Now showing 1 - 2 of 2
  • Publication
    Stairway to Heaven or Highway to Hell: A Model for Assessing Cognitive Automation Use Cases
    Cognitive automation (CA) moves beyond rule-based business process automation to target cognitive knowledge and service work. This allows the automation of tasks and processes, for which automation seemed unimaginable a decade ago. To organizations, these CA use cases offer vast opportunities to gain a significant competitive advantage. However, CA imposes novel challenges on organizations’ decisions regarding the automation potential of use cases, resulting in low adoption and high project failure rates. To counteract this, we draw on an action research study with a leading European manufacturing company to develop and test a model for assessing use cases’ amenability to CA. The proposed model comprises four dimensions: cognition, data, relationship, and transparency requirements. The model proposes that a use case is less (more) amenable to CA if these requirements are high (low). To account for the model’s industry-agnostic generalizability, we draw on an internal evaluation within the action research company and three additional external evaluations undertaken by independent project teams in three distinct industries. From a practice perspective, the model will help organizations make more informed decisions in selecting use cases for CA and planning their respective initiatives. From a research perspective, the identified determinants affecting use cases’ amenability to CA will enhance our understanding of CA in particular and artificial intelligence as the driving force behind CA in general.
  • Publication
    Leveraging Low Code Development of Smart Personal Assistants: An Integrated Design Approach with the SPADE Method
    Smart personal assistants (SPAs) promise individualized user interactions owing to their varying interaction possibilities, knowledgeability, and human-like behaviors. To support the widespread adoption and use of SPAs, organizations such as Google or Amazon provide low code environments that support the development of SPAs (e.g., for Google Home or Amazon’s Alexa). These so-called low code platforms enable domain experts (e.g., business users without programming skills or experience) to develop SPAs for their purposes. However, using these platforms alone does not guarantee a useful and good conversation with novel SPAs due to non-intuitive design choices. Following a design science research approach, we propose the Smart Personal Assistant for Domain Experts (SPADE) method to address the missing link. This method supports domain experts in the development and contextualization of sophisticated SPAs for various application scenarios and focuses especially on conversational and anthropomorphic design steps. Our proof of concept and proof of value results show that SPADE is useful for supporting domain experts to create effective SPAs in different domains beyond private set-ups.
    Scopus© Citations 4