’ cognitive load when engaging with source
code. Accordingly, each fixation was decorated with a number of
additional attributes capturing such properties from the saccade
preceding it (cf. Table 1).

The second contextualization was with respect to the pupil signal
concurring with the individual fixations (cf. Fig. 2 b ). As men-
tioned in Sect. 3.2.3, this signal can help to infer pupillary reactions
associated with cognitive load. We cleaned the pupil signal using
the pipeline proposed in [56]. The pipeline detects and removes
blink artifacts, removes outliers, interpolates missing values and ap-
plies a third-order lowpass Butterworth filter (cf. [56] for a detailed
explanation of this procedure). We used a windowing approach
to extract the characteristics of the pupil signal. We opted for this
approach (instead of directly using the pupil size reading at the
fixation timestamp) following the existing literature showing that
pupillary reactions in response to cognitive load occur within a
certain time interval (i.e., hundreds of milliseconds) preceding or
following a stimulating event [9]. After empirically testing different
window lengths (up to 2500ms) occurring before or after fixations
at different time intervals (from -500ms to 500ms), we opted for a
700ms window capturing the pupil signal occurring 400ms after the
fixation onset. Thereafter, fixations were decorated with a set of
additional attributes denoting the features of the associated pupil
signal recorded within a [400ms, 1100ms] window after each fixa-
tion onset (cf. Table 1). These features were derived from the pupil
size, the pupil peaks and their amplitude following the insights
reported about these measures in Sect. 3.2.3.

The third contextualization was with respect to the (sub) scan-
path observed within the fixation vicinity (cf. Fig. 2 c ). We inves-
tigated these sub-scans following the conceptual bases provided
in Sect. 3.2.4, linking the complexity of visual search (observed
through scan-paths) with users’ cognitive load. We started by gen-
erating a global scan-path denoting the sequence of lines of code
visited during the entire task. This sequence was represented as a

https://imotions.com/release/
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directed graph whose nodes refer to the visited lines of code and
whose edges refer to the transitions between these lines. The edges
were assigned weights referring to the number transitions between
the related lines. Afterward, we divided the global scan-path into
a set of sub-scans with equal duration. Here again, we have em-
pirically tested several window durations (up to 15 seconds) and
finally opted for a 2-seconds time window. Finally, we decorated
each fixation within the aforementioned time window with a set
of attributes capturing the characteristics (i.e., length, density, en-
tropy) of the associated sub-scan (cf. Table 1). These characteristics
have been associated with the complexity of visual search [21] and
thus can tell about users’ cognitive load as explained in Sect. 3.2.4

The fourth contextualization was with respect to the position
of fixations in space and time (cf. Fig. 2 d ). As mentioned in
Sect. 3.2.5, fixations with a spatial and temporal proximity were
used to generate cluster-based AOIs, which in turn, have been
associated with mentally demanding parts of code [7]. Accordingly,
we have grouped fixations following two clustering approaches.
The former was a spatial clustering based on the fixations’ line
and column coordinates, while the latter was a spatial-temporal
clustering based on the fixations’ coordinates and timestamp. The
clustering approaches were implemented using the density-based
clustering algorithm of the sklearn library2. Like for the other
contextualizations, the parameters were empirically derived. In the
spatial clustering, the clusters were constrained to cover only single
lines of code, have a maximum distance of 3 columns between two
samples, and contain a minimum of 4 samples per cluster. As for
the spatial-temporal clustering, the clusters were constrained to
cover only single lines of code, be separated with a maximum of
800ms and contain at least 2 samples per cluster. Thereafter, each
fixation was decorated with a set of attributes specifying whether it
belongs to a spatial or a spatial-temporal cluster (cf. Table 1). These
attributes would, in turn, infer whether the fixation is within a part
of code that is likely to be mentally demanding.

4.2.1.2 Extraction of Features at Different Levels of Granularity.
The aim of this work is to develop an ML-based approach using
users’ behavioral and physiological features to infer the mentally
demanding part of code at two levels of granularity: i.e., line and
fragment of code. To this end, following the contextualization of
fixations, we have extracted a set of features at the fixation level,
then used them as basis to derive other features at the line and
fragment levels. At the fixation level, we extracted the fixation,
saccadic, pupil, (sub) scan-path and cluster-based AOI features
described in Table 1. At the line of code level, we have aggregated
the features collected at the fixation level (cf. Table 1) using the
count, sum, max, min, mean, median and standard deviation (std)
functions. In addition, we have extracted the new features described
in Table 2. Lastly, at the fragment of code level, we have aggregated
both the fixation-level and line-level features shown in Tables 1
and 2 using the aforementioned aggregation functions.

