Options
Marco Schreyer
Artificial Intelligence in Internal Audit as a Contribution to Effective Governance - Deep-learning enabled Detection of Anomalies in Financial Accounting Data
Stichprobenauswahl durch die Anwendung von Künstlicher Intelligenz - Lernen repräsentativer Stichproben aus Journalbuchungen in der Prüfungspraxis
Continual Learning for Unsupervised Anomaly Detection in Continuous Auditing of Financial Accounting Data
Multi-view Contrastive Self-Supervised Learning of Accounting Data Representations for Downstream Audit Tasks
Künstliche Intelligenz im Internal Audit als Beitrag zur Effektiven Governance - Deep-Learning basierte Detektion von Buchungsanomalien in der Revisionspraxis
Künstliche Intelligenz in der Prüfungspraxis - Eine Bestandsaufnahme aktueller Einsatzmöglichkeiten und Herausforderungen
Federated Continual Learning to Detect Accounting Anomalies in Financial Auditing
Artificial Intelligence Enabled Audit Sampling - Learning to draw representative and interpretable audit samples from large-scale journal entry data
FinDiff: Diffusion Models for Financial Tabular Data Generation
Federated and Privacy-Preserving Learning of Accounting Data in Financial Statement Audits