
Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA 

Data Integration Patterns 

Alexander Schwinn, Joachim Schelp 
Institute of Information Management, University of St. Gallen 
{alexander.schwinn,joachim.schelp}@unisg.ch

 

Abstract 
 
The application landscapes of major companies all 

have their own complex structure. Data has to be 
exchanged between or distributed to the various 
applications. In this paper different types of data 
integration are identified and categorized. Advantages 
and disadvantages as well as usage scenarios are 
discussed for each identified integration type. This paper 
also  tries to answer the question “Where does 
redundancy make sense?”, not “How to avoid 
redundancy?”. 

1. Heterogeneous Application Landscapes 
lead to Data Redundancy 

The companies’ evolving application landscapes are 
becoming more and more complex as long as no 
standardization takes place. Newer technologies 
introduced by electronic business increase the complexity. 
They require a higher degree of integration between 
intraorganizational applications than previous 
technologies, when the evolution of applications took 
place within departmental borders. Stovepipe application 
types were the result [Lint00, 4]. 

But the increased need for integration is not just a 
result of new requirements, induced by new businesses: 
Mergers and acquisitions result in similar requirements. 
Similar application systems have to be run for some time 
after a merger or acquisition has taken place [KrSt02]. 
But to dig up any synergy potential e.g. customer data has 
to be integrated or exchanged between these parallel 
running applications. Several integration concepts are 
currently discussed under the label of “Enterprise 
Application Integration” (EAI) [SchWin02, 12-17]. They 
can be reduced to data, function or event-oriented 
integration (e.g. [SMFS02, BFGH02]). In this paper the 
further discussion focuses on data integration. To analyze 
the different data-oriented integration types, redundancy 
should be considered. In this section, redundancy has to 
be discussed before further data integration types can be 
identified in the next section. 

For this paper we define redundancy as storing the 
same data multiple times. This may cause problems when 

changes require the modification of stored data. All 
copies of the original data have to be modified as well to 
avoid inconsistencies causing problems with further data 
processing or prohibiting it completely. Consider, for 
example, changing customer address data: When the data 
is changed in the sales department only, tracking the 
invoice will be problematic in the accounting department 
etc. Consistently avoiding data redundancy is 
recommended in literature (e.g. [Dit99]). 

But why should data redundancy be applied 
systematically and managed, when avoiding it is 
recommended? In some areas, e.g. data warehousing, data 
redundancy is required to increase query performance. 
Complex queries are not executed in the operational 
environment, but in a data warehouse holding copies of 
operational data, structured for analytical purposes 
[Inm96, Inm99]. Newer concepts like active warehousing 
still require data redundancy, but ask for a quicker 
propagation of changes. The vision of a real time 
enterprise demands current data (copies) to avoid any 
delays in the execution of business processes [DRFA02]. 
The concept of active warehousing seeks for near real-
time updates of data warehouse data [Bro02]. These near 
real-time updates have to be done with an EAI 
infrastructure. 

The following example illustrates in which cases 
avoiding data redundancy can result in drawbacks. Our 
fictitious telecommunications company has several 
business units offering different services. To support the 
business processes each unit has its own transactional 
systems. To avoid inconsistencies and to make data 
changes easier there is one central shared database for 
customer data which is used by all business units. 
Customer data can be created, changed and deleted 
centrally. Any customer data transaction has to be 
executed once only. This high level of data integration—
every query for customer data runs against the central 
database—may result in some drawbacks: 
– The availability of all components—departmental 

applications, central database, EAI infrastructure, 
network etc.— has to be ensured to allow operation. A 
failure in one component brings the whole system 
down. 

– All components must have a high capacity. If, for 
example, a large number of queries are made from the 



DATA INTEGRATION PATTERNS 233
 

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA 

internet portal application during nightly backups of 
the central database, internet customers are not willing 
to wait for long. Accordingly, the overall system 
capacity has to cover the combined load of all 
systems.  

– Maintenance, further development, and tests become 
more complex because of the higher requirements 
concerning availability, capacity, performance, etc. 
Maintenance cycles of the individual systems have to 
be coordinated to avoid interference of operation. 

– Splitting up the company and selling a business line is 
less difficult if there is a central database because the 
acquiring company has access to the selling 
company’s data. 

Another reason to stick to data redundancy is country-
specific legislation. In Europe there are strong rules 
concerning changing and exchanging individual customer 
data. Complete customer data can be proliferated within a 
group of companies if the individual customer agrees to it 
[Bül02]. After mergers and acquisitions customers would 
have to agree to a group-wide usage of their data. 