4.2.2 Labeling. We investigated two types of labels. The first type
indicates whether a line of code was mentally demanding, while
the second type indicates whether a fragment of code was mentally
demanding. The first label type was obtained directly from the

2See https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

participants’ highlights (e.g., a specific line within a control-flow
structure), while the second label type was derived by inferring the
fragment to which the highlighted line belongs (e.g., the control-
flow structure). We have additionally considered the latter type of
labels as the retrospective think-aloud revealed that some partici-
pants highlighted specific tokens (e.g., the “else” keywords in an
if-else statement) with the assumption that the entire part of code
associated with these tokens was mentally demanding (e.g., the
content of the “else” block). The two types of labels were extracted
for both the initial and the revised highlights (cf. Sect. 4.1.3).

As explained in Sect. 4.2.1, a set of features was extracted and
aggregated at the line and fragment of code levels. Together with
the aforementioned labels, we derived four datasets comprising
respectively: features computed at the line level and labels obtained
from the initial highlights (LI), features computed at the fragment
level and labels derived the initial highlights (FI), features computed
at the line level and labels obtained from the revised highlights (LR)
and features computed at the fragment level and labels derived
from the revised highlights (FR).

4.2.3 Model Training and Validation. The derived datasets (i.e., LI,
FI, LR and FR) were used to train a set of ML models following the
approach depicted in Figure 3. Since users highlighted only a few
parts of code within each source code file, the classes of highlighted
and non-highlighted lines/fragments were not equally represented.
This problem is referred to in the literature as imbalanced classifica-
tion [11]. To mitigate a potential bias towards the over-represented
class (i.e., non-highlighted lines/fragments), we used a random un-
der sampling strategy in the training of the ML models. Therein,
we selected a random subset from the over-represented class with
a size matching the one of the under-represented class (cf. Fig. 3
a ). Then, we generated a new data-subset where both classes are
equally represented. We opted for feature selection (based on the
mutual information algorithm3) to identify the top 20 most promi-
nent features in the data-subset (cf. Fig. 3 b ). These features were
used in the training of an ML model, i.e, a decision tree classifier (cf.
Fig. 3 c ). Our feature selection threshold (i.e. 20 most prominent
features) has been chosen to enable a fast training of the ML model
and make the resulting decision tree easier to interpret. After re-
peating this random under sampling approach over 10 iterations,
we embedded the resulting models into an ensemble, i.e., a voting
classifier4 (cf. Fig. 3 d ). At prediction time, the input data was
fed to all the ML models (of the ensemble), each returning its own
estimate. The final estimation was then designated as the common
estimation among the set of returned estimates.

We have chosen decision trees as they allow to derive insights
on the importance of each feature used for the classification. Ac-
cordingly, we used the feature importance metric implemented
in the sklearn library5 to assign an importance score to each fea-
ture. This metric is based on the Mean Decrease Impurity (MDI)
defined as “the total decrease in node impurity [...] averaged over

3See https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.
mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif
4See https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
5See https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#
sklearn.tree.DecisionTreeClassifier.feature_importances_

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.feature_importances_
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Figure 3: Machine learning approach.

all trees of the ensemble” [49]. Finally, we grouped the features by
type (fixation-based, saccade-based, pupil-based, scan-path-based,
cluster-based AOI) and aggregated their feature importance scores
using the sum function. The final feature importance scores for
each feature group are shown in Table 4.

To demonstrate the generalizability of our approach across de-
velopers and different source code reading tasks (i.e., R5, cf. Sect. 2),
we crossed-validated our ML models using different leave-one-out-
strategies (similar to [13]). Herein, three exhaustive sets of test
and training folds were respectively generated by (1) leaving one
participant out, (2) one task out and (3) one pair of participant-task

out. In (1), the data of all participants except one is used in the
training of the model, while the data of the remaining participant
is used to test the model. A similar approach is used in (2) and
(3) while considering the data corresponding to different tasks or
different pairs of participants-tasks. This cross-validation was re-
peated exhaustively to cover all individual participants, tasks and
pairs of participants-tasks. The performance of the models trained
and tested under these conditions reflect respectively their ability
to predict the mentally demanding lines and fragments of code
for new participants, new tasks and new participants performing
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Category Feature Description

Fixation Fixation duration Duration of the fixation in milliseconds
Fixation duration fix.>= 250ms Expression: fixation duration if fixation duration >= 250𝑚𝑠 else NaN
Fixation duration fix.>= 500ms Expression: fixation duration if fixation duration >= 500𝑚𝑠 else NaN

