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Abstract

Traditionally, model analysis follows qualitative, heuristic, and trial-and-error-driven approaches
for testing dynamic hypotheses. Only recently have other methods like loop dominance analysis
or control theory been proposed for this purpose. We advocate complementing established qual-
itative heuristics with a quantitative method for model analysis. To that end, we propose two al-
gorithms to detect Wolstenholme’s four generic problem archetypes within models. We tested
these algorithms using the Maintenance and World Dynamics models. The approach presented
in this paper is a first important step towards the identification of system archetypes in system dy-
namics and contributes to improving model analysis and diagnosis. Furthermore, our approach
goes beyond diagnosis to eliciting solution archetypes, which foster the design and implementa-
tion of effective policies. Copyright © 2015 System Dynamics Society

Syst. Dyn. Rev. 31, 66–85 (2015)
Introduction

Over the last three decades, interest in developing formal tools for the de-
tection of dominant structures in large system dynamics (SD) models has
grown among system dynamicists (e.g. Kampmann and Oliva, 2009).
While these tools have added substantially to our knowledge of how
structure drives behavior in large models, they remain reserved for the
more mathematically inclined scholars, and their use in the SD community is
limited (ibid.). Therefore, we propose a new method for model analysis that is
based on the algorithmic detection of archetypal structures (ADAS), an idea that
can be traced back toWolstenholme’s (2003) seminal paper "Towards the defini-
tion and use of a core set of archetypal structures in systemdynamics", winner of
the 2004 Jay Wright Forrester Award (Andersen, 2004).
The ADAS method is a tool for testing a dynamic hypothesis of the follow-

ing type: An archetypal structure causes the dysfunctional behavior of a var-
iable of interest. More specifically, the ADAS method allows for the
automated detection of all archetypal structures belonging to any of the four
generic problem archetypes as defined by Wolstenholme (2003). Systematic
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identification of all generic problem archetypes dramatically simplifies the
formulation of effective policies because a solution archetype exists for each
problem archetype (Wolstenholme, 2003). The method proposed in this paper
is a contribution to model structure analysis, particularly to the rigor and ef-
fectiveness of SD-based model diagnosis for finding effective leverage points.
The ADAS method is probably most beneficial for the analysis of models

that are not intentionally built around a specific problem archetype. This re-
lates to the observation by Corben (1994, p. 16) that "in using the system arche-
types for conceptualisation, there is a real danger that the selection of an
archetype will be both a starting point and an ending point". Novice modelers
in particular may select an inappropriate archetypal structure as a modeling
basis or have a preconceived view of the problem because of using these struc-
tures. Thus the method presented here is useful for modelers who begin the
modeling process from scratch and engage in the task of structuring their
own view of a system without reverting to the use of archetypal structures
as model templates (ibid.).
This paper is organized into eight interrelated sections. Following the intro-

duction, the second section presents a methodological overview and embeds
the ADAS method in a generic process of model building and analysis. The
third section discusses the application of the ADAS method to a small model
in order to provide the reader with a better sense of the proposed method’s
value. The fourth section introduces the background necessary to the ADAS
method. The fifth section presents the algorithms to detect the four generic
problem archetypes. The sixth section applies the ADAS method to a substan-
tially more complex model—Forrester’s (1971) classical World Dynamics
model—and suggests an effective heuristic for reducing the large number of
archetypal structures detected in this model. The seventh section covers the
limitations of the ADAS method, and the last section provides conclusions
and recommendations for future research.
Methodological overview

The ADASmethod builds on the assumption that the structure of an SDmodel
can be accurately described as a directed graph (Oliva, 2004; Kampmann,
2012). This implies that variables and relationships in SD models are tran-
scribed into vertices and edges, respectively. The graph representation of sys-
tem structure is an indispensable requirement to algorithmically check SD
models for the presence of archetypal structures. However, for the detection
of generic problem archetypes, more information is necessary beyond the
mere notion of connectivity of variables. More specifically, the algorithms
need two additional parameters as inputs: the polarity of relationships and
the existence and magnitude of delays. To provide the algorithms with this ad-
ditional information, we propose a qualitative coding procedure.
Copyright © 2015 System Dynamics Society
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Table 1. Generic model
building and analysis process
that integrates the ADAS
method

