Options
Damian Borth
Title
Prof. Dr.
Last Name
Borth
First name
Damian
Email
damian.borth@unisg.ch
Phone
+41 71 224 26 27
Twitter
https://twitter.com/damianborth
Google Scholar
Now showing
1 - 10 of 47
-
PublicationToward Global Estimation of Ground-Level NO2 Pollution With Deep Learning and Remote SensingAir pollution is a central environmental problem in countries around the world. It contributes to climate change through the emission of greenhouse gases, and adversely impacts the health of billions of people. Despite its importance, detailed information about the spatial and temporal distribution of pollutants is complex to obtain. Ground-level monitoring stations are sparse, and approaches for modeling air pollution rely on extensive datasets which are unavailable for many locations. We introduce three techniques for the estimation of air pollution to overcome these limitations: 1) a baseline localized approach that mimics conventional land-use regression through gradient boosting; 2) an OpenStreetMap (OSM) approach with gradient boosting that is applicable beyond regions covered by detailed geographic datasets; and 3) a remote sensing-based deep learning method utilizing multiband imagery and trace-gas column density measurements from satellites. We focus on the estimation of nitrogen dioxide (NO2), a common anthropogenic air pollutant with adverse effects on the environment and human health. Our local baseline model achieves strong results with a mean absolute error (MAE) of 5.18 ± 0.16 μg/m3 NO2. Substituting localized inputs with OSM leads to a degraded performance (MAE 7.22 ± 0.14) but enables NO2 estimation at a global scale. The proposed deep learning model on remote sensing data combines high accuracy (MAE 5.5 ± 0.14) with global coverage and heteroscedastic uncertainty quantification. Our results enable the estimation of surface-level NO2 pollution with high spatial resolution for any location on Earth. We illustrate this capability with an out-of-distribution test set on the US westcoast. Code and data are publicly available.Type: journal articleJournal: IEEE Transactions on Geoscience and Remote SensingVolume: 60Issue: 4705914
Scopus© Citations 3 -
PublicationArtificial Intelligence in Internal Audit as a Contribution to Effective Governance - Deep-learning enabled Detection of Anomalies in Financial Accounting DataType: journal articleJournal: Expert FocusVolume: Special: Internal AuditIssue: 01
-
PublicationKünstliche Intelligenz im Internal Audit als Beitrag zur Effektiven Governance - Deep-Learning basierte Detektion von Buchungsanomalien in der RevisionspraxisType: journal articleJournal: Expert FocusVolume: Special: Interne RevisionIssue: 01
-
PublicationArtificial Intelligence Enabled Audit Sampling - Learning to draw representative and interpretable audit samples from large-scale journal entry data(EXPERTsuisse, 2022-03-07)Type: journal articleJournal: Expert FocusIssue: 04
-
PublicationStichprobenauswahl durch die Anwendung von Künstlicher Intelligenz - Lernen repräsentativer Stichproben aus Journalbuchungen in der Prüfungspraxis(EXPERTsuisse, 2022-02-07)Type: journal articleJournal: Expert FocusIssue: 02
-
PublicationDeep Learning für die Wirtschaftsprüfung - Eine Darstellung von Theorie, Funktionsweise und Anwendungsmöglichkeiten(C.H. Beck Vahlen Verlag, 2021-07-28)Type: journal articleJournal: Zeitschrift für Internationale Rechnungslegung (IRZ)Issue: 7/8
-
PublicationKünstliche Intelligenz in der Prüfungspraxis - Eine Bestandsaufnahme aktueller Einsatzmöglichkeiten und Herausforderungen(Expertsuisse, 2020-09-01)Type: journal articleJournal: Expert FocusVolume: 2020Issue: 09
-
PublicationManagement von Künstlicher Intelligenz in UnternehmenType: journal articleJournal: HMD Praxis der WirtschaftsinformatikVolume: 57Issue: 1
-
PublicationEuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover ClassificationIn this paper, we present a patch-based land use and land cover classification approach using Sentinel-2 satellite images. The Sentinel-2 satellite images are openly and freely accessible, and are provided in the earth observation program Copernicus. We present a novel dataset, based on these images that covers 13 spectral bands and is comprised of ten classes with a total of 27000 labeled and geo-referenced images. Benchmarks are provided for this novel dataset with its spectral bands using state-of-the-art deep convolutional neural networks. An overall classification accuracy of 98.57% was achieved with the proposed novel dataset. The resulting classification system opens a gate toward a number of earth observation applications. We demon- strate how this classification system can be used for detecting land use and land cover changes, and how it can assist in improving geographical maps. The geo-referenced dataset EuroSAT is made publicly available at https://github.com/phelber/eurosat.Type: journal articleJournal: IEEE Journal of Selected Topics in Applied Earth Observations and Remote SensingVolume: 12Issue: 7
Scopus© Citations 373 -
PublicationKünstliche Intelligenz in der Wirtschaftsprüfung - Identifikation ungewöhnlicher Buchungen in der Finanzbuchhaltung(IDW Verlag, 2018-11-01)
;Sattarov, Timur ;Dengel, AndreasReimer, BerndType: journal articleJournal: WPg - Die WirtschaftsprüfungVolume: 72Issue: 11