Saccade Saccadic amplitude Euclidean distance to the previous fixation in the (code) line and column coordinates
No saccade Expression: 1 if source (i.e., previous) fixation is on the same line and column else 0
Horizontal Expression: 1 if source fixation is on the same line and different column else 0
Non-horizontal Expression: 1 if source fixation is on a different line else 0

Pupil Pupil size {aggr.} Pupil size in mm collected over the specified time window and aggregated using
{count, sum, max, min, mean, median, std}

Number of pupil peaks Number of pupil peaks observed in the specified time window
Amplitude of pupil peaks {aggr.} Amplitude of the individual pupil peaks observed in the specified time window and

aggregated using {count, sum, max, min, mean, median, std}

(sub)
Scan-path

Sub-scan length – # transitions Number of transitions between lines of code in the sub-scan derived over the specified
time window. In our graph-based representation, this corresponds to the number of
edges multiplied by their weights

Sub-scan length – # unique visits Number of unique lines of code visited in the sub-scan derived over the specified
time window. In our graph-based representation, this corresponds to the number of
nodes in the graph

Sub-scan density (# transitions /# unique line visits)
Sub-scan entropy Entropy of the sub-scan transition matrix. In our graph-based representation, this

corresponds to the entropy of the graph adjacency matrix

Cluster-based Is fix. in spatial cluster Expression: 1 if fixation is in spatial cluster else 0
AOIs Is fix. in spatial-temporal cluster Expression: 1 if fixation is in spatial-temporal cluster else 0

Table 1: Features extracted at the fixation level. Abbreviations: Fix.: Fixation

Category Feature Description

Fixation Fixation count Number of fixations on the line of code
Fixation count fix.>= 250ms Number of fixations with duration >= 250ms on the line of code
Fixation count fix.>= 500ms Number of fixations with duration >= 500ms on the line of code

Cluster-based # Spatial clusters Number of spatial clusters formed on the line of code
AOIs # Spatial-temporal clusters Number of spatial-temporal clusters formed on the line of code

Table 2: Additional features extracted at the line level. Abbreviations: Fix.: Fixation

new tasks. This performance was measured using F1, recall, accu-
racy and precision metrics as shown in Table 3. These performance
metrics are typically used to evaluate classification ML models in
similar contexts (e.g., [13, 20]).

The replication package including the design and the analysis
material of the experiment is available in our online repository6.

5 FINDINGS AND DISCUSSION
Model Performance. To answer RQ1 (cf. Sect. 1), we evaluated

12 models trained respectively with the 4 datasets presented in
Sect. 4.2.2 (i.e., LI, FI, LR, FR) and cross-validated following the 3
scenarios introduced in Sect. 4.2.3 (i.e., one-participant-out, one-task-
out, one-participant-task-out). Table 3 summarizes the performance
of our models.
6See. https://github.com/aminobest/ICPC2022_fineGrainedCL

Overall, our models reach the best performance when estimating
the mentally demanding fragments of code for new participants
(F1: 85.65%, recall: 84.25%, accuracy 86.24%, precision: 88.61%). This
performance remains stable when testing the model on new tasks
and new participants performing new tasks. Also, it does not vary
much betweenmodels trainedwith the initial and revised highlights.
These insights support the generalizability of our findings across
developers and different tasks (i.e., R5, cf. Sect. 2).

Not surprisingly, our models perform better at the fragment of
code level compared to the line level (cf. Table 3). The moderate
scores at the line level can potentially be attributed to the subjectiv-
ity of participants. As mentioned in Sect. 4.2.2, some participants
highlighted specific code tokens with the intention to convey that
the entire part of code associated with these tokens was mentally
demanding.

https://github.com/aminobest/ICPC2022_fineGrainedCL
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The performance scores of the ML models under the three cross-
validation scenarios shown in Table 3 are similar with a little ad-
vantage for the prediction of the mentally demanding parts of code
for new participants (i.e., the one-participant-out scenario). Com-
pared with the literature, our performance scores (in terms of recall,
accuracy and precision measures) for the ML models predicting the
mentally demanding code fragments are in the same range as those
in [20] where the authors used HRV and eye-tracking to predict
code regions associated with increased difficulty (best prediction
in [20]: recall: 79% , accuracy: 83%, precision: 89%). However, our
results might not be directly comparable as the authors in [20],
used cross-validation approaches (i.e., the conventional leave-one-
sample-out validation and the K-fold validation with 5 splits) which
cannot clearly demonstrate how their models generalize across
developers and different tasks.