68 System Dynamics Review
A first set of edge weights ei,j= {1, �1} is used to distinguish between "pos-
itive" (same direction) and "negative" (opposite direction) causal relationships
between independent and dependent variables. A second set of edge weights
τi,j= {1, 2, 4} serves to discriminate between delayed and non-delayed causal
effects. For both categories of edge weights ei,j and τi,j, information is stored
in an adjacency matrix. A more detailed description of this coding procedure
can be found in the section entitled "Technical background to the ADAS
method". Due to the structural equivalence of three generic problem arche-
types, only two algorithms are needed to detect all four archetypal structures:
underachievement, relative achievement, relative control and out-of-control
archetypes. Each archetype is composed of an intended consequence (ic) feed-
back loop and an unintended consequence (uc) feedback loop. A thorough
discussion about the algorithms is presented in the section on "Algorithms
to detect Wolstenholme’s four generic problem archetypes". In the following,
we demonstrate how the ADAS method can be embedded in a generic process
of model building and analysis.
Table 1 clarifies the basic steps of the entire model analysis process with the

ADAS method integrated. Steps (1) and (2) are in line with traditional practices
in SD: identify an undesirable systembehavior and formulate a "theory" (dynamic
hypothesis) about how the system creates the troubling behavior (Forrester,
1994). Steps (3)–(8) are specific to this model analysis process, while step (5)—
the application of the ADAS method—plays an especially important role.
Application of the ADAS method to a small model

This section describes the generic model building and analysis process step
by step to demonstrate and explain how the algorithms might be applied to
Step Description

1 Identify a problematic reference behavior of a variable of interest
2 Formulate a dynamic hypothesis (model), in terms of a stock and flow diagram (SFD)

for why this dysfunctional behavior occurs
3 Convert the SFD into a directed graph by using two adjacency matrices, the first

indicating link polarities and the second covering delays
4 Set the variable of interest identified in step (1) as the outcome variable (key variable)

for the algorithms
5 Check algorithmically if the variable of interest is part of one or several archetypal

structures (ADAS method)
6 Identify plausible archetypal structures that cause the problematic behavior of the

variable of interest. To that end, reinterpret the found archetypes in step (5) in the
context of the model built in step (2)

7 Introduce solution links (policies) as suggested in the literature (Wolstenholme, 2003)
8 Simulate the model and review the behavior of the variable of interest

Copyright © 2015 System Dynamics Society
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Fig. 1. The basic Mainte-
nance Model (Thun, 2006,
p. 167). The bold lines are
included for illustrative
purposes only
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a small model. The application shows how they can significantly improve sys-
tem diagnosis as well as the discovery and implementation of policies.
Figure 1 shows the Maintenance Model (Thun, 2006; Sterman, 2000), which

illustrates the problematic and typical behavior of a production system where
reactive maintenance predominates, maintenance that is breakdown induced,
triggering an undesired growth of equipment defects. In this example, rising
equipment defects—the reference behavior—are the starting point for the
model-building and analysis process. As suggested by Wolstenholme (2004),
we added two redundant relationships connecting the two outflows back to
the stock (bold lines) to better visualize the balancing feedback loops in
Figure 1. These modifications are for illustrative purposes only and facilitate
the drawing of the digraph.
Next, information about link polarities and time delays are stored in two ad-

jacency matrices. In the polarity matrix, "1" stands for two variables being pos-
itively related and "�1" stands for a pair of variables being negatively related.
All the information needed for this task can be directly deduced from Figure 1.
In the temporality matrix, we use "1" to indicate no significant time delay be-
tween variable pairs, "2" for all links emerging from the stock variable and "4"
if prominent delays exist. We assume that all links emerging from a stock var-
iable are slightly delayed following the argument of stocks being the sources
of delays in SD models (Sterman, 2000). According to Thun (2006), only one
relationship has a significant delay and is therefore coded with a "4"; it is
the link between Takedown Rate (variable 10) and Preventive Maintenance
(variable 12). Table 2 presents these two adjacency matrices, accounting for
Copyright © 2015 System Dynamics Society
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Table 2. Adjacencymatrices
for link polarity (left) and
temporality (right)

