Now showing 1 - 3 of 3
No Thumbnail Available
Publication

The Rise of Generative AI in Low Code Development Platforms – An Analysis and Future Directions

2024-01-06 , Olivia Bruhin , Ernestine Dickhaut , Edona Elshan , Mahei Li

This study investigates the relationship between Generative AI (GenAI) and Low Code Development Platforms (LCDPs), providing preliminary insights into Gen's transformative potential in this context. It is based on expert interviews and provides insight into the changing landscape of LCDPs influenced by GenAI. The findings highlight the promising benefits of GenAI in LCDPs, such as increased efficiency and decreased errors, while also emphasizing the importance of human oversight and collaboration. The findings also highlight the importance of interpersonal skills in IT, even in an increasingly automated environment. While the economic efficiency and broader implications of GenAI are still being investigated, the study lays the groundwork for future research in this rapidly evolving domain.

No Thumbnail Available
Publication

What to Learn Next? Designing Personalized Learning Paths for Re-&Upskilling in Organizations

2023-01-06 , Eva Ritz , Leonie Freise , Edona Elshan , Roman Rietsche , Ulrich Bretschneider

The fast-paced acceleration of digitalization requires extensive re-&upskilling, impacting a significant proportion of jobs worldwide. Technology-mediated learning platforms have become instrumental in addressing these efforts, as they can analyze platform data to provide personalized learning journeys. Such personalization is expected to increase employees’ empowerment, job satisfaction, and learning outcomes. However, the challenge lies in efficiently deploying these opportunities using novel technologies, prompting questions about the design and analysis of generating personalized learning paths in organizational learning. We, therefore, analyze and classify recent research on personalized learning paths into four major concepts (learning context, data, interface, and adaptation) with ten dimensions and 34 characteristics. Six expert interviews validate the taxonomy’s use and outline three exemplary use cases, undermining its feasibility. Information Systems researchers can use our taxonomy to develop theoretical models to study the effectiveness of personalized learning paths in intra-organizational re-&upskilling.

No Thumbnail Available
Publication

How Conversational Agents Relieve Teams from Innovation Blockages

2022-08-09 , Elshan, Edona , Zierau, Naim , Janson, Andreas , Leimeister, Jan Marco

Innovation is one of the most important antecedents of a company's competitive advantage and long-term survival. Prior research has alluded to teamwork being a primary driver of a firm's innovation capacity. Still, many firms struggle with providing an environment that supports innovation teams in working efficiently together. Thereby, a team's failure can be attributed to several factors, such as inefficient working methods or a lack of internal communication that leads to so-called innovation blockages. There are a number of approaches that are targeted at supporting teams to overcome innovation blockages, but they mainly focus on the collaboration process and rarely consider the needs and potentials of individual team members. In this paper, we argue that Conversational Agents (CAs) can efficiently support teams in overcoming innovation blockages by enhancing collaborative work practices and, specifically, by facilitating the contribution of each individual team member. To that end, we design a CA as a team facilitator that provides nudges to reduce innovation blocking actions according to requirements we systematically derived from scientific literature and practice. Based on a rigorous evaluation, we demonstrate the potential of CAs to reduce the frequency of innovation blockages. The research implications for the development and deployment of CAs as team facilitators are explored.