Our cross-validation approachwas also adopted in [13]. However,
the labels used to train the ML models were collected at a (coarse-
grained) task level and are therefore not directly comparable. Taking
this disparity into account, the performance scores (in terms of F1,
recall and precision measures) of our ML models operating at the
fragment level (and based on eye-tracking features only) outperform
the ML models in [13] trained with EEG, GSR and eye-tracking
features combined (best prediction in [13] F1: 73.33%, recall: 68.79%,
precision: 84.38%). It is also worthwhile to mention that the results
of our three cross-validations are more stable compared to those
in [13], suggesting that our ML models perform equally well in all
the covered cross-validation scenarios.

The models trained with the initial highlights and those trained
with the revised highlights provide similar performance with a
little advantage for the latter ones. By comparing the participants’
initial and revised highlights, we, indeed, could not perceive big
differences between both. Several rounds of highlights were also
conducted in [10]. However, the authors did not investigate whether
there is a difference between the initial and revised highlights with
regards to their ability to provide better estimates of cognitive load.
Based on our findings, we postulate that collecting highlights once
might be good enough for the training of the ML models.

Features’ Importance. To answer RQ2 (cf. Sect. 1), we derived
the importance of each feature group (i.e., fixation-based, saccade-
based, pupil-based, scan-path-based, cluster-based AOIs) for each
of the generated models (i.e., 12 models in total) as shown in Table 4.
Overall, pupil-based and saccade-based features have the highest
importance scores in the ML models predicting the mentally de-
manding lines and fragments of code respectively. Compared to
the literature, the importance of different classes of eye-tracking
features reported in our study delivers more detailed insights than
those reported in [13, 20] where features were grouped by modality
(EEG, eye-tracking, GSR and HRV) and compared for their ability
to estimate cognitive load.

Implications. Our work has implications on research, practice
and education. With regards to research, our approach opens for
a new class of (laboratory) experiments where users’ cognitive
load can be measured at a fine-grained level of the source code.
This, in turn, can be used to isolate the parts of code susceptible
to have quality concerns (e.g., due to the presence of code smells
[12, 54]), scrutinize the underlying cognitive load and contrast it

with the load associated with the reading of other parts of code
with no quality concerns. In addition, our approach is designed
with the aim to apply it to large software systems and not only
small source code snippets. Therefore, our approach can promote
large-scale empirical studies investigating users’ cognitive load at a
fine-grained level when engaging with large code bases, reflecting
the true scale of software projects in the real-world.

For practice, our findings demonstrate that in a controlled labo-
ratory setting, eye-tracking features can estimate users’ cognitive
load and help to pinpoint the mentally demanding parts of code.
However, to use our approach in practical settings, it is important
to investigate its applicability in less controlled environments. We
advance that different types of eye-tracking features (i.e., based on
fixations, saccades, pupillary, scan-path and AOI measures) capture
cognitive load from different dimensions (i.e., behavioral, physio-
logical). This, in turn, can provide a multi-modal measurement that
mitigates the constraints/limitations of the individual measures
(e.g., sensibility of pupillary measures to light variations) when
being collected in less controlled environments. Nevertheless, this
assumption still needs to be backed up by empirical evidence. If
successful, our approach can serve as a basis for generating “code-
highlights” indicating the critical parts that have challenged devel-
opers’ when engaging with the source code and thus are likely to
contain quality concerns. These code-highlights can support code
review tasks by guiding reviewers’ attention towards the critical
parts of code and thus helping them to identify the quality concerns
that could hinder the interpretation of the source code.

When it comes to education, with further development, our ap-
proach can be embedded in adaptive e-learning systems, which
given a certain learning material (e.g., an explanation of a design
pattern and a source code exemplifying it), can pinpoint the exact
parts challenging the comprehension of the students. This informa-
tion can help to automatically adjust the pace at which the student
progresses with the learning material and set the focus on the parts
requiring further explanations, examples and exercises. Moreover,
such an approach can inform the instructor about the common
challenges and potential pitfalls in the learning material.

6 THREATS TO VALIDITY
Internal Validity. Failing to instruct participants about the exper-

iment tasks and lacking control over the external environment can
pose significant issues to the internal validity of an empirical study.
To mitigate these threats, we have designed a careful protocol to
instruct participants uniformly during the experiment. Moreover,
to ensure the quality of our data, we have conducted the data col-
lection in a controlled lab environment where the illumination was
controlled to ensure no optical artifacts or pupillary reactions due
to light variations [21]. The tasks used in the experiment could
also affect the internal validity of the study. To mitigate this threat,
the design of our tasks was inspired by the source code patterns
used in [13, 39] which have been already shown to trigger reactions
associated with cognitive load. Another potential internal threat to
validity is associated with the learning effect during the experiment.
We mitigated this threat by randomizing the order of the tasks to
spread out this effect uniformly over the different experiment runs.
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Accr. Level Highlights One-participant-out One-task-out One-participant-task-out
F1 Recall Acc. Prec. F1 Recall Acc. Prec. F1 Recall Acc. Prec.