Polarity matrix Temporality matrix

12 3 4 56 7 8 910 11 1213 141516 17 18 1920 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1
2 1 2 1
3 1 3 1
4 1 4 1
5 1 1 5 2 2
6 �1 6 1
7 �1 1 �1 �1 7 1 1 1 1
8 1 �1 8 1 1
9 �1 9 1
10 �1 1 10 1 4
11 �1 11 1
12 1 1 1 12 1 1 1
13 1 13 1
14 �1 14 1
15 15
16 1 16 1
17 1 17 1
18 �1 18 1
19 1 19 1
20 1 20 1
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the polarity and temporality of each link. The numbering in the two matrices
corresponds to the variable numbers in Figure 1.
In this example, variable 5, Equipment Defects, is the outcome variable and

is algorithmically checked for membership in archetypal structures. Addition-
ally, variable 7, Reactive Maintenance, is the control action for the detection
of out-of-control archetypes.1 The reasoning behind the choice of Reactive
Maintenance as an input (control action) for the out-of-control algorithm is
twofold: first, the amount of Reactive Maintenance is directly controllable
by a manufacturing company; and second, the existence of an out-of-control
archetype in this particular case is documented in the literature (Thun,
2006). Table 3 shows the results of this analysis and exhaustively lists all ar-
chetypal structures found (according to the definition of Wolstenholme,
2003), without any manual or other form of pre-selection.
In this model, the current control mechanism is not effective at stabilizing

or reducing Equipment Defects. Consequently, the algorithm finds an out-of-
control archetype wherein the intention to control Equipment Defects with
Reactive Maintenance (variable 7) results in an unintended systemic reaction
that exacerbates the problem in the long run. More Reactive Maintenance
1The out-of-control detection algorithm requires the definition of a control action as an input (see section about
"Algorithms to detect Wolstenholme’s four generic problem archetypes").

Copyright © 2015 System Dynamics Society
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Table 3. Algorithmically
detected generic archetypal
structures

Intended consequence (ic) Unintended consequence (uc)

Underachievement archetype
No. D P Loop D P Loop
1 7 R 5→ 10→ 9→ 14→ 12→ 11→ 5 5 B 5→ 8→ 7→ 6→ 5
Out-of-control archetype
No. D P Loop D P Loop
1 5 B 5→ 8→ 7→ 6→ 5 8 R 5→ 8→ 7→ 19→ 17→ 12→ 11→ 5
Relative control archetype
No. D P Loop D P Loop
1 5 B 5→ 8→ 7→ 6→ 5 8 B 5→ 10→ 12→ 11→ 5
2 8 B 5→ 10→ 12→ 11→ 5 5 B 5→ 8→ 7→ 6→ 5

D, delay; P, loop polarity; B, balancing; R, reinforcing.

Fig. 2. Out-of-control ar-
chetype and suggested so-
lution link
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reduces the Time of the Maintenance Department (variable 19) for other activ-
ities, resulting in fewerMechanics Available for Preventive Maintenance (var-
iable 17). In turn, lower execution of Preventive Maintenance (variable 12)
reduces Defect Prevention through Preventive Maintenance (variable 11) and
boosts Equipment Defects (variable 5).
Wolstenholme (2003, p. 12) suggests that "the closed loop solution to an

out-of-control archetype lies in introducing or emphasising a direct link
(the ’solution link’) between the problem and the system reaction. The pur-
pose of this link is to introduce or re-emphasise a further balancing loop in
parallel with the ic balancing loop to counter the reinforcing reaction."
Consequently, to address the archetypal behavior in the Maintenance Model,
a direct relationship between the problem (Equipment Defects) and the
Copyright © 2015 System Dynamics Society
DOI: 10.1002/sdr



Fig. 3. Comparison be-
tween Equipment Defects
in the initial model by
Thun (2006) and in the
revised model with
Wolstenholme’s (2003)
solution link
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system reaction (Preventive Maintenance) is necessary. Figure 2 depicts the
out-of-control archetype found in the model and the suggested solution link
(bold arrow).
The implementation of this new solution link has a strong positive ef-

fect on equipment defects that is significantly reduced compared to the
initial model (Figure 3). The simulation results in Figure 3 are generated
using Thun’s (2006) original model specifications. Figure 3 demonstrates
the difference between the out-of-control archetype in the original model
and the model with our suggested solution link: equipment defects grow
rapidly and stabilize at a very high point in the original model, while
they are much smaller and stabilize much more quickly once the solution
is implemented.
Technical background to the ADAS method