In reality, a high level of integration can be found 
within a wide range of companies. But [KrSt02] shows 
that in some 35% of the integration projects due to 
mergers and acquisitions, similar functional applications 
of the individual companies still run in parallel and are 
not standardized—e.g. to gain from specialization of the 
applications shaped for different businesses. Accordingly, 
data has to be exchanged and is stored several times, 
because these applications have individually developed 
databases, which are difficult to merge.  
The next chapter discusses how data can be stored 
redundantly. Different types of data integration build the 
framework to identify data integration patterns. The 
patterns presented here reflect data-oriented integration 
only. A discussion of other integration types—e.g. 
process or object integration—can be found in [DLPR02], 
amongst others. 

2. Data Integration Patterns 

The following section gives an overview of different 
data integration types. Subsequently, the individual 
variants are presented in detail. Usage scenarios, as well 
as advantages and disadvantages are given for each of the 
solutions presented. 

2.1 Overview 

The classification of data access types presented here 
is based on the assumption that an application needs 
specific data at a given time, in a specific format and in a 
required quality. The classification points out how these 
requirements can be met. The classification is based on 
how the application gets the data (e.g. in which time 

intervals, kind of communication, etc.), and on whether 
the application accesses the original data source or a copy 
of the data. A goal of this approach is to model an 
application landscape in which temporal and technical 
dependencies as well as redundancy appearance can be 
discovered. This is especially important when 
implementing new applications or replacing old 
applications by new ones. Fig. 1 shows the identified data 
integration patterns: 

 
Accessing the original data source Accessing a data copy

Loose coupling Loose couplingTight coupling

Local
Copy BufferShared 

Copy

Accessing the original data source Accessing a data copy

Loose coupling Loose couplingTight coupling

Local
Copy BufferShared 

Copy  

Figure 1. Types of data integration 
 
The types identified here can also be understood in the 

sense of design patterns as they are known in the object-
oriented world. A pattern describes a problem which 
recurs regularly in our environment, and the core of the 
solution for this problem, so that the solution can be 
reused at any time [AISJ77, 10]. 

Below redundancy-free patterns are presented 
(accessing the original data), differentiating between 
loose and tight coupled variants. Subsequently, 
alternatives for access to data copies are presented, 
differentiating between three different types of data 
copies: local data copies, shared data copies and buffers. 
When creating data copies, the time dimension is also 
considered, that is how quickly the data copy becomes 
available for the application, resp. how up to date the 
copy is. 

2.2 Redundancy-free Solutions 

In order to avoid redundancies, the original data source 
must be accessed. This is unproblematic and makes sense 
in some scenarios. Two different variants of how the 
original data can be accessed are shown here. The 
application can be accessed directly (tight coupling) or via 
a mediator (loose coupling). The different concepts and 
usage scenarios are presented below, with their respective 
advantages and disadvantages. 

2.2.1 Direct Access 

Accessing a data source directly is only possible under 
certain conditions. The direct call is usually made either 
by one of the data base management systems (DBMS) 
involved, or by means of an API (Application 
Programming Interface) call. A call initiated by the 
database management system can only be implemented if 
the system is accessible and the application is not a 
"Black Box". Direct access to database systems is often 



234 BUSINESS INFORMATION SYSTEMS – BIS 2003
 

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA 

impossible. Packaged applications usually provide an API 
for accessing their database systems. However, an API 
call only makes sense if it meets the exact requirements of 
the potential initiator, and the initiator application can be 
manipulated. An extension of APIs is not possible in most 
cases because the application code is not accessible. 
Usually this is only possible, if the software has been 
developed in-house. Table 1 shows usage scenarios and 
gives an overview of advantages and disadvantages of the 
direct access integration pattern: 

Table 1. Usage scenarios, advantages and disadvantages 
of the direct data integration pattern 
Direct Data Integration Pattern 
Usage Scenarios 
• Industry standards are used 
• Software was developed in-house (full access to 

source code is given) 
Advantages 
• Easy to implement, lowest complexity 
• No overheads 
Disadvantages 
• Software components often cannot be manipulated 

and accessed 
• Tight coupling (lower availability, difficult change 

management) 
• Locking-problems within complex transactions 
• Cross platform communication usually not possible 

or difficult to implement 

2.2.2 Data Access via Mediator 

If it is not possible or desired to access the original 
data directly, an application can access a source of 
original data through a mediator. The integration logic is 
transferred to the mediator, because no access to the 
source applications is granted—neither on the application 
nor on the database level. The mediator essentially takes 
on the following tasks: 

 
– Transformation: A transformation can take place on 

a semantic level (mapping data contents, e.g. 
transformation of country codes or currency codes) 
and on a syntactic level (transformation of different 
data formats or message formats). 

