Options
Siegfried Handschuh
Title
Prof. Dr.
Last Name
Handschuh
First name
Siegfried
Email
siegfried.handschuh@unisg.ch
Phone
+41 71 224 3441
Now showing
1 - 10 of 37
-
PublicationA Canonical Context-Preserving Representation for Open IE: Extracting Semantically Typed Relational Tuples from Complex Sentences(Elsevier, 2023-05-23)
;Freitas, AndréModern systems that deal with inference in texts need automatized methods to extract meaning representations (MRs) from texts at scale. Open Information Extraction (IE) is a prominent way of extracting all potential relations from a given text in a comprehensive manner. Previous work in this area has mainly focused on the extraction of isolated relational tuples. Ignoring the cohesive nature of texts where important contextual information is spread across clauses or sentences, state-of-the- art Open IE approaches are thus prone to generating a loose arrangement of tuples that lack the expressiveness needed to infer the true meaning of complex assertions. To overcome this limitation, we present a method that allows existing Open IE systems to enrich their output with additional meta information. By leveraging the semantic hierarchy of minimal propositions generated by the discourse-aware Text Simplification (TS) approach presented in Niklaus et al. (2019), we propose a mechanism to extract semantically typed relational tuples from complex source sentences. Based on this novel type of output, we introduce a lightweight semantic representation for Open IE in the form of normalized and context-preserving relational tuples. It extends the shallow semantic representation of state-of-the-art approaches in the form of predicate-argument structures by capturing intra-sentential rhetorical structures and hierarchical relationships between the relational tuples. In that way, the semantic context of the extracted tuples is preserved, resulting in more informative and coherent predicate-argument structures which are easier to interpret. In addition, in a comparative analysis, we show that the semantic hierarchy of minimal propositions benefits Open IE approaches in a second dimension: the canonical structure of the simplified sentences is easier to process and analyze, and thus facilitates the extraction of relational tuples, resulting in an improved precision (up to 32%) and recall (up to 30%) of the extracted relations on a large benchmark corpus.Type: journal articleJournal: Knowledge-Based SystemsIssue: 268 -
PublicationContext Matters: A Pragmatic Study of PLMs’ Negation UnderstandingIn linguistics, there are two main perspectives on negation: a semantic and a pragmatic view. So far, research in NLP on negation has almost exclusively adhered to the semantic view. In this article, we adopt the pragmatic paradigm to conduct a study of negation understanding focusing on transformer-based PLMs. Our results differ from previous, semantics-based studies and therefore help to contribute a more comprehensive – and, given the results, much more optimistic – picture of the PLMs’ negation understanding.Type: journal articleJournal: Proceedings of the 60th Annual Meeting of the Association for Computational LinguisticsVolume: 1
-
PublicationOn What it Means to Pay Your Fair Share: Towards Automatically Mapping Different Conceptions of Tax Justice in Legal Research Literature( 2022-11)Type: journal article
-
PublicationA Philosophically-Informed Contribution to the Generalization Problem of Neural Natural Language Inference: Shallow Heuristics, Bias, and the Varieties of Inference(Association for Computational Linguistics, 2022)Type: journal article
-
PublicationThe Textbook Learns to Talk: How to Design Chatbot-Mediated Learning to Foster Collaborative High-Order Learning?(Association for the Advancement of Computing in Education (AACE), 2021-11-09)Type: journal article
-
PublicationExploring the Promises of Tranformer-Based LMs for the Representation of Normative Claims in the Legal DomainType: journal articleIssue: arXiv:2108.11215
-
PublicationFostering Students' Academic Writing Skills: Feedback Model for an AI-enabled Support Environment.(Association for the Advancement of Computing in Education (AACE), 2021-11-09)Due to recent advances in natural language processing (NLP), a new generation of digital learning support systems is emerging, which make it possible to analyse the writing quality of texts offering individual, linguistic feedback to writers through various kinds of automated text evaluation. These intelligent tutoring systems (ITS) have to be integrated into existing teaching practices alongside traditional feedback providers (e.g., tutor, peer students). Therefore, this paper explores how academic writing skills of students could be fostered by providing different types of feedback from a tutor, peer students and an ITS. It proposes a feedback model for academic writing in an AI-enabled learning support environment and illustrates the importance of the different feedback providers in an academic writing use case. Through this, the paper aims to contribute to a better understanding of the changing nature of how students' academic writing skills can be fostered in the age of artificial intelligence.Type: journal article
-
PublicationSupporting Cognitive and Emotional Empathic Writing of StudentsWe present an annotation approach to capturing emotional and cognitive empathy in student-written peer reviews on business models in German. We propose an annotation scheme that allows us to model emotional and cognitive empathy scores based on three types of review components. Also, we conducted an annotation study with three annotators based on 92 student essays to evaluate our annotation scheme. The obtained inter-rater agreement of α = 0.79 for the components and the π = 0.41 for the empathy scores indicate that the proposed annotation scheme successfully guides annotators to a substantial to moderate agreement. Moreover, we trained predictive models to detect the annotated empathy structures and embedded them in an adaptive writing support system for students to receive individual empathy feedback independent of an instructor, time, and location. We evaluated our tool in a peer learning exercise with 58 students and found promising results for perceived empathy skill learning, perceived feedback accuracy, and intention to use. Finally, we present our freely available corpus of 500 empathy-annotated, student-written peer reviews on business models and our annotation guidelines to encourage future research on the design and development of empathy support systems.Type: journal articleJournal: The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)
-
PublicationVom Bild zum Text und wieder zurück(Zenodo, 2019-03)
;Donig, Simon ;Christoforaki, MariaSahle, PatrickType: journal article -
PublicationOn the Semantic Interpretability of Artificial Intelligence Models(Computing Research Repository (CoRR), 2019-07)
;Silva, Vivian ;Freitas, AndreArtificial Intelligence models are becoming increasingly more powerful and accurate, supporting or even replacing humans' decision making. But with increased power and accuracy also comes higher complexity, making it hard for users to understand how the model works and what the reasons behind its predictions are. Humans must explain and justify their decisions, and so do the AI models supporting them in this process, making semantic interpretability an emerging field of study. In this work, we look at interpretability from a broader point of view, going beyond the machine learning scope and covering different AI fields such as distributional semantics and fuzzy logic, among others. We examine and classify the models according to their nature and also based on how they introduce interpretability features, analyzing how each approach affects the final users and pointing to gaps that still need to be addressed to provide more human-centered interpretability solutions.Type: journal article