This section provides the background to the ADAS method to help the
reader understand more complex applications, and also provides proper
technical documentation of the method. It will be shown how SD models
can be described as directed graphs (digraphs) and how relational informa-
tion, such as link polarity and delay, can be stored in adjacency matrices.
The conversion of a simulation model to a digraph is a necessary precondi-
tion for the efficient application of our algorithms, presented in the next
section.
In mathematical notation, an SD model can be described as a digraph

G consisting of a set of vertices V and a set of edges E. Every edge
connecting two vertices vi, vj∈V (i.e. vi→ vj= ei,j∈E) denotes a direct
causal relationship. In accordance with Oliva (2004), Kampmann (2012)
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and Schaffernicht and Groesser (2014), we use the following edge weights
ei,j to account for link polarity:

ei;j ¼
�1 if vi →̄vj

þ1 if vi →
þ vj

(

In graph notation, vi →̄vj indicates that a change in vi causes vj to change in
the opposite direction (i.e. if vi increases then vj decreases, and vice versa),
which corresponds to a negative link polarity in SD models. In contrast,
vi →þ vj implies that a change in vi causes vj to change in the same direction
(i.e. if vi increases/decreases then vj also increases/decreases), which corre-
sponds to a positive link polarity in SD models.
Links in SDmodels are also characterized by the presence andmagnitude of de-

lays (Sterman, 2000). To incorporate temporal information in adigraph,wepropose
an additional set of edge weights τi,j building on Schaffernicht and Groesser (2014):

τi;j ¼
1 if a change in vi immediately affects vj

2 if vi is a stock variable

4 if a change in vi affects vj only after a significant delay

8><
>:

The time delay between a change in vertex vi and its effect on vj is indicated
by τi,j. If a change in vi immediately impacts vj then τi,j = 1. If vi is a stock var-
iable then we assume that impacts on all vj are slightly delayed, defining τi,j = 2.
This assumption follows the argument of stocks being the sources of delays in
SD models (Sterman, 2000). Additionally, if a change in vi impacts vj only after
a significant delay, then τi,j = 4.
The relational information―link polarities and delays―can be stored in

adjacency matrices. An adjacency matrix A is a |V| ×|V| square matrix
with A= (ei,j) (Cormen et al., 2009). Each vertex appears twice, both in a
row and a column. The values in row Ai represent the successor set for ver-
tex i, while the values in column Ai represent the predecessor set for vertex
i. Figure 4 shows the example of a stock and flow diagram (SFD), an SFD as
a digraph and the corresponding adjacency matrices. Oliva (2004) uses a very
similar procedure for representing SD models as digraphs.
In graphs, a directed path is a series of disjoint (distinct) connected vertices.

Like edges, paths are made up of characteristic attributes—in this case polar-
ity, temporality, and length. The polarity of a path is calculated by multiply-
ing the path’s edge polarities (Kampmann, 2012; Richardson, 1995);
temporality is calculated by the addition of time delays;2 and length by the
number of edges in the path (Freeman et al., 1991).
2The adequacy of adding time delays can be demonstrated by means of a simple example of two edges: vi→ vi + 1

and vi + 1→ vi. Each vertex impacts its successor after a temporal unit x. Thus a change in vertex vi influences
vi + 1 after a time delay x and the same holds for vi + 1→ vi. Consequently, it takes in total x + x = 2x units of time
for a change in vi to feed back into the loop vi → vi + 1→ vi.

Copyright © 2015 System Dynamics Society
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Fig. 4. SFD with corre-
sponding digraph and ad-
jacency matrices. For
illustrative reasons, we
assume that three links
exhibit a significant delay
and we mark these three
links with a double bar in
the SFD. Furthermore, we
add one redundant link
connecting the loss flow
back to the stock (bold
line) to better visualize
one balancing feedback
loop in the SFD
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Paths forming loops indicate feedback effects in models. Loops are paths
with distinct edges and only one vertex appearing twice: the first and the last
vertex (Tarjan, 1972). In graph notation, a path forms a loop when vn=vi is true for
vi→vi+1→…→vn. Feedback loops are the core elements of archetypal structures.
Algorithms to detect Wolstenholme’s four generic problem
archetypes

In this section, we present two algorithms for the detection of the four generic
problem archetypes described by Wolstenholme (2003): the underachieve-
ment, relative achievement, relative control and out-of-control archetypes.
Owing to the structural equivalence of three generic problem archetypes, only
two algorithms are needed to identify all four archetypal structures.