 
– Routing: The routing is responsible for the 

distribution of messages to the applications involved. 
Besides, mechanisms for buffering messages are 
provided by the routing component. 

 
– Composition/Decomposition: The composition 

component merges several messages into one, the 

decomposition component divides a message into 
several. 

 
– Controlling: The controlling component controls the 

chronology and resolves dependencies. 
 

These basic functions also appear—partly implicitly—
in other approaches - although there are various terms and 
delimitations (see [RieVog96, SMFS02] for details). 

 
Table 2.  Usage scenarios, advantages and 

disadvantages of data integration via mediator. 
Data Integration via Mediator 
Usage Scenarios 
• Complex transformation, routing, 

composition/decomposition or controlling is required 
• Integration of packaged applications 
Advantages 
• No (code-)manipulation within the affected 

applications is necessary  
• Controlling complexity by encapsulation through the 

mediator 
Disadvantages 
• Mediator can become very complex 
• Increased overheads 
• An additional component in the application 

landscape must be operated/managed 
 
Further general advantages and disadvantages of tight 

and loose coupling can be found in [RMB01, 20-21; 
Cum02, 48]. The coupling measures the level of 
interdependency between two components. It also 
measures the impact that changes in one component will 
have on the other. In loose coupling, the integration is 
dependent on some interfaces. Loosely coupled 
components have the advantage of fewer dependencies. 

2.3 Redundancy Based Solutions 

Compared with a redundancy-free solution, solutions 
which create redundancies always incur additional 
expenditure because the data must be synchronized. There 
is the danger of evolving inconsistencies, whereby the 
data quality suffers. Detailed information about data 
quality can be found in [Hel02]. However, for various 
reasons (see section 1) redundancy solutions are often 
implemented. We differentiate between three types of 
redundancy solutions: Local data copies, shared data 
copies and buffers. We do not make a distinction between 
integrations with or without a mediator because in theses 
redundancy based scenarios a mediator is almost always 
used. Complex transformations, routing, 
composition/decomposition and controlling of the data is 
usually needed. For usage scenarios, as well as 



DATA INTEGRATION PATTERNS 235
 

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA 

advantages and disadvantages of using mediators see 
section 2.2.2. In the literature (e.g. [AKVG01, 209-234]) 
a distinction is made between data copies on the 
application level and data copies on the database level. 
This distinction is not considered in this paper because it 
is not relevant for the recognition of redundancy and the 
illustration of redundancy relationships. 

2.3.1 Local Data Copy 

Local data copies exist whenever an application keeps 
the data copy locally, i.e. the necessary data is supplied by 
a central database and it is stored by the application 
locally. The application, which keeps the copy, always 
works with the copy and not with the original data. The 
example of the Telco in section 1 is a typical local data 
copy scenario. If the autonomy of the application, which 
needs data from a central database, has to be ensured, a 
local data copy must be used. Thus the application can 
work autonomously and is not affected by master 
database failures. Besides, a local data copy is usually 
more efficient and can satisfy requirements concerning 
transaction processing. The following table summarizes 
advantages, disadvantages and usage scenarios of the 
local data copy pattern. 

Table 3. Usage scenarios, advantages and disadvantages 
of the local data copy pattern 
Local Data Copy Pattern 
Usage Scenarios 
• High availability necessary 
• Autonomy of application desired 
• Examples: Data warehouse (DWH), channel and 

sales applications, packaged applications 
Advantages 
• High performance 
• High availability 
• Stand-alone solution 
• Single-source for analyzing data (optimal data view 

for analytic system/analyses; no distributed queries 
over several data sources necessary) 