LI Line Initial 67.51% 67.36% 69.94% 71.23% 65.17% 65.98% 67.92% 68.94% 64.74% 70.73% 70.80% 69.51%
FI Fragment Initial 84.98% 85.47% 85.16% 86.25% 80.79% 80.86% 84.21% 85.29% 79.78% 82.84% 84.16% 81.15%
LR Line Revised 68.57% 69.01% 70.75% 71.78% 67.22% 67.43% 70.30% 71.60% 65.96% 73.35% 71.48% 68.96%
FR Fragment Revised 85.65% 84.25% 86.24% 88.61% 81.46% 80.26% 84.47% 85.82% 81.14% 84.32% 85.56% 82.21%

Table 3: Performance of ML models. Abbreviations: Accr.: Accronym, Acc.: Accuracy, Prec.: Precision

Feature gr. Ac. Level Highl. Feature gr. importance
OPO OTO OPTO

Fixation

LI Line Initial 0.102 0.126 0.132
FI Frag. Initial 0.118 0.093 0.11
LR Line Revised 0.155 0.162 0.167
FR Frag. Revised 0.082 0.094 0.092

Saccade

LI Line Initial 0.134 0.151 0.157
FI Frag. Initial 0.653 0.68 0.655
LR Line Revised 0.126 0.135 0.115
FR Frag. Revised 0.702 0.7 0.694

Pupil

LI Line Initial 0.587 0.524 0.547
FI Frag. Initial 0.147 0.159 0.164
LR Line Revised 0.539 0.563 0.553
FR Frag. Revised 0.151 0.141 0.147

Scan-path

LI Line Initial 0.174 0.198 0.158
FI Frag. Initial 0.076 0.062 0.064
LR Line Revised 0.176 0.135 0.158
FR Frag. Revised 0.059 0.055 0.062

Cluster-
based
AOI

LI Line Initial 0.003 0.002 0.006
FI Frag. Initial 0.006 0.007 0.007
LR Line Revised 0.004 0.004 0.007
FR Frag. Revised 0.005 0.01 0.006

Table 4: Importance of features. Abbreviations: Gr.: Group,
Ac.: Acronym, Highl.: Highlights, OPO: One-participant-out,
OTO: One-task-out, OPTO: one-participant-task-out, Frag.
Fragment

External Validity. To mitigate external validity threats, we have
used a cross-validation approach and showed the generalization
of our ML models across developers and different tasks (i.e., R5, cf.
Sect. 2). Nevertheless, it is worthwhile to mention that all the par-
ticipants (who served as proxies for developers) have an academic
background and therefore to demonstrate the external validity of
our work, it is crucial to replicate our study with participants from
industry. In this replication, it is also important to use larger source
code bases, which our approach supports due to the ability to deal
with both small and large code bases (i.e., R4). Furthermore, al-
though eye-tracking can be seen as more lightweight and easy to
use than other sensors (e.g., EEG, fMRI, fNIRS; i.e., R3), it is possible
that when moving outside of laboratory settings, factors such as
changes in lighting conditions and lack of instructions about the
use of eye-tracking might affect the quality of the collected data
and thus the robustness of our ML models.

Construct Validity. To mitigate construct validity threats, our use
of eye-tracking to derive a continuous measurement of cognitive

load (i.e., R1) was supported by the existing literature [21, 36, 42, 43].
As for the contextualization of fixations to support themeasurement
of cognitive load at a fine-grained (spatial) level, it was motivated
by the eye-mind hypothesis [23] (i.e., R2). Furthermore, we have
used different classes of features (i.e., fixation-based, saccade-based,
pupil-based, scan-path-based, cluster-based AOIs) that have been
individually associated with cognitive load in a number of studies
(cf. Sect. 3.2). Hence, the training of our models mitigates the risk
of the mono-method bias [51].

Conclusion Validity. Our sample size could be a threat. However,
this sample size is comparable to similar studies [13]. This possible
limitation will be addressed in our future work.