Detecting underachievement, relative achievement and relative control
archetypes

The structures of the underachievement, relative achievement and relative
control archetypes vary only with respect to the polarities of the intended
Copyright © 2015 System Dynamics Society
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Fig. 5. Basic common
structure of under-
achievement, relative
achievement and relative
control archetypes
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(ic) and unintended consequence (uc) loops. Figure 5 illustrates the basic
structure of these three archetypes in a causal loop diagram (CLD). Vertex vo
represents the outcome variable that is intentionally driven by an action vari-
able va. The system reaction vr that unfolds only after a certain delay, how-
ever, compromises the outcome variable vo.
To detect whether this basic structure is present in a model, every ic-

and uc-loop combination that has no intersection other than the outcome
variable vo must be identified. Therefore, the algorithm described in
Figure 6 processes a polarity adjacency matrix A and an outcome variable
of interest vo as input parameters. Furthermore, using two Boolean param-
eters (boolic, booluc), the polarity of the ic- and uc-loops to be identified
can be set.
The Boolean parameters (boolic, booluc) are set to be true when the loops are

reinforcing and false otherwise. The call of the algorithm then decides which
archetypal structure is returned:

For the underachievement archetype:
FINDARCHETYPES(A, vo, true, false)
For the relative achievement archetype:
FINDARCHETYPES(A, vo, true, true)
For the relative control archetype:
FINDARCHETYPES(A, vo, false, false)
Copyright © 2015 System Dynamics Society
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Fig. 6. Algorithm to detect
underachievement, rela-
tive achievement and rel-
ative control archetypes
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First, the algorithm stores all loops containing the outcome variable vo and
meeting the polarity criteria (e.g. reinforcing/reinforcing for the relative
achievement archetype) in two separate lists. Second, each ic-loop (li) is com-
pared with every uc-loop (lu). If they do not intersect, meaning they have no
other variable in common except vo, the li / lu -loop combination is added to
the final archetype list returned by the algorithm.
The resulting list with archetypal structures might be long and difficult

to interpret in large models (Kampmann, 2012). Therefore, the choice of
vo is of crucial importance. We suggest focusing on vertices or loops with
high relevance to the model. Vertex and loop relevance could be approxi-
mated, for example, by centrality measures (Oliva, 2004; Schoenenberger
and Schenker-Wicki, 2014; Wunderlich et al., 2014) and dominance
concepts respectively (Borgatti and Everett, 2006; Freeman et al., 1991;
Richardson, 1995).
Detecting out-of-control archetypes

The fourth two-loop system archetype by Wolstenholme (2003)—the out-of
control-archetype—comprises a balancing ic-loop and a reinforcing uc-loop.
The ic-loop is meant to control the magnitude of a problem. However, the
uc-loop creates a reinforcing loop, resulting in a worsening of the problem that
Copyright © 2015 System Dynamics Society
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Fig. 7. Out-of-control
archetype
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might run out-of-control. Rather than the outcome itself, it is the controlling
action that provokes the detrimental system reaction.
Accordingly, the two-loop structure is slightly different from the other three

generic archetypes. Figure 7 depicts the CLD for the out-of-control archetype.
In this archetypal structure, the ic- and uc-loops partly overlap, so a differ-

ent algorithm is needed from that in Figure 6. An appropriate algorithm for
identifying out-of-control archetypes is shown in Figure 8. Again, the algo-
rithm requires inputs of an adjacency matrix A and an outcome variable vo.
Additionally, a parameter for the control action vc is required to limit the
resulting archetype set and to facilitate the interpretation of the output.
First, the algorithm stores all balancing ic-loops that contain the outcome

variable vo and the control variable vc in a data collection. Second, all paths
from the control variable vc to the outcome variable vo are stored in another
dataset as potential system reaction paths. Third, the algorithm iterates
through all potential ic-loops and divides them into two paths, both of which
exclude the control variable vc (see Figure 7). They are: (1) a path preceding
the control variable vc; and (2) a path succeeding the control variable vc. The
algorithm now iterates through all potential system reaction paths. It checks
to ensure that the potential system reaction path does not intersect with the
two previously defined paths, and that it includes a potential system reaction
variable (length >2). If these criteria are fulfilled, the polarities are checked
and the loop combination is added to the resulting archetype set.
To fit the out-of-control archetype from Wolstenholme’s (2003, p. 17) typol-

ogy, the polarity of the path from the outcome variable vo to the control action
vc has to match the polarity of the path from the control action vc via the sys-
tem reaction path to the outcome variable vo. If this criterion is fulfilled, the
structure potentially matches the out-of-control archetype and will be
Copyright © 2015 System Dynamics Society
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Fig. 8. Algorithm to detect
out-of-control archetypes
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returned by the algorithm in a collection with other potential archetypal
structures.
Application of the ADAS method to a large model