Disadvantages 
• Lower data timeliness (depends on refresh period)  
• More overheads because the data has to be 

synchronized to avoid inconsistency 
• Costs for redundancy (memory, management of 

redundancy, change management) 
• Inconsistencies may arise 

2.3.2 Shared Data Copy 

The shared data copy is a data source which is used by 
several applications. The shared data copy usually 

contains data from several sources, whereby data from 
heterogeneous databases is merged. A typical example of 
a shared data copy would be an operational data store 
(ODS), which integrates operational data from multiple 
sources. Different applications can access this data. The 
access is transparent for the application, e.g., it only 
accesses the ODS and does not know the origin of the 
data. In comparison with the local data copy, the shared 
data copy results in fewer redundancies because it is not 
necessary to duplicate the whole database for each 
application, but only the needed data. A further example 
for using the shared data copy is the coupling of 
computing centers (middle to large geographical 
distance), so that the application logic can run distributed 
in several computing centers. This scenario also increases 
the reuse of application logic because client access is 
transparent. As most standard software packages do not 
provide direct access to their database systems it is not 
always possible to create a shared data copy. Table 4 
summarizes advantages, disadvantages and usage 
scenarios of the shared data copy pattern.  

Table 4. Usage scenarios, advantages and disadvantages 
of the local data copy pattern 
Shared Data Copy Pattern 
Usage Scenarios 
• Distributed computing centers (middle to large 

geographical distance) 
• Merge data from several heterogeneous database 

systems 
• Example: Operational data store (ODS) 
Advantages 
• Transparent access for clients  
• Loose coupling between distributed computing 

centers 
• Higher degree of application logic reuse 
• Fewer redundancies compared with the local data 

copy 
Disadvantages 
• Data replication is not always possible within 

packaged applications  

2.3.3 Buffer 

Buffers are generally used for processing optimization. 
A typical example in the financial services sector is 
printing account statements according to their deadlines. 
If you printed all account statements on the deadline 
without using a buffer, the operational systems would not 
be able to handle the amount of data without loosing 
performance. Another example is printing call detail 
records (CDR) on phone bills where huge amounts of data 
is required from the operational systems. Table 5 gives a 



236 BUSINESS INFORMATION SYSTEMS – BIS 2003
 

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA 

summary of usage scenarios, advantages and 
disadvantages of the buffer pattern. 

Table 5. Usage scenarios, advantages and disadvantages 
of the buffer pattern 
Buffer Pattern 
Usage Scenarios 
• Processing optimization 
• Batch run/deadline-oriented processing 
• Example: Account statement/phone bill printing 
Advantages 
• High performance 
• Processing can be done separately from the 

operational system 
• Operational system load is decreased 
Disadvantages 
• Dependencies have to be considered (between the 

buffer and the operational system) 
• Not a redundancy-free solution 

2.3.4 Creation Time of the Data Copy 

If a redundant solution is selected for data integration 
the time at which the copy is created (e.g. how up-to-date 
is the data in my ODS) is crucial. Three creation time 
categories have been identified: Unknown/manual, 
periodic and near real-time copies. These three categories 
will be presented in the following. Again, advantages, 
disadvantages and usage scenarios of the individual 
solutions are presented. 

Unknown Creation Time/Manual Creation 
The simplest form of data copy creation time, which is 

usually neglected, is the manual one. The copy is created 
manually at an unspecified point of time (for example by 
user input). Manual data integration makes sense 
whenever the integration cannot take place automatically, 
i.e. if no implementation is available or an 
implementation would not be cost-effective. This is only 
be appropriate in those cases where data changes take 
place very rarely, and the amount of data to be integrated, 
is relatively small. Typical examples are changes of 
country codes or language codes. If a country code 
changes it has to be updated manually within the 
appropriate applications. The only advantage of this 
solution is its cost-effectiveness. No integration tools (e.g. 
a mediator) needs to be purchased or developed. The 
disadvantages of a manual solution are the danger of data 
inconsistencies, and a higher error rate. The data 
timeliness depends on the employee responsible for the 
data integration. Inconsistencies can arise if, for example, 
some systems have a new data copy and others do not. 
Referring to our example, an application would not 
recognize a language code any more. Finally, the fault 

rate is higher because manual data input can result in 
errors (see table 6). 