7 CONCLUSION
This paper presents a novel approach allowing to estimate develop-
ers’ cognitive load at a fine-grained level and accordingly indicate
the mentally demanding parts of code. This approach was based on
a number of features characterizing users’ fixations, saccades, pupil
reactions, scan-paths and cluster-based AOIs. These features were,
in turn, used to develop a set of ML models providing estimates on
the mentally demanding parts of code. We have evaluated these
models in three scenarios to investigate their ability to identify
the mentally demanding lines and fragments of code for new par-
ticipants, new tasks and new participants performing new tasks.
Overall, our findings demonstrate high performance when conduct-
ing predictions at the level of code fragments in all these scenarios.

As future work, we are planning to apply our approach to large
source code projects and recruit a wider array of participants be-
yond academia (e.g., developers in the industry). Moreover, we are
planning to incorporate source code metrics in the training of our
ML models. These metrics will be carefully selected to provide an
overarching characterization covering both the essential and acci-
dental complexities [5] of the source code at a fine-grained level.
This new approach will provide additional features that will be
evaluated with respect to their impact on the performance of our
ML models.

ACKNOWLEDGMENT
Special thanks to Hamed Hemati for his feedback on the machine
learning analysis presented in this work.

REFERENCES
[1] Charu C Aggarwal. 2015. Data mining: the textbook. Springer.
[2] Taylor Armerding. 2018. Hard Questions Raised When A Software ’Glitch’ Takes

Down An Airliner. (2018). https://www.forbes.com/sites/taylorarmerding/
2018/11/20/hard-questions-raised-when-a-software-glitch-takes-down-an-
airliner/#5cf4e9907b1d.

https://www.forbes.com/sites/taylorarmerding/2018/11/20/hard-questions-raised-when-a-software-glitch-takes-down-an-airliner/#5cf4e9907b1d
https://www.forbes.com/sites/taylorarmerding/2018/11/20/hard-questions-raised-when-a-software-glitch-takes-down-an-airliner/#5cf4e9907b1d
https://www.forbes.com/sites/taylorarmerding/2018/11/20/hard-questions-raised-when-a-software-glitch-takes-down-an-airliner/#5cf4e9907b1d


Estimating Developers’ Cognitive Load at a Fine-grained Level Using Eye-tracking Measures ICPC ’22, May 16–17, 2022, Virtual Event, USA

[3] Jackson Beatty. 1982. Task-evoked pupillary responses, processing load, and the
structure of processing resources. Psychological bulletin 91, 2 (1982), 276.

[4] Nicolas Bourdillon, Laurent Schmitt, Sasan Yazdani, Jean-Marc Vesin, and Gré-
goire P Millet. 2017. Minimal window duration for accurate HRV recording in
athletes. Frontiers in neuroscience 11 (2017), 456.

[5] F Brooks and H Kugler. 1987. No silver bullet. April.
[6] Fang Chen, Jianlong Zhou, Yang Wang, Kun Yu, Syed Z Arshad, Ahmad Khawaji,

and Dan Conway. 2016. Robust multimodal cognitive load measurement. Springer.
[7] Ricardo Couceiro, Raul Barbosa, Joáo Duráes, Gonçalo Duarte, Joáo Castelhano,

Catarina Duarte, Cesar Teixeira, Nuno Laranjeiro, Júlio Medeiros, Paulo Carvalho,
et al. 2019. Spotting Problematic Code Lines using Nonintrusive Programmers’
Biofeedback. In 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 93–103.

[8] Clive Davidson. 2012. A dark knight for algos. Risk 25, 9 (2012), 32.
[9] Rachel N Denison, Jacob A Parker, and Marisa Carrasco. 2020. Modeling pupil

responses to rapid sequential events. Behavior research methods 52, 5 (2020),
1991–2007.

[10] Sarah Fakhoury, Devjeet Roy, Yuzhan Ma, Venera Arnaoudova, and Olusola
Adesope. 2020. Measuring the impact of lexical and structural inconsistencies on
developers’ cognitive load during bug localization. Empirical Software Engineering
25, 3 (2020), 2140–2178.

[11] Alberto Fernández, Salvador García, Mikel Galar, Ronaldo C Prati, Bartosz
Krawczyk, and Francisco Herrera. 2018. Learning from imbalanced data sets.
Vol. 10. Springer.

[12] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[13] Thomas Fritz, Andrew Begel, Sebastian CMüller, Serap Yigit-Elliott, and Manuela
Züger. 2014. Using psycho-physiological measures to assess task difficulty in
software development. In Proceedings of the 36th international conference on
software engineering. 402–413.

[14] Andreas Glöckner and Ann-Katrin Herbold. 2008. Information processing in
decisions under risk: Evidence for compensatory strategies based on automatic
processes. MPI collective goods preprint 2008/42 (2008).