While the application of this method to a small model was introduced earlier, the
following large application is only described after introducing the complete tech-
nique of the ADASmethod in order to facilitate the reader’s understanding of this
extended case. We will now apply the ADAS method to Forrester’s (1971) World
Dynamics model. This way, the functioning of the algorithms should become
clearer, and the interpretations of the computational outcomes becomemore ame-
nable to insights. In particular, we discuss an effective heuristic for the reduction of
the large number of archetypal structures identified in theWorldDynamicsmodel.
To test the two proposed algorithms, we have adapted Forrester’s (1971)

World Dynamics model by eliminating the lookup variables (time tabs).3

The removal of these exogenous variables has no effect on the outcome of
the ADAS analysis, as they are not part of any feedback loop. The adapted
model contains 59 variables and 88 links. In this model, population growth
—which peaks in the year 2020 before declining—is the reference mode.
We compiled both adjacency matrices following the coding procedure ex-

plained earlier in this paper. The information for the polarity matrix can be di-
rectly extracted from the model. For the compilation of the temporality
matrix, we control for significant delays. We assume three relationships in
the model to be significantly delayed: (1) the impact of Pollution Absorption
Time (variable 58) on Pollution Absorption (variable 59); (2) the impact of
Capital Investment from Quality Ratio (variable 35) on Capital Agriculture
Fraction (variable 36); and (3) the impact of Capital Agriculture Fraction Indi-
cated (variable 22) on Capital Agriculture Fraction (variable 36). The first rela-
tionship exhibits a significant delay because pollution is not absorbed
immediately but only after a substantial time delay. Forrester (1971) explicitly
integrated this delay through the variable Pollution Absorption Time. The lat-
ter two relationships are significantly delayed as the Capital Agriculture Frac-
tion (variable 36) needs time to adjust to changes, which is represented by the
Capital Agriculture Fraction Adjustment Time (variable 37) in the model.
Population (variable 1) is set as the variable of interest and algorithmically

checked for being part of archetypal structures. Owing to the high number of ar-
chetypal structures detected, we only focus on underachievement archetypes;
these are themost relevant structures for describing the reference behavior of pop-
ulation growth and decline. The underachievement archetypes in thismodel con-
sist of a reinforcing ic-loop that drives population growth and a balancing uc-loop
3A list of the variables used for the algorithms can be found in the electronic supplement, provided as
supporting information. Additionally, both matrices, polarity and temporality, and all detected underachieve-
ment archetypes can be retrieved from the electronic supplement.
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that slows growth, usually as a result of a resource constraint (Wolstenholme,
2003). These structures are promising candidates for explaining the deceleration
of population growth in the mid 20th century (in the model), but they cannot
tprovide insights into the causes for population decline starting in the year 2020.
Running the detection algorithm over the model, a total of 99 underachieve-

ment archetypal structures are returned. Obviously, the high number of poten-
tially archetypal structures hinders modelers from efficiently finding and
recommending favorable policies. Therefore, we recommend working with a
reduced loop set instead of algorithmically processing all feedback loops pro-
vided by the model. In the SD literature, three different types of reduced loop
sets are proposed: (1) independent loop set (ILS) (Kampmann, 2012); (2)
shortest independent loop set (SILS) (Oliva, 2004); and (3) minimal shortest
independent loop set (MSILS) (Oliva, 2004). All of them considerably reduce
the feedback complexity of SD models. In this article, we focus on the SILS
and MSILS. This follows the advice of Oliva (2004, p. 331): "The fact that feed-
back complexity can be reduced to a unique granular representation of inde-
pendent feedback loops leads me to posit that the SILS and MSILS should
be considered a basis for our field’s efforts to understand loop dominance."
Applying Oliva’s (2004) SILS algorithm to the World Dynamics model re-