Table 6. Usage scenarios, advantages and disadvantages 
of manual data integration pattern 
Manual Data Copy Pattern 
Usage Scenarios 
• No implementation is available and an 

implementation is not cost-effective 
• Small data sets with a static character must be 

integrated 
• Lack of standardization (e.g. language codes, country 

codes) 
Advantages 
• Cost effective solution (because implementation 

costs are low) 
Disadvantages 
• Data timeliness depends on the discipline of the 

person responsible  
• Data administration dialogues/functions are 

necessary 
• Danger of inconsistencies 
• Error-prone (e.g. typing errors) 

Periodic Data Integration 
In the periodic integration scenario the data gets 

integrated in predefined periods (e.g. once a day, once an 
hour, etc.). A typical usage scenario of the periodic data 
copy is batch processing, which is activated by a 
scheduler. The periodic data integration makes sense 
whenever the data timeliness requirements are not very 
high and large data sets have to be integrated. In this case, 
a near real-time integration could overload the operational 
systems, so that the availability of the operational systems 
is reduced. By applying periodic data integration, dates 
can be selected where the system load is low. 
Furthermore, the periodic data integration has the 
advantage that the system can usually be debugged more 
easily and rollbacks are possible. Table 7 summarized 
usage scenarios as well as advantages and disadvantages 
of the periodic data integration pattern. 



DATA INTEGRATION PATTERNS 237
 

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA 

Table 7. Usage scenarios, advantages and 
disadvantages of periodic data integration 
Periodic Data Integration Pattern 
Usage Scenarios 
• Batch processing (account statement/phone bill 

shipping) 
• Load processes in data warehouses (DWH) 
• Data timeliness requirements are low 
• Deadline-oriented processing 
• Large amount of data has to be integrated (bulk 

updates, initial loads) 
Advantages 
• High throughput 
• Reduces operational system load (data integration is 

done when system load is low) 
• Easy rollback possible, if errors occur 
Disadvantages 
• Data timeliness is lower compared to near real-time 

integration 
• Long processing times, because of large amounts of 

data, which have to be integrated 
• Higher availability of operational systems 

(integration is done when operational system load is 
low)  

Near Real-Time Data Integration 
The near real-time integration is the most difficult 

pattern to implement. This kind of integration is, 
however, the only one which guarantees a high data 
timeliness. It is used whenever up-to-date data is required 
(e.g. getting cash at an ATM). If near real-time integration 
is applied, very efficient systems are necessary which 
must process the load even at peak times. This implies 
high costs for powerful systems. A further disadvantage 
of near real-time integration is the fact that the data is 
always integrated immediately after creation and not only 
when it is needed. The main characteristics of near real-
time integration are summarized in table 8. 

 
Table 8. Usage scenarios, advantages and 

disadvantages of near real-time data integration pattern 
Near Real-Time Data Integration 
Usage Scenarios 
• High data timeliness is required (e.g. ATM) 
Advantages 
• Data timeliness is high 
Disadvantages 
• Performance of the system is impaired because data is 

integrated not only when it is needed, but always 
immediately after creation 

• Expensive 
 

The following matrix gives a rough overview of when 
which type of data integration pattern (manually, 
periodically or near real-time) should be used. It can 
support decision making when new data integration 
requirements arise. 

 

Timeliness required
Low                           High

N
um

erof transactions/
D

ata volum
e/transaction

H
igh                          Low

Near 
realtime

integrationManual
integration

Periodic
integration

Timeliness required
Low                           High

N
um

erof transactions/
D

ata volum
e/transaction

H
igh                          Low

Near 
realtime

integrationManual
integration

Periodic
integration

 
Figure 2. Usage criteria for data integration patterns 
 
On the one hand the data timeliness requirements are 

differentiated, on the other hand the number of expected 
transactions, and/or the expected volume of data per 
transaction are distinguished. If the data timeliness 
requirements are high only near real-time integration is 
appropriate. If the data timeliness requirements are rather 
small and the data sets which have to be integrated are 
large, the periodic variant can be selected. At low data 
timeliness requirements and few transactions the manual 
integration type should be considered. Due to the 
disadvantages presented above, the manual type should, 
however, be generally avoided. 

3. Conclusions and Further Research 

The data integration patterns identified in the previous 
section are helpful when integrating application systems 
via data integration. The presented advantages and 
disadvantages, and the usage scenarios were identified in 
a research project with a Swiss IT solution provider who 
develops and runs banking applications. The patterns 
were tested in two major companies in the Swiss financial 
sector. The same patterns were found within their 
application landscapes. The next step will be to test these 
patterns in a wider environment to verify their reliability 
and robustness. 

To identify data dependencies and to conduct further 
investigations, a consistent methodology for the 
description of application landscapes has to be developed. 
It would be easier to consider data dependencies at a time 
when applications have to be replaced and/or additional 
applications have to be implemented. Such a methodology 
is currently being developed in a research project at the 
Institute of Information Management of the University of 



238 BUSINESS INFORMATION SYSTEMS – BIS 2003
 

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA 

St. Gallen. The findings presented here result from one of 
the first steps in this research project. 

4. References 

[AKVG01] Adams, J.; Koushik, S.; Vasudeva, G; Galambos, 
G.: Pattern for e-business- A Strategy for Reuse, IBM Press, 
Double Oak 2001. 

[AISJ77] Alexander, C.; Ishikawa, S.; Silverstein, M.; Jacobson, 
M.; Fiksdahl-King, I.; Angel, S.: A Pattern Language, Oxford 
University Press, New York 1977. 

[Bro02] Brobst, S. A.: Enterprise Application Integration and 
Active Data Warehousing, in: von Maur, E.; Winter, R.: Vom 
Data Warehouse zum Corporate Knowledge Center, 
Proceedings of Data Warehousing 2002, Physica, Berlin et al. 
2002, p. 15-22. 

[BFGH02] Bunjes, B.; Friebe, J.; Götze, R.; Harren, A.: 
Integration von Daten, Anwendungen und Prozessen am 
Beispiel des Telekommunikationsunternehmens EWE TEL, 
in: Wirtschaftsinformatik, Vol. 44., No. 5, p. 415-423. 

[Büll02] Büllesbach, A.: Datenschutz bei Data Warehouses und 
Data Mining, in: von Maur, E.; Winter, R.: Vom Data 
Warehouse zum Corporate Knowledge Center, Proceedings of 
Data Warehousing 2002, Physica, Berlin et al. 2002, p.1-13. 

[Cum02] Cummins, F. A.: Enterprise Integration – An 
Architecture for Enterprise Application and System 
Integration, OMG Press, 2002. 

[DLPR02] Dangelmaier, W.; Lessing, H.; Pape, U.; Rüther, 
M.: Klassifikation von EAI-Systemen, in: HMD – Praxis der 
Wirtschaftinformatik, Vol. 39, No. 225, 2002, p. 61-71. 

[Dit99] Dittrich, K.: Datenbanksysteme, in: Rechenberger, P.; 
Pomberger, G.: Informatik-Handbuch, 2nd Ed., Hanser, 
München, Wien 1999, p. 875-908. 

[DRFA02] Drobik, A.; Raskino, M.; Flint, D.; Austin T.; 
MacDonald, N.; McGee, K.: The Gartner Definition of Real-
Time Enterprise, Note Number COM-18-3057, Gartner 
Group, 2002. 

[Hel02] Helfert, M.: Planung und Messung von Datenqualität 
in Data-Warehouse-Systemen. St. Gallen, Dissertation 2002, 
No. 2648, Difo-Druck, Bamberg 2002. 

[Inm96] Inmon, W. H.: Building the Data Warehouse, 2nd ed., 
John Wiley, New York et al. 1996. 

[Inm99] Inmon, W. H.: Building the Operational Data Store, 
2nd ed., John Wiley, New York et al. 1999. 

[KrSt02] Kromer, G.; Stucky, W.: Die Integration von 
Informationsverarbeitungsressourcen im Rahmen von Mergers 
& Acquisitions, in: Wirtschaftsinformatik, Vol. 44 , No. 6, 
2002, p. 523-533. 

[Lint00] Linthicum, D. S.: Enterprise Application Integration, 
Addison-Wesley, Harlow et al. 2000. 

[RMB01] Ruh, W. A.; Maginnis, F. X.; Brown, W. J.: Enterprise 
Application Integration, Wiley & Sons, Inc., 2001. 

[RieVog96] Riehm, R.; Vogler, P.: Middleware – Infrastruktur 
für die Integration, in: Österle, H; Riehm, R.; Vogler, P.: 
Middleware – Grundlagen, Produkte und 
Anwendungsbeispiele für die Integration heterogener Welten, 
Vieweg, Braunschweig et al. 1996, p. 25-135. 

[SchWin02] Schelp, J.; Winter, R.: Enterprise Portals und 
Enterprise Application Integration – Begriffsbestimmung und 
Integrationskonzeptionen, in: HMD-Praxis der 
Wirtschaftsinformatik, Vol. 39, No. 225, 2002, p. 6-20. 

[SMFS02] Schissler, M.; Mantel, S; Ferstl, O. K.; Sinz, E. J.: 
Kopplungsarchitekturen zur überbetrieblichen Integration von 
Anwendungssystemen und ihre Realisierung mit SAP R/3, in: 
Wirtschaftsinformatik, Vol. 44, No. 5, 2002, p. 459-468. 

 
 

 