[15] Lucian Gonçales, Kleinner Farias, Bruno da Silva, and Jonathan Fessler. 2019.
Measuring the cognitive load of software developers: A systematic mapping
study. In IEEE/ACM 27th International Conference on Program Comprehension.
42–52.

[16] Lucian Gonçales, Kleinner Farias, and Bruno C da Silva. 2021. Measuring the
cognitive load of software developers: An extended Systematic Mapping Study.
Information and Software Technology (2021), 106563.

[17] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Martin
K-C Yeh, and Justin Cappos. 2017. Understanding misunderstandings in source
code. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 129–139.

[18] DrewTGuarnera, Corey ABryant, AshwinMishra, Jonathan IMaletic, and Bonita
Sharif. 2018. itrace: Eye tracking infrastructure for development environments. In
Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications.
1–3.

[19] Eija Haapalainen, SeungJun Kim, Jodi F Forlizzi, and Anind K Dey. 2010. Psycho-
physiological measures for assessing cognitive load. In Proceedings of the 12th
ACM international conference on Ubiquitous computing. 301–310.

[20] Haytham Hijazi, Ricardo Couceiro, João Castelhano, Paulo De Carvalho, Miguel
Castelo-Branco, and Henrique Madeira. 2021. Intelligent Biofeedback Augmented
Content Comprehension (TellBack). IEEE Access 9 (2021), 28393–28406.

[21] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, and J. van de
Weijer. 2011. Eye Tracking: A comprehensive guide to methods and measures. OUP
Oxford.

[22] Joel Jordan and Mel Slater. 2009. An analysis of eye scanpath entropy in a
progressively forming virtual environment. Presence 18, 3 (2009), 185–199.

[23] Marcel A Just and Patricia A Carpenter. 1980. A theory of reading: From eye
fixations to comprehension. Psychological review 87, 4 (1980), 329.

[24] Merve Keskin, Kristien Ooms, Ahmet Ozgur Dogru, and Philippe De Maeyer.
2020. Exploring the Cognitive Load of Expert and Novice Map Users Using EEG
and Eye Tracking. ISPRS International Journal of Geo-Information 9, 7 (2020).

[25] Katja Kevic, Braden M Walters, Timothy R Shaffer, Bonita Sharif, David C Shep-
herd, and Thomas Fritz. 2015. Tracing software developers’ eyes and interactions
for change tasks. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. 202–213.

[26] Katja Kevic, Braden M Walters, Timothy R Shaffer, Bonita Sharif, David C Shep-
herd, and Thomas Fritz. 2017. Eye gaze and interaction contexts for change
tasks–Observations and potential. Journal of Systems and Software 128 (2017),
252–266.

[27] Jeff Klingner. 2010. Fixation-aligned pupillary response averaging. In Proceedings
of the 2010 symposium on eye-tracking research & applications. 275–282.

[28] Timothy B. LEE. 2018. Report: Software bug led to death in Uber’s self-driving
crash. (2018). https://arstechnica.com/tech-policy/2018/05/report-software-bug-
led-to-death-in-ubers-self-driving-crash/.

[29] Nancy G Leveson and Clark S Turner. 1993. An investigation of the Therac-25
accidents. Computer 26, 7 (1993), 18–41.

[30] Jacques-Louis Lions, Lennart Luebeck, Jean-Luc Fauquembergue, Gilles Kahn,
Wolfgang Kubbat, Stefan Levedag, Leonardo Mazzini, Didier Merle, and Colin
O’Halloran. 1996. Ariane 5 flight 501 failure report by the inquiry board.

[31] Norman H Mackworth. 1965. Visual noise causes tunnel vision. Psychonomic
science 3, 1 (1965), 67–68.

[32] James G May, Robert S Kennedy, Mary CWilliams, William P Dunlap, and Julie R
Brannan. 1990. Eye movement indices of mental workload. Acta psychologica 75,
1 (1990), 75–89.

[33] Júlio Medeiros, Ricardo Couceiro, Gonçalo Duarte, João Durães, João Castelhano,
Catarina Duarte, Miguel Castelo-Branco, Henrique Madeira, Paulo de Carvalho,
and César Teixeira. 2021. Can EEG Be Adopted as a Neuroscience Reference for
Assessing Software Programmers’ Cognitive Load? Sensors 21, 7 (2021), 2338.

[34] Juliano Paulo Menzen, Kleinner Farias, and Vinicius Bischoff. 2021. Using bio-
metric data in software engineering: a systematic mapping study. Behaviour &
Information Technology 40, 9 (2021), 880–902.

[35] George A Miller. 1956. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological review 63, 2
(1956), 81.