sults in a 70 percent reduction in the total number of feedback loops; the 80
loops in the initial model are reduced to 24 loops in the SILS. Using only
the SILS as an input for the proposed algorithm diminishes the resulting ar-
chetype set to 20 underachievement archetypal structures (see Table A.1 in
the Appendix). In contrast, adopting Oliva’s (2004) MSILS algorithm to the
same model generates a 75 percent reduction in the total feedback loop num-
ber; the 80 loops in the original World Dynamics model are reduced to 20
loops in the MSILS. However, using MSILS as an input for our algorithm only
leads to a minimal difference in terms of detected underachievement arche-
typal structures compared to SILS. More specifically, the MSILS produces
the same archetypal solution set except for one archetypal structure (see ar-
chetypes marked with one asterisk in Table 1.A in the Appendix).
To show the interaction between the algorithm’s operation and subsequent

human interpretation, we will briefly delve into the 20 archetypal structures
identified from the SILS. For this end, we define policy variables that can
achieve the intended outcome of population growth and check whether they
entail any unintended consequences. For example, one possible means of
boosting population is to enact policies that raise the birth rate (Births, vari-
able 15). If this is done, then the first seven structures show seven different un-
intended consequences that arise when increasing Births is used to boost
Population. All of these unintended consequences eventually lead to more
Deaths (variable 2), thereby counteracting the intended consequence loop.
Another policy approach to generating population growth might be increasing
Capital Investment (variable 25). Capital Investment leads eventually to more
money spent on agriculture (Capital Ratio Agriculture, variable 32), which in
Copyright © 2015 System Dynamics Society
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Fig. 9. Archetypal struc-
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turn increases both the Food Ratio (variable 17) and the birth rate (Births, var-
iable 15). In that case, archetypal structures 17–20 are worth a look because
they show four different unintended consequences of increasing Capital In-
vestment. Figure 9 illustrates these four archetypal structures that arise when
Capital Investment is the policy approach.
Wolstenholme (2003, p.12) proposes "that the closed-loop solution to an un-

derachievement archetype lies in trying to use some element of the achievement
action to minimise the reaction in other parts of the organisation, usually by
unblocking the resource constraint. That is to introduce a further reinforcing
loop in parallel with the ic reinforcing loop to counter the balancing reaction."
If we transfer Wolstenholme’s idea to the policy example of increased Capital
Investment (variable 25), this means that capital investments should be used
tominimize the unintended consequences. For example, this suggests investing
capital in the reduction of theDeathRate (variable 2) for archetypal structures 17
and 18, investing capital in the reduction of the Pollution Generation (variable
46) for archetypal structure 19, and investing capital in the reduction of theNat-
ural Resource Utilization (variable 54) for archetypal structure 20. More specif-
ically, we ought to introduce three solution links with negative polarity from
Capital Investment (variable 25) to Death Rate (variable 2), from Capital Invest-
ment (variable 25) toPollutionGeneration (variable 46), and fromCapital Invest-
ment (variable 25) to Natural Resource Utilization (variable 54).
The implementation of these three solution links shows logically plausible

results: each policy has a strong impact on population growth compared to the
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initial model and leads to an almost linear growth until the year 2100
(Figure 10). The simulation results in Figure 10 are achieved using Forrester’s
(1971) original model specifications.
Limitations

The ADAS method is new and has limitations that prescribe future research
avenues. First, this method cannot yet detect system archetypes, only model-
ing components that fulfill the structural requirements to qualify as system ar-
chetypes. True archetypes are more than simple two-loop constellations; they
are real-world phenomena with causes and effects separated in time and space
(Wolstenholme, 2003). In particular, spatial differences between ic- and uc-
loops delineated by system boundaries are not incorporated in the ADAS
method. Therefore, modelers’ judgments are required for the interpretation
of this analysis, preventing fully automated archetype detection.
Second, the output of the algorithms might be difficult to interpret in large

models because of the current lack of criteria other than structural require-
ments for the identification of system archetypes. The analysis of the World
Dynamics model illustrated this problem: the ADAS method found many
structures that are potentially archetypal. This problem recurs in any large
model because the probability for detecting archetypal structures rises as the
number of feedbacks grows. In reality however, not all of the detected struc-
tures are plausible explanations for counterintuitive system behaviors.
Discussion and conclusions

The ADAS method is a major step towards the automated identification of sys-
tem archetypes in SD models. It is highly specific and straightforward in its
application because it focuses model analysis on the specific question: Is a cer-
tain variable of interest with dysfunctional reference behavior part of an
Copyright © 2015 System Dynamics Society
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archetypal structure in the model? Answering this question can substantially
improve systematic diagnosis as well as the discovery and implementation of
structural changes (via solution links) that mitigate or even reverse the prob-
lematic behavior. We see the strength of this approach in its complementarity
to established SD practices—in particular to the eigenvalue elasticity analysis
(EEA)—and its potential to significantly shorten the process of model analysis.
The ADAS method in its current form has some restrictions, as addressed

earlier. In particular, analyzing models of high feedback complexity causes
the ADAS method to return a large amount of potential archetypal structures.
As suggested previously, this problem can be effectively tackled by working
from a reduced loop set such as the SILS. Additionally, using the SILS in com-
bination with the ADAS method makes the results comparable and comple-
mentary to the EEA, which by necessity focuses on these loop sets. Future
research might try to integrate the SILS algorithm into the ADAS method,
which would allow for a more effective analysis of "big" SD models.
Furthermore, the introduction of an additional coding procedure—besides

the qualitative code for link polarities and time delays—to account for spatial
effects in system archetypes might also be a promising endeavor for future re-
search. This could be a set of edgeweights θi,j= {0,1} that distinguishes between
variable pairs being within the same organizational "compartment" and vari-
able pairs being separated by organizational boundaries. Based on such a code,
the algorithm would be able to recognize organizational boundaries in models
and integrate them into the process of system archetype detection. In conclu-
sion, despite current limitations and the nascent status of this method, the pro-
posed algorithms represent an important step forward for model analysis and a
pathway to the identification of "real" system archetypes in SD.
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Table 1.A. Algorithmic
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5* 3 R 1→ 15→ 1
6* 3 R 1→ 15→ 1
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17* 11 R 1→ 25→ 24
18* 11 R 1→ 25→ 24
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20* 11 R 1→ 25→ 24
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ally detected underachievement archetypes from the SILS

Unintended consequence (uc)

D P Loop
3 B 1→ 2→ 1
5 B 1→ 8→ 7→ 2→ 1
7 B 1→ 8→ 23→ 17→ 6→ 2→ 1
7 B 1→ 31→ 30→ 28→ 5→ 2→ 1
8 B 1→ 46→ 45→ 57→ 4→ 2→ 1
10 B 1→ 46→ 45→ 57→ 18→ 17→ 6→ 2→ 1
11 B 1→ 54→ 52→ 49→ 50→ 30→ 28→ 5→ 2→ 1

→ 28→ 14→ 15→ 1 3 B 1→ 2→ 1
→ 28→ 14→ 15→ 1 5 B 1→ 8→ 7→ 2→ 1
→ 28→ 14→ 15→ 1 7 B 1→ 8→ 23→ 17→ 6→ 2→ 1
→ 28→ 14→ 15→ 1 8 B 1→ 46→ 45→ 57→ 4→ 2→ 1
→ 28→ 14→ 15→ 1 10 B 1→ 46→ 45→ 57→ 18→ 17→ 6→ 2→ 1
→ 46→ 45→ 57→ 13→ 15→ 1 3 B 1→ 2→ 1
→ 46→ 45→ 57→ 13→ 15→ 1 5 B 1→ 8→ 7→ 2→ 1
→ 46→ 45→ 57→ 13→ 15→ 1 7 B 1→ 8→ 23→ 17→ 6→ 2→ 1
→ 46→ 45→ 57→ 13→ 15→ 1 11 B 1→ 54→ 52→ 49→ 50→ 30→ 28→ 5→ 2→ 1
→ 31→ 32→ 21→ 17→ 12→ 15→ 1 3 B 1→ 2→ 1
→ 31→ 32→ 21→ 17→ 12→ 15→ 1 5 B 1→ 8→ 7→ 2→ 1
→ 31→ 32→ 21→ 17→ 12→ 15→ 1 8 B 1→ 46→ 45→ 57→ 4→ 2→ 1
→ 31→ 32→ 21→ 17→ 12→ 15→ 1 11 B 1→ 54→ 52→ 49→ 50→ 30→ 28→ 5→ 2→ 1

balancing; R, reinforcing; *MSILS.
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