[36] Unaizah Obaidellah, Mohammed Al Haek, and Peter C-H Cheng. 2018. A survey
on the usage of eye-tracking in computer programming. ACM Computing Surveys
(CSUR) 51, 1 (2018), 1–58.

[37] Anneli Olsen. 2012. The Tobii I-VT Fixation Filter. (2012).
[38] Fred Paas, Juhani E Tuovinen, Huib Tabbers, and Pascal WM Van Gerven. 2003.

Cognitive load measurement as a means to advance cognitive load theory. Edu-
cational psychologist 38, 1 (2003), 63–71.

[39] Norman Peitek, Sven Apel, Chris Parnin, André Brechmann, and Janet Siegmund.
2021. Program comprehension and code complexity metrics: An fmri study.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 524–536.

[40] Gillian Porter, Tom Troscianko, and Iain D Gilchrist. 2007. Effort during visual
search and counting: Insights from pupillometry. Quarterly journal of experimen-
tal psychology 60, 2 (2007), 211–229.

[41] Christos Saltapidas and Ramin Maghsood. 2018. Financial Risk The fall of Knight
Capital Group. (2018).

[42] Zohreh Sharafi, Timothy Shaffer, Bonita Sharif, and Yann-Gaël Guéhéneuc. 2015.
Eye-tracking metrics in software engineering. In 2015 Asia-Pacific Software Engi-
neering Conference (APSEC). IEEE, 96–103.

[43] Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. 2015. A systematic lit-
erature review on the usage of eye-tracking in software engineering. Information
and Software Technology 67 (2015), 79–107.

[44] Stuart R Steinhauer, Greg J Siegle, Ruth Condray, and Misha Pless. 2004. Sympa-
thetic and parasympathetic innervation of pupillary dilation during sustained
processing. International journal of psychophysiology 52, 1 (2004), 77–86.

[45] Robert J Sternberg and Karin Sternberg. 2016. Cognitive psychology. Nelson
Education.

[46] John Sweller. 2011. Cognitive load theory. In Psychology of learning andmotivation.
Vol. 55. Elsevier, 37–76.

[47] Pauline van der Wel and Henk van Steenbergen. 2018. Pupil dilation as an index
of effort in cognitive control tasks: A review. Psychonomic bulletin & review 25, 6
(2018), 2005–2015.

[48] BorisMVelichkovsky. 1999. From levels of processing to stratification of cognition
Converging evidence from three domains of research. Stratification in cognition
and consciousness 15 (1999), 203.

[49] Yuanchao Wang, Zhichen Pan, Jianhua Zheng, Lei Qian, and Mingtao Li. 2019.
A hybrid ensemble method for pulsar candidate classification. Astrophysics and
Space Science 364, 8 (2019), 1–13.

[50] Barbara Weber, Thomas Fischer, and René Riedl. 2021. Brain and autonomic
nervous system activity measurement in software engineering: A systematic
literature review. Journal of Systems and Software 178 (2021).

[51] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[52] Jeremy M Wolfe. 1994. Guided search 2.0 a revised model of visual search.
Psychonomic bulletin & review 1, 2 (1994), 202–238.

[53] Martin K-C Yeh, Dan Gopstein, Yu Yan, and Yanyan Zhuang. 2017. Detecting and
comparing brain activity in short program comprehension using EEG. In 2017
IEEE Frontiers in Education Conference (FIE). IEEE, 1–5.

[54] Min Zhang, Tracy Hall, and Nathan Baddoo. 2011. Code bad smells: a review of
current knowledge. Journal of Software Maintenance and Evolution: research and
practice 23, 3 (2011), 179–202.

[55] Robert Z Zheng. 2017. Cognitive load measurement and application: a theoretical
framework for meaningful research and practice. Routledge.

[56] Stefan Zugal, Jakob Pinggera, Manuel Neurauter, Thomas Maran, and Barbara
Weber. 2017. Cheetah experimental platform web 1.0: cleaning pupillary data.
arXiv preprint arXiv:1703.09468 (2017).

https://arstechnica.com/tech-policy/2018/05/report-software-bug-led-to-death-in-ubers-self-driving-crash/
https://arstechnica.com/tech-policy/2018/05/report-software-bug-led-to-death-in-ubers-self-driving-crash/

	Abstract
	1 Introduction
	2 Approach Requirements and Overview
	3 Background and Related Work
	3.1 Cognitive Load Theory
	3.2 Behavioral and Physiological Measures Based on Eye-tracking
	3.3 Fine-grained Estimation of Cognitive load

	4 Research Method
	4.1 Data Collection
	4.2 Data Analysis

	5 Findings and Discussion
	6 Threats to Validity
	7 Conclusion